Journal articles on the topic 'Contrôle LPV Robuste'

To see the other types of publications on this topic, follow the link: Contrôle LPV Robuste.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Contrôle LPV Robuste.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Xie, W. "Robust control system design for polytopic stable LPV systems." IMA Journal of Mathematical Control and Information 20, no. 2 (June 1, 2003): 201–16. http://dx.doi.org/10.1093/imamci/20.2.201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hasseni, Seif-El-Islam, and Latifa Abdou. "Robust LFT-LPV H∞ Control of an Underactuated Inverted Pendulum on a Cart with Optimal Weighting Functions Selection by GA and ES." Acta Mechanica et Automatica 14, no. 4 (December 1, 2020): 186–97. http://dx.doi.org/10.2478/ama-2020-0027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract This article investigates the robust stabilization and control of the inverted pendulum on a cart against disturbances, measurement noises, and parametric uncertainties by the LFT-based LPV technique (Linear-Fractional-Transformation based Linear-Parameter-Varying). To make the applying of the LPV technique possible, the LPV representation of the inverted pendulum on a cart model is developed. Besides, the underactuated constraint of this vehicle is overcome by considering both degrees of freedom (the rotational one and the translational one) in the structure. Moreover, the selection of the weighting functions that represent the desired performance is solved by two approaches of evolutionary algorithms; Genetic Algorithms (GA) and Evolutionary Strategies (ES) to find the weighting functions’ optimal parameters. To validate the proposed approach, simulations are performed and they show the effectiveness of the proposed approach to obtain robust controllers against external signals, as well as the parametric uncertainties.
3

Bianchi, Fernando D., and Ricardo S. Sánchez-Peña. "Robust identification/invalidation in an LPV framework." International Journal of Robust and Nonlinear Control 20, no. 3 (March 27, 2009): 301–12. http://dx.doi.org/10.1002/rnc.1430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pimentel, Guilherme, and Daniel Coutinho. "Controle robusto por realimentação linearizante parcial de bioreatores em modo de operação descontínua com alimentação." Sba: Controle & Automação Sociedade Brasileira de Automatica 23, no. 2 (April 2012): 138–52. http://dx.doi.org/10.1590/s0103-17592012000200002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Uma metodologia para o projeto de controladores robustos foi desenvolvida para bioreatores operando em modo descontínuo com alimentação. Inicialmente, apresenta-se um modelo geral que descreve a dinâmica do crescimento da bactéria Escherichia Coli e da levedura Saccharomyces Cerevisiae que são atualmente os dois microorganismos mais utilizados na indústria biotecnológica. A partir do modelo dinâmico da cultura de microorganismos, busca-se projetar uma lei de controle que mantenha a concentração do produto secundário em níveis próximos a zero visando, desta forma, maximizar a produção de biomassa. Com este objetivo, a dinâmica não linear é descrita em termos de parâmetros variantes no tempo (abordagem quasi-LPV) possibilitando a utilização da formulação por desigualdades matriciais lineares para o projeto da dinâmica livre resultante da aplicação de uma lei de controle do tipo linearizante parcial. As condições propostas permitem garantir a estabilidade robusta do sistema em malha fechada frente a incertezas paramétricas, além de assegurar um certo desempenho com relação a perturbações. Para verificar o comportamento da metodologia proposta, vários testes por simulação são realizados para avaliar o comportamento da estratégia proposta em relação a trabalhos disponíveis na literatura especializada
5

Hadian, Mohsen, Amin Ramezani, and Wenjun Zhang. "Robust Model Predictive Controller Using Recurrent Neural Networks for Input–Output Linear Parameter Varying Systems." Electronics 10, no. 13 (June 28, 2021): 1557. http://dx.doi.org/10.3390/electronics10131557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This paper develops a model predictive controller (MPC) for constrained nonlinear MIMO systems subjected to bounded disturbances. A linear parameter varying (LPV) model assists MPC in dealing with nonlinear dynamics. In this study, the nonlinear process is represented by an LPV using past input–output information (LPV-IO). Two primary objectives of this study are to reduce online computational load compared with the existing literature of MPC with an LPV-IO model and to confirm the robustness of the controller in the presence of disturbance. For the first goal, a recurrent neural network (RNN) is employed to solve real-time optimization problems with lower online computation. Regarding robustness, a new control law is developed, which comprises a fixed control gain (K) and a free perturbation (C). The proposed method enjoys a shrunken conservatism owing to the finding of a larger possible terminal region and using free control moves. The strategy is examined in an alkylation of benzene process and displays outstanding performance in both setpoint tracking and disturbance rejection problems. Moreover, the superiority of RNN over three conventional optimization algorithms is underlined in terms of MSE, the average time for solving the optimization problem, and the value of the cost function.
6

Song, Lei, and Jianying Yang. "Robust reliable tracking controller design against actuator faults for LPV systems." Asian Journal of Control 13, no. 6 (December 2, 2010): 1075–81. http://dx.doi.org/10.1002/asjc.286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Varrier, Sébastien, Damien Koenig, and John J. Martinez. "Robust fault detection for Uncertain Unknown Inputs LPV system." Control Engineering Practice 22 (January 2014): 125–34. http://dx.doi.org/10.1016/j.conengprac.2013.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Varga, Andreas, and Daniel Ossmann. "LPV model-based robust diagnosis of flight actuator faults." Control Engineering Practice 31 (October 2014): 135–47. http://dx.doi.org/10.1016/j.conengprac.2013.11.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, S. M., S. C. Won, D. H. Ji, and J. H. Park. "Robust model predictive control for LPV systems using relaxation matrices." IET Control Theory & Applications 1, no. 6 (November 1, 2007): 1567–73. http://dx.doi.org/10.1049/iet-cta:20060525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, Chao, Xianqiang Yang, and Miao Yu. "Robust LPV models identification approach based on shifted asymmetric Laplace distribution." Measurement and Control 54, no. 9-10 (November 2021): 1336–46. http://dx.doi.org/10.1177/00202940211028904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This paper focuses on the robust parameters estimation algorithm of linear parameters varying (LPV) models. The classical robust identification techniques deal with the polluted training data, for example, outliers in white noise. The paper extends this robustness to both symmetric and asymmetric noise with outliers to achieve stronger robustness. Without the assumption of Gaussian white noise pollution, the paper employs asymmetric Laplace distribution to model broader noise, especially the asymmetrically distributed noise, since it is an asymmetric heavy-tailed distribution. Furthermore, the asymmetric Laplace (AL) distribution is represented as the product of Gaussian distribution and exponential distribution to decompose this complex AL distribution. Then, a shifted parameter is introduced as the regression term to connect the probabilistic models of the noise and the predict output that obeys shifted AL distribution. In this way, the posterior probability distribution of the unobserved variables could be deduced and the robust parameters estimation problem is solved in the general Expectation Maximization algorithm framework. To demonstrate the advantage of the proposed algorithm, a numerical simulation example is employed to identify the parameters of LPV models and to illustrate the convergence.
11

Buzachero, Luiz F. S., Edvaldo Assunção, Marcelo C. M. Teixeira, and Emerson R. P. da Silva. "Switched Optimized Robust Control of Uncertain LPV Systems Subject to Structural Faults." IFAC-PapersOnLine 51, no. 25 (2018): 353–58. http://dx.doi.org/10.1016/j.ifacol.2018.11.132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zhang, Xian, and Huanyu Zhu. "Robust Stability and Stabilization Criteria for Discrete Singular Time-Delay LPV Systems." Asian Journal of Control 14, no. 4 (August 1, 2011): 1084–94. http://dx.doi.org/10.1002/asjc.418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ding, Baocang, Xubin Ping, and Hongguang Pan. "On dynamic output feedback robust MPC for constrained quasi-LPV systems." International Journal of Control 86, no. 12 (December 2013): 2215–27. http://dx.doi.org/10.1080/00207179.2013.809796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Németh, Balázs, Péter Gáspár, and Zoltán Szabó. "Guaranteed performances for a learning-based eco-cruise control using robust LPV method." IFAC-PapersOnLine 54, no. 8 (2021): 83–88. http://dx.doi.org/10.1016/j.ifacol.2021.08.585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Biannic, Jean-Marc, Anthony Bourdelle, Hélène Evain, Sabine Moreno, and Laurent Burlion. "On robust LPV-based observation of fuel slosh dynamics for attitude control design." IFAC-PapersOnLine 52, no. 28 (2019): 170–75. http://dx.doi.org/10.1016/j.ifacol.2019.12.369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hooshmandi, Kaveh, Farhad Bayat, Mohammad Reza Jahed-Motlagh, and Ali Akbar Jalali. "Polynomial LPV approach to robust H ∞ control of nonlinear sampled-data systems." International Journal of Control 93, no. 9 (November 19, 2018): 2145–60. http://dx.doi.org/10.1080/00207179.2018.1547422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Do, Manh-Hung, Damien Koenig, and Didier Theilliol. "Robust H∞ proportional-integral observer-based controller for uncertain LPV system." Journal of the Franklin Institute 357, no. 4 (March 2020): 2099–130. http://dx.doi.org/10.1016/j.jfranklin.2019.11.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bujarbaruah, Monimoy, Ugo Rosolia, Yvonne R. Stürz, Xiaojing Zhang, and Francesco Borrelli. "Robust MPC for LPV systems via a novel optimization-based constraint tightening." Automatica 143 (September 2022): 110459. http://dx.doi.org/10.1016/j.automatica.2022.110459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Isaza-Hurtado, J. A., H. A. Botero-Castro, and H. Alvarez. "Robust estimation for LPV systems in the presence of non-uniform measurements." Automatica 115 (May 2020): 108901. http://dx.doi.org/10.1016/j.automatica.2020.108901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Armeni, Saverio, Alessandro Casavola, and Edoardo Mosca. "Robust fault detection and isolation for LPV systems under a sensitivity constraint." International Journal of Adaptive Control and Signal Processing 23, no. 1 (January 2009): 55–72. http://dx.doi.org/10.1002/acs.1044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zhang, Shuang, Vicenç Puig, and Sara Ifqir. "Robust Fault Detection using Set-based Approaches for LPV Systems: Application to Autonomous Vehicles." IFAC-PapersOnLine 55, no. 6 (2022): 31–36. http://dx.doi.org/10.1016/j.ifacol.2022.07.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Abbas, Hossam S., Jurre Hanema, Roland Tóth, Javad Mohammadpour, and Nader Meskin. "A New Approach to Robust MPC Design for LPV Systems in Input-Output Form." IFAC-PapersOnLine 51, no. 26 (2018): 112–17. http://dx.doi.org/10.1016/j.ifacol.2018.11.159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Rosa, Paulo, Gary J. Balas, Carlos Silvestre, and Michael Athans. "A Synthesis Method of LTI MIMO Robust Controllers for Uncertain LPV Plants." IEEE Transactions on Automatic Control 59, no. 8 (August 2014): 2234–40. http://dx.doi.org/10.1109/tac.2014.2301572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Wang, Xin, Xian Zhang, and Xiaona Yang. "Delay-dependent Robust Dissipative Control for Singular LPV Systems with Multiple Input Delays." International Journal of Control, Automation and Systems 17, no. 2 (January 18, 2019): 327–35. http://dx.doi.org/10.1007/s12555-018-0237-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Rotondo, Damiano, Fatiha Nejjari, and Vicenç Puig. "Robust state-feedback control of uncertain LPV systems: An LMI-based approach." Journal of the Franklin Institute 351, no. 5 (May 2014): 2781–803. http://dx.doi.org/10.1016/j.jfranklin.2014.01.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hooshmandi, Kaveh, Farhad Bayat, Mohammad Reza Jahed-Motlagh, and AliAkbar Jalali. "Robust sampled-data control of non-linear LPV systems: time-dependent functional approach." IET Control Theory & Applications 12, no. 9 (June 12, 2018): 1318–31. http://dx.doi.org/10.1049/iet-cta.2017.0980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ho, Lok Man. "Robust Residual Generator Synthesis for Uncertain LPV Systems Applied to Lateral Vehicle Dynamics." IEEE Transactions on Control Systems Technology 27, no. 3 (May 2019): 1275–83. http://dx.doi.org/10.1109/tcst.2018.2789461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gupta, Ankit, Manas Mejari, Paolo Falcone, and Dario Piga. "Computation of parameter dependent robust invariant sets for LPV models with guaranteed performance." Automatica 151 (May 2023): 110920. http://dx.doi.org/10.1016/j.automatica.2023.110920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Chen, Lejun, Ron Patton, and Philippe Goupil. "Robust fault estimation using an LPV reference model: ADDSAFE benchmark case study." Control Engineering Practice 49 (April 2016): 194–203. http://dx.doi.org/10.1016/j.conengprac.2015.12.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Dewei Li and Yugeng Xi. "The Feedback Robust MPC for LPV Systems With Bounded Rates of Parameter Changes." IEEE Transactions on Automatic Control 55, no. 2 (February 2010): 503–7. http://dx.doi.org/10.1109/tac.2009.2037464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Li, Dewei, Furong Gao, and Yugeng Xi. "Separated design of robust model predictive control for LPV systems with periodic disturbance." Journal of Process Control 24, no. 1 (January 2014): 250–60. http://dx.doi.org/10.1016/j.jprocont.2013.10.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Chang, H., A. Krieger, A. Astolfi, and E. N. Pistikopoulos. "Robust multi-parametric model predictive control for LPV systems with application to anaesthesia." Journal of Process Control 24, no. 10 (October 2014): 1538–47. http://dx.doi.org/10.1016/j.jprocont.2014.07.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bastos, Edson Vinicius Pontes, Vinícius Da Silva Matos, and Marcelo Álvaro da Silva Macedo. "Relevância da Informação Contábil de Lucro e Fluxo de Caixa: um Estudo com Foco em Ações Ordinárias e Preferenciais." Revista de Gestão dos Países de Língua Portuguesa 18, no. 2 (November 11, 2019): 104. http://dx.doi.org/10.12660/rgplp.v18n2.2019.78785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
<p>Objetiva-se verificar se o lucro líquido por ação (LPA) e o fluxo de caixa operacional por ação (FCO_A) apresentam capacidades distintas de explicar o comportamento dos preços das ações ordinárias e preferenciais. Formaram-se três grupos: o primeiro, com ambas as classes acionárias; o segundo, apenas com ações ordinárias; e o terceiro, apenas com preferenciais. Para cada grupo foram aplicados dois modelos de regressões, um usando o LPA e outro usando o FCO_A, tendo em ambos o patrimônio líquido, QTobin e o tamanho como variável de controle. Os modelos foram estimados por OLS e, posteriormente, por GMM como análise de robustez. Os resultados sugerem que o FCO é mais relevante para as ações ordinárias do que para as ações preferenciais. Já a variável LPA é significativa para ambas as classes acionárias, e seus modelos apresentaram maior capacidade explicativa para as ações preferenciais. Logo, têm-se evidências de que o lucro líquido (LL) é mais relevante para as ações preferenciais do que para as ações ordinárias.</p>
34

Ping, Xubin, Sen Yang, Baocang Ding, Tarek Raïssi, and Zhiwu Li. "A Convexity Approach to Dynamic Output Feedback Robust MPC for LPV Systems with Bounded Disturbances." International Journal of Control, Automation and Systems 18, no. 6 (December 26, 2019): 1378–91. http://dx.doi.org/10.1007/s12555-019-0089-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Tasoujian, Shahin, Saeed Salavati, Matthew A. Franchek, and Karolos M. Grigoriadis. "Robust delay-dependent LPV synthesis for blood pressure control with real-time Bayesian parameter estimation." IET Control Theory & Applications 14, no. 10 (July 2, 2020): 1334–45. http://dx.doi.org/10.1049/iet-cta.2019.0651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Heydari, Reza, and Mohammad Farrokhi. "Robust tube-based model predictive control of LPV systems subject to adjustable additive disturbance set." Automatica 129 (July 2021): 109672. http://dx.doi.org/10.1016/j.automatica.2021.109672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Song, Lei, and Jianying Yang. "An improved approach to robust stability analysis and controller synthesis for LPV systems." International Journal of Robust and Nonlinear Control 21, no. 13 (September 28, 2010): 1574–86. http://dx.doi.org/10.1002/rnc.1655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Rotondo, Damiano, Andrea Cristofaro, Tor Arne Johansen, Fatiha Nejjari, and Vicenç Puig. "Robust fault and icing diagnosis in unmanned aerial vehicles using LPV interval observers." International Journal of Robust and Nonlinear Control 29, no. 16 (October 28, 2018): 5456–80. http://dx.doi.org/10.1002/rnc.4381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Tan, Junbo, Feng Xu, Jun Yang, Xueqian Wang, and Bin Liang. "Robust Fault Detection and Isolation of Discrete-Time LPV Systems Combining Set-theoretic UIO and Invariant Sets." IFAC-PapersOnLine 53, no. 2 (2020): 724–29. http://dx.doi.org/10.1016/j.ifacol.2020.12.822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Shao, Pengyuan, Jin Wu, Chengfu Wu, and Songhui Ma. "Model and robust gain‐scheduled PID control of a bio‐inspired morphing UAV based on LPV method." Asian Journal of Control 21, no. 4 (July 2019): 1681–705. http://dx.doi.org/10.1002/asjc.2187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Morato, Marcelo M. "A robust model predictive control algorithm for input–output LPV systems using parameter extrapolation." Journal of Process Control 128 (August 2023): 103021. http://dx.doi.org/10.1016/j.jprocont.2023.103021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

López-Estrada, Francisco Ronay, Jean-Christophe Ponsart, Didier Theilliol, Youmin Zhang, and Carlos-Manuel Astorga-Zaragoza. "LPV Model-Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV." Journal of Intelligent & Robotic Systems 84, no. 1-4 (November 6, 2015): 163–77. http://dx.doi.org/10.1007/s10846-015-0295-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Yassuda, Julio Yuzo, Cristiano Marcos Agulhari, and Emerson Ravazzi Pires da Silva. "Sampled-data robust control of a 2-DoF helicopter modeled using a quasi-LPV framework." Control Engineering Practice 145 (April 2024): 105870. http://dx.doi.org/10.1016/j.conengprac.2024.105870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Mattei, Massimiliano. "An LPV approach to the robust control of a class of quasi-linear propagation processes." Journal of Process Control 14, no. 6 (September 2004): 651–60. http://dx.doi.org/10.1016/j.jprocont.2004.01.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hachem, Mohamad, Ariel M. Borrell, Olivier Sename, Hussam Atoui, and Marcelo Morato. "ROS Implementation of Planning and Robust Control Strategies for Autonomous Vehicles." Electronics 12, no. 17 (August 31, 2023): 3680. http://dx.doi.org/10.3390/electronics12173680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Autonomous vehicles are rapidly emerging as a crucial sector within the automotive industry. Several companies are investing in the development and enhancement of technologies, which presents challenging problems in the context of robotics and control. In particular, this work primarily focuses on the creation of an autonomous vehicle architecture utilizing the robotic operating system (ROS2) framework, accompanied by advanced control algorithms. In order to facilitate the development and implementation of lateral vehicle dynamics controllers, a reduced-size automated car available in GIPSA-Lab is used as an experimental platform. The objective is to design robust controllers capable of achieving optimal tracking and stability. Accordingly, this problem is tackled under different robust control syntheses, considering the H∞ approach: using linear time-invariant (LTI) and linear parameter-varying (LPV) model representations. Several simulation and experimental results are included to demonstrate the efficiency of the controllers.
46

Ping, Xu-Bin, Peng Wang, and Jia-Feng Zhang. "A Multi-step Output Feedback Robust MPC Approach for LPV Systems with Bounded Parameter Changes and Disturbance." International Journal of Control, Automation and Systems 16, no. 5 (September 13, 2018): 2157–68. http://dx.doi.org/10.1007/s12555-017-0630-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Heydari, Reza, and Mohammad Farrokhi. "Robust event-triggered model predictive control of polytopic LPV systems: An input-to-state stability approach." Systems & Control Letters 163 (May 2022): 105202. http://dx.doi.org/10.1016/j.sysconle.2022.105202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Rizzello, Gianluca. "Robust output regulation of a class of smart actuators described by a minimum phase LPV dynamics." Mechatronics 94 (October 2023): 103003. http://dx.doi.org/10.1016/j.mechatronics.2023.103003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wu, L., C. Wang, H. Gao, and P. Shi. "Delay-dependent robust ℋ∞ and ℒ2-ℒ∞ filtering for LPV systems with both discrete and distributed delays." IEE Proceedings - Control Theory and Applications 153, no. 4 (July 1, 2006): 483–92. http://dx.doi.org/10.1049/ip-cta:20050296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Yang, Weilin, Jianwei Gao, Gang Feng, and TieJun Zhang. "An optimal approach to output-feedback robust model predictive control of LPV systems with disturbances." International Journal of Robust and Nonlinear Control 26, no. 15 (January 6, 2016): 3253–73. http://dx.doi.org/10.1002/rnc.3505.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography