To see the other types of publications on this topic, follow the link: Control system- AC and DC microgrids.

Journal articles on the topic 'Control system- AC and DC microgrids'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Control system- AC and DC microgrids.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sheng, Wanxing, Yinqiu Hong, Ming Wu, and Yu Ji. "A Cooperative Control Scheme for AC/DC Hybrid Autonomous Microgrids." Processes 8, no. 3 (2020): 311. http://dx.doi.org/10.3390/pr8030311.

Full text
Abstract:
The AC/DC hybrid microgrid (MG) has been widely promoted due to its high flexibility. The capability to operate in islanding mode is an appealing advantage of the MG, and also sets higher requirements for its control system. A droop control strategy is proposed on account of its distinguishing feature of automatic power sharing between distributed generations (DGs), but it introduces some drawbacks. Therefore, distributed cooperative secondary control is introduced as an improvement. In order to optimize the active power sharing in AC/DC hybrid microgrids, a number of cooperative control strat
APA, Harvard, Vancouver, ISO, and other styles
2

Ohm Vignesh V & Dr. Latha Mercy E. "Implementation and Optimal Control of DC Microgrid." International Journal for Modern Trends in Science and Technology 7, no. 05 (2021): 89–95. http://dx.doi.org/10.46501/ijmtst0705014.

Full text
Abstract:
The degradation of non-renewable energy resources has been increasing widely. The objective of this research is to effectively utilize solar power using DC microgrid technology. Compared with AC microgrids, DC microgrids obtain some advantages and more suitable to access distributed power sources. A methodology “Plug and Play” approach based on the “System of Systems” philosophy controls interconnecting several elements to a DC microgrid. The main aim of this research work is to supply the power to the critical load at any condition. When power availability is less, the non-critical load will
APA, Harvard, Vancouver, ISO, and other styles
3

Vinothkumar, J., and R. Thamizhselvan. "Efficient Power Management and Control Strategy of Hybrid Renewable Energy System in Microgrid." International Journal on Applied Physics and Engineering 2 (July 17, 2023): 106–27. http://dx.doi.org/10.37394/232030.2023.2.11.

Full text
Abstract:
Currently, the use of renewable energy has gradually increased due to the environmental problems present nowadays. The intermittency of distributed renewable generation poses significant challenges for the operation and integration of microgrids. Unlike the main power grid, where load balancing resources, in general, are abundant, the balancing of generation and load in a microgrid must be done by small gas turbines, diesel generators, or energy storage devices with very limited capacity and at much higher costs. Consequently, the proposed methodology seeks a model for minimizing the Energy Co
APA, Harvard, Vancouver, ISO, and other styles
4

Barros, J. Dionísio, Luis Rocha, and J. Fernando Silva. "Backstepping Predictive Control of Hybrid Microgrids Interconnected by Neutral Point Clamped Converters." Electronics 10, no. 10 (2021): 1210. http://dx.doi.org/10.3390/electronics10101210.

Full text
Abstract:
In this work, DC and AC parts of hybrid microgrids are interconnected by a neutral point clamped—NPC converter controlled using a new backstepping predictive (BP) method. The NPC converter is controlled to operate in the DC microgrid voltage control mode or in the AC microgrid power control mode. The novel backstepping predictive controller is designed using the dq state space dynamic model of the NPC converter connected to the hybrid microgrid. The designed BP controller regulates the DC voltage or AC injected power, balances the capacitor voltages, controls the AC currents, and enforces the
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Xinbo, Shi Wang, Xiaotong Song, and Jinghua Zhou. "Stability Control Strategies for Bidirectional Energy Storage Converters Considering AC Constant Power Loads." Electronics 12, no. 4 (2023): 1067. http://dx.doi.org/10.3390/electronics12041067.

Full text
Abstract:
In islanded AC microgrids, negative impedance characteristics of AC constant power loads (AC CPLs) easily introduce large signal instability to the system, while energy storage systems sometimes compensate for the dynamic characteristics of AC CPLs, and increase the system stability. Although energy storage control techniques and characteristics have gained a lot of attention, few studies have derived quantitative design guidelines for energy storage systems from the aspect of stability improvement. In order to fill this gap, this paper proposes stability control strategies for bidirectional e
APA, Harvard, Vancouver, ISO, and other styles
6

Azeem, Omar, Mujtaba Ali, Ghulam Abbas, et al. "A Comprehensive Review on Integration Challenges, Optimization Techniques and Control Strategies of Hybrid AC/DC Microgrid." Applied Sciences 11, no. 14 (2021): 6242. http://dx.doi.org/10.3390/app11146242.

Full text
Abstract:
The depletion of natural resources and the intermittence of renewable energy resources have pressed the need for a hybrid microgrid, combining the benefits of both AC and DC microgrids, minimizing the overall deficiency shortcomings and increasing the reliability of the system. The hybrid microgrid also supports the decentralized grid control structure, aligning with the current scattered and concentrated load scenarios. Hence, there is an increasing need to explore and reveal the integration, optimization, and control strategies regarding the hybrid microgrid. A comprehensive study of hybrid
APA, Harvard, Vancouver, ISO, and other styles
7

Volnyi, Vladislav, Pavel Ilyushin, Konstantin Suslov, and Sergey Filippov. "Approaches to Building AC and AC–DC Microgrids on Top of Existing Passive Distribution Networks." Energies 16, no. 15 (2023): 5799. http://dx.doi.org/10.3390/en16155799.

Full text
Abstract:
The process of building microgrids on top of existing passive distribution networks warrants a multi-criteria analysis. Besides the calculation of the investment outlays needed for the modernization of distribution networks, such an analysis covers an assessment of the technological and economic effects of building microgrids. The resulting effects depend on the topology and configuration of distribution networks, specific microgrid features, the choice of the current type for the entire microgrid or its individual parts, the methods of connecting distributed energy resources (DERs), the avail
APA, Harvard, Vancouver, ISO, and other styles
8

El-Shahat, Adel, and Sharaf Sumaiya. "DC-Microgrid System Design, Control, and Analysis." Electronics 8, no. 2 (2019): 124. http://dx.doi.org/10.3390/electronics8020124.

Full text
Abstract:
Recently direct current (DC) microgrids have drawn more consideration because of the expanding use of direct current (DC) energy sources, energy storages, and loads in power systems. Design and analysis of a standalone solar photovoltaic (PV) system with DC microgrid has been proposed to supply power for both DC and alternating current (AC) loads. The proposed system comprises of a solar PV system with boost DC/DC converter, Incremental conductance (IncCond) maximum power point tracking (MPPT), bi-directional DC/DC converter (BDC), DC-AC inverter and batteries. The proposed bi-directional DC/D
APA, Harvard, Vancouver, ISO, and other styles
9

Rangarajan, Shriram S., Rahul Raman, Amritpal Singh, et al. "DC Microgrids: A Propitious Smart Grid Paradigm for Smart Cities." Smart Cities 6, no. 4 (2023): 1690–718. http://dx.doi.org/10.3390/smartcities6040079.

Full text
Abstract:
Recent years have seen a surge in interest in DC microgrids as DC loads and DC sources like solar photovoltaic systems, fuel cells, batteries, and other options have become more mainstream. As more distributed energy resources (DERs) are integrated into an existing smart grid, DC networks have come to the forefront of the industry. DC systems completely sidestep the need for synchronization, reactive power control, and frequency control. DC systems are more dependable and productive than ever before because AC systems are prone to all of these issues. There is a lot of unrealized potential in
APA, Harvard, Vancouver, ISO, and other styles
10

Ilyushin, Pavel, Vladislav Volnyi, Konstantin Suslov, and Sergey Filippov. "State-of-the-Art Literature Review of Power Flow Control Methods for Low-Voltage AC and AC-DC Microgrids." Energies 16, no. 7 (2023): 3153. http://dx.doi.org/10.3390/en16073153.

Full text
Abstract:
The development of AC distribution systems provides for the seamless integration of low-voltage microgrids with distributed energy resources (DERs). This poses new challenges for the control of normal, emergency, and post-emergency states of microgrids, calling for the creation and development of information and communications technology infrastructure. Power converters/inverters that are used to integrate renewable DERs lack inertia. Along with them, fossil fuel-fired generation units are also being integrated into microgrids. These include gas generator sets, diesel generator sets, and micro
APA, Harvard, Vancouver, ISO, and other styles
11

Radha, P. "Distribution Voltage and Output Power Sharing Control for DC Microgrids using Fuzzy Control and Gain-Scheduling." International Journal for Research in Applied Science and Engineering Technology 10, no. 7 (2022): 3054–60. http://dx.doi.org/10.22214/ijraset.2022.45618.

Full text
Abstract:
Abstract: A dc microgrid has gained popularity in recent years due to dc sources such as solar panels, fuel cells, and batteries. Interconnections can be made without AC to DC conversion, which improves system efficiency. Furthermore, when a utility grid is experiencing voltage sags or blackouts, A continuous supply of high-quality power is possible. Parallel operations have been proposed with several types of droop controls and microgrids, including DC and AC, were also used in some cases. Sharing the storage unit outputs via a gain scheduling scheme would result in unbalanced storage energy.
APA, Harvard, Vancouver, ISO, and other styles
12

Peng, Qingwen, Zhichang Yuan, Bin Ouyang, Peiqian Guo, and Lu Qu. "Research on the Optimal Operation Method of DC Microgrid Base on the New DC Power Distribution Management System." Electronics 9, no. 1 (2019): 9. http://dx.doi.org/10.3390/electronics9010009.

Full text
Abstract:
The grid-connected operation of the distributed generation (DG) via the direct current (DC) microgrid is the operation mode of the DC power distribution system in the future. Considering the grid-connected operation of multiple DC microgrids, we have proposed a new type of DC power distribution management system aiming at the lowest operating cost of the entire DC power distribution system. Our proposed DC power distribution management system can be used to carry out the optimized dispatching for the connected DC microgrids, thereby achieving the economic, safe, and stable operation of DC powe
APA, Harvard, Vancouver, ISO, and other styles
13

Jadidi, Saeedreza, Hamed Badihi, and Youmin Zhang. "Passive Fault-Tolerant Control Strategies for Power Converter in a Hybrid Microgrid." Energies 13, no. 21 (2020): 5625. http://dx.doi.org/10.3390/en13215625.

Full text
Abstract:
Control of AC/DC pulse-width modulation (PWM) power electronic converter, referred to as “AC/DC PWM converter”, is vital to the efficient regulation of power flow between AC and DC parts of a hybrid microgrid. Given the importance of such converters in AC/DC microgrids, this paper investigates the design of fault-tolerant control for AC/DC PWM converters in the presence of microgrid faults. In particular, two novel fault-tolerant schemes based on fuzzy logic and model predictive control are proposed and implemented in an advanced hybrid microgrid benchmark in MATLAB/Simulink environment. The c
APA, Harvard, Vancouver, ISO, and other styles
14

Aljohani, Tawfiq M., Ahmed F. Ebrahim, and Osama Mohammed. "Hybrid Microgrid Energy Management and Control Based on Metaheuristic-Driven Vector-Decoupled Algorithm Considering Intermittent Renewable Sources and Electric Vehicles Charging Lot." Energies 13, no. 13 (2020): 3423. http://dx.doi.org/10.3390/en13133423.

Full text
Abstract:
Energy management and control of hybrid microgrids is a challenging task due to the varying nature of operation between AC and DC components which leads to voltage and frequency issues. This work utilizes a metaheuristic-based vector-decoupled algorithm to balance the control and operation of hybrid microgrids in the presence of stochastic renewable energy sources and electric vehicles charging structure. The AC and DC parts of the microgrid are coupled via a bidirectional interlinking converter, with the AC side connected to a synchronous generator and portable AC loads, while the DC side is
APA, Harvard, Vancouver, ISO, and other styles
15

Chang, Fangyuan, John O’Donnell, and Wencong Su. "Voltage Stability Assessment of AC/DC Hybrid Microgrid." Energies 16, no. 1 (2022): 399. http://dx.doi.org/10.3390/en16010399.

Full text
Abstract:
AC/DC hybrid microgrids are becoming potentially more attractive due to the proliferation of renewable energy sources, such as photovoltaic generation, battery energy storage systems, and wind turbines. The collaboration of AC sub-microgrids and DC sub-microgrids improves operational efficiency when multiple types of power generators and loads coexist at the power distribution level. However, the voltage stability analysis and software validation of AC/DC hybrid microgrids is a critical concern, especially with the increasing adoption of power electronic devices and various types of power gene
APA, Harvard, Vancouver, ISO, and other styles
16

Zhou, Niancheng, Chunyan Li, Fangqing Sun, and Qianggang Wang. "Modelling and control of solid oxide fuel cell generation system in microgrid." Journal of Electrical Engineering 68, no. 6 (2017): 405–14. http://dx.doi.org/10.1515/jee-2017-0075.

Full text
Abstract:
AbstractCompared with other kinds of fuel cells, solid oxide fuel cell (SOFC) has been widely used in microgrids because of its higher efficiency and longer operation life. The weakness of SOFC lies in its slow response speed when grid disturbance occurs. This paper presents a control strategy that can promote the response speed and limit the fault current impulse for SOFC systems integrated into microgrids. First, the hysteretic control of the bidirectional DC-DC converter, which joins the SOFC and DC bus together, is explored. In addition, an improved droop control with limited current prote
APA, Harvard, Vancouver, ISO, and other styles
17

Rajendran, Senthilnathan, Vigneysh Thangavel, Narayanan Krishnan, and Natarajan Prabaharan. "DC Link Voltage Enhancement in DC Microgrid Using PV Based High Gain Converter with Cascaded Fuzzy Logic Controller." Energies 16, no. 9 (2023): 3928. http://dx.doi.org/10.3390/en16093928.

Full text
Abstract:
Renewable-based sources can be interconnected through power electronic converters and connected with local loads and energy storage devices to form a microgrid. Nowadays, DC microgrids are gaining more popularity due to their higher efficiency and reliability as compared to AC microgrid systems. The DC Microgrid has power electronics converters between the DC loads and renewable-based energy sources. The power converters controlled with an efficient control algorithm for maintaining stable DC bus voltage in DC microgrids under various operating modes is a challenging task for researchers. With
APA, Harvard, Vancouver, ISO, and other styles
18

Wang, Hongjun, Wanfeng Li, Youjun Yue, and Hui Zhao. "Distributed Economic Control for AC/DC Hybrid Microgrid." Electronics 11, no. 1 (2021): 13. http://dx.doi.org/10.3390/electronics11010013.

Full text
Abstract:
In this paper, a new double-layer droop control mode for island AC/DC microgrids is proposed to realize autonomous and cost-effective operation. The optimal power reference iterative algorithm is used to realize the internal active power distribution in the subnet. On this basis, secondary frequency and voltage adjustments are introduced to realize the economic operation, autonomy and stability of the subnet. At the microgrid level, the local control strategy of cost micro increment deviation is designed to optimize the exchange power between subnets. The cooperation of the two can realize the
APA, Harvard, Vancouver, ISO, and other styles
19

Gontijo, Gustavo, Matheus Soares, Thiago Tricarico, Robson Dias, Mauricio Aredes, and Josep Guerrero. "Direct Matrix Converter Topologies with Model Predictive Current Control Applied as Power Interfaces in AC, DC, and Hybrid Microgrids in Islanded and Grid-Connected Modes." Energies 12, no. 17 (2019): 3302. http://dx.doi.org/10.3390/en12173302.

Full text
Abstract:
This paper presents an analysis of a new application of different direct matrix converter topologies used as power interfaces in AC, DC, and hybrid microgrids, with model predictive current control. Such a combination of a converter and control strategy leads to a high power quality microgrid voltage, even with a low power quality main grid voltage and even during the connection and disconnection of a variety of loads and generation sources to the microgrids. These robust systems are suitable for applications in which sensitive loads are to be supplied and these loads are connected close to di
APA, Harvard, Vancouver, ISO, and other styles
20

Cendoya, Marcelo G., Juan I. Talpone, Paul F. Puleston, Jose A. Barrado-Rodrigo, Luis Martinez-Salamero, and Pedro E. Battaiotto. "Management of a Dual-Bus AC+DC Microgrid Based on a Wind Turbine with Double Stator Induction Generator." WSEAS TRANSACTIONS ON POWER SYSTEMS 16 (December 22, 2021): 297–307. http://dx.doi.org/10.37394/232016.2021.16.30.

Full text
Abstract:
The topology and management of a sustainable dual-bus, AC and DC, microgrid designed to operate connected to a weak grid is presented. AC+DC hybrid microgrids are a robust and cost-competitive solution for poorly connected areas, as can be found in rural or island electrification. The versatile microgrid proposed in this work is developed around a wind turbine based on a particular induction generator with double stator winding and squirrel cage rotor (DWIG). This singular generator is especially suitable for a combined AC+DC coupled microgrid application. One of its stator windings is coupled
APA, Harvard, Vancouver, ISO, and other styles
21

Li, Miao, Daming Zhang, Shibo Lu, Xiuhui Tang, and Toan Phung. "Differential Evolution-Based Overcurrent Protection for DC Microgrids." Energies 14, no. 16 (2021): 5026. http://dx.doi.org/10.3390/en14165026.

Full text
Abstract:
DC microgrids have advantages over AC microgrids in terms of system efficiency, cost, and system size. However, a well-designed overcurrent protection approach for DC microgrids remains a challenge. Recognizing this, this paper presents a novel differential evolution (DE) based protection framework for DC microgrids. First, a simplified DC microgrid model is adopted to provide the analytical basis of the DE algorithm. The simplified model does not sacrifice performance criterion in steady-state simulation, which is verified through extensive simulation studies. A DE-based novel overcurrent pro
APA, Harvard, Vancouver, ISO, and other styles
22

Toub, Mohamed, Mehrzad M. Bijaieh, Wayne W. Weaver, Rush D. Robinett III, Mohamed Maaroufi, and Ghassane Aniba. "Droop Control in DQ Coordinates for Fixed Frequency Inverter-Based AC Microgrids." Electronics 8, no. 10 (2019): 1168. http://dx.doi.org/10.3390/electronics8101168.

Full text
Abstract:
This paper presents a proof-of-concept for a novel dq droop control technique that applies DC droop control methods to fixed frequency inverter-based AC microgrids using the dq0 transformation. Microgrids are usually composed of distributed generation units (DGUs) that are electronically coupled to each other through power converters. An inherent property of inverter-based microgrids is that, unlike microgrids with spinning machines, the frequency of the parallel-connected DGUs is a global variable independent from the output power since the inverters can control the output waveform frequency
APA, Harvard, Vancouver, ISO, and other styles
23

Muqeet, Hafiz Abdul, Haseeb Javed, Muhammad Naveed Akhter, et al. "Sustainable Solutions for Advanced Energy Management System of Campus Microgrids: Model Opportunities and Future Challenges." Sensors 22, no. 6 (2022): 2345. http://dx.doi.org/10.3390/s22062345.

Full text
Abstract:
Distributed generation connected with AC, DC, or hybrid loads and energy storage systems is known as a microgrid. Campus microgrids are an important load type. A university campus microgrids, usually, contains distributed generation resources, energy storage, and electric vehicles. The main aim of the microgrid is to provide sustainable, economical energy, and a reliable system. The advanced energy management system (AEMS) provides a smooth energy flow to the microgrid. Over the last few years, many studies were carried out to review various aspects such as energy sustainability, demand respon
APA, Harvard, Vancouver, ISO, and other styles
24

Nallolla, Chinna Alluraiah, Vijayapriya P, Dhanamjayulu Chittathuru, and Sanjeevikumar Padmanaban. "Multi-Objective Optimization Algorithms for a Hybrid AC/DC Microgrid Using RES: A Comprehensive Review." Electronics 12, no. 4 (2023): 1062. http://dx.doi.org/10.3390/electronics12041062.

Full text
Abstract:
Optimization methods for a hybrid microgrid system that integrated renewable energy sources (RES) and supplies reliable power to remote areas, were considered in order to overcome the intermittent nature of RESs. The hybrid AC/DC microgrid system was constructed with a solar photovoltaic system, wind turbine, battery storage, converter, and diesel generator. There is a steady increase in the utilization of hybrid renewable energy sources with hybrid AC/DC microgrids; consequently, it is necessary to solve optimization techniques. Therefore, the present study proposed utilizing multi-objective
APA, Harvard, Vancouver, ISO, and other styles
25

Timo, Paul N., Tamer F. Megahed, Masahito Shoyama, and Sobhy M. Abdelkader. "Operation and Control of a Quasi Z-source Converter in a Renewable Hybrid Microgrid." Renewable Energy and Power Quality Journal 20 (September 2022): 602–7. http://dx.doi.org/10.24084/repqj20.379.

Full text
Abstract:
The power sharing need and operational reliability of a renewable hybrid microgrid are addressed in this study. A hybrid microgrid allows for the flexible incorporation of renewable energy sources, overcoming the limitations of AC and DC microgrids in terms of conversion losses and efficiency. To ensure optimal system performance, an interlinking converter (IC) is necessary for the seamless transmission of electric power between the two subgrids while keeping a stable DC bus voltage and appropriate AC sub-grid frequency. In this study, a Quasi Zsource converter (qZSC) with integrated boost cap
APA, Harvard, Vancouver, ISO, and other styles
26

Ali, Sadaqat, Zhixue Zheng, Michel Aillerie, Jean-Paul Sawicki, Marie-Cécile Péra, and Daniel Hissel. "A Review of DC Microgrid Energy Management Systems Dedicated to Residential Applications." Energies 14, no. 14 (2021): 4308. http://dx.doi.org/10.3390/en14144308.

Full text
Abstract:
The fast depletion of fossil fuels and the growing awareness of the need for environmental protection have led us to the energy crisis. Positive development has been achieved since the last decade by the collective effort of scientists. In this regard, renewable energy sources (RES) are being deployed in the power system to meet the energy demand. The microgrid concept (AC, DC) is introduced, in which distributed energy resources (DERs), the energy storage system (ESS) and loads are interconnected. DC microgrids are appreciated due to their high efficiency and reliability performance. Despite
APA, Harvard, Vancouver, ISO, and other styles
27

Alhasnawi, Bilal Naji, Basil H. Jasim, Walid Issa, and M. Dolores Esteban. "A Novel Cooperative Controller for Inverters of Smart Hybrid AC/DC Microgrids." Applied Sciences 10, no. 17 (2020): 6120. http://dx.doi.org/10.3390/app10176120.

Full text
Abstract:
This paper presents a novel cooperative control technique concerning fully-distributed AC/DC microgrids. Distributed generation based on inverters has two types, i.e., Current Source Inverter (CSI), also referred to as PQ inverter, and Voltage Source Inverter (VSI). Both inverter forms have a two-layer coordination mechanism. This paper proposes a design method for the digital Proportional-Resonant (PR) controller that regulates the current inside an inverter. The inverters will improve the voltage quality of the microgrid while maintaining the average voltage of buses at the same desired leve
APA, Harvard, Vancouver, ISO, and other styles
28

Dehnavi, Saeed Daneshvar, Mahdi Shahparasti, Mohsen Simab, and Seyed Mohammad Bagher Mortazavi. "Employing Interface Compensators to Enhance the Power Quality In Hybrid AC/DC Microgrids." Ciência e Natura 37 (December 19, 2015): 357. http://dx.doi.org/10.5902/2179460x20796.

Full text
Abstract:
After the introduction of distributed generators, regarding the challenges these networks face, employing AC/DC Hybrid microgrids would be an undeniable issue due to its many advantages and it will certainly find a significant position. Thus, discussing the power quality in this type of microgrids and clean power for feeding the load via this microgrid is a drastic challenge. This paper proposing a hybrid microgrid with 2 interface converters, one placed in series and the other placed in parallel, tries to accomplish these control objectives in an AC microgrid in order to improve power quality
APA, Harvard, Vancouver, ISO, and other styles
29

Ahsan, Muhammad, Jose Rodriguez, and Mohamed Abdelrahem. "Distributed Control Algorithm for DC Microgrid Using Higher-Order Multi-Agent System." Sustainability 15, no. 10 (2023): 8336. http://dx.doi.org/10.3390/su15108336.

Full text
Abstract:
During the last decade, DC microgrids have been extensively researched due to their simple structure compared to AC microgrids and increased penetration of DC loads in modern power networks. The DC microgrids consist of three main components, that is, distributed generation units (DGU), distributed non-linear load, and interconnected power lines. The main control tasks in DC microgrids are voltage stability at the point of common coupling (PCC) and current sharing among distributed loads. This paper proposes a distributed control algorithm using the higher-order multi-agent system for DC micro
APA, Harvard, Vancouver, ISO, and other styles
30

Sarwar, Sohail, Desen Kirli, Michael M. C. Merlin, and Aristides E. Kiprakis. "Major Challenges towards Energy Management and Power Sharing in a Hybrid AC/DC Microgrid: A Review." Energies 15, no. 23 (2022): 8851. http://dx.doi.org/10.3390/en15238851.

Full text
Abstract:
A fundamental strategy for utilizing green energy from renewable sources to tackle global warming is the microgrid (MG). Due to the predominance of AC microgrids in the existing power system and the substantial increase in DC power generation and DC load demand, the development of AC/DC hybrid microgrids (HMG) is inevitable. Despite increased theoretical efficiency and minimized AC/DC/AC conversion losses, uncertain loading, grid outages, and intermittent complexion of renewables have increased the complexity, which poses a significant threat toward system stability in an HMG. As a result, the
APA, Harvard, Vancouver, ISO, and other styles
31

Aybar-Mejía, Miguel, Lesyani León-Viltre, Félix Santos, Francisco Neves, Víctor Alonso Gómez, and Deyslen Mariano-Hernández. "Modeling and Control of a Microgrid Connected to the INTEC University Campus." Applied Sciences 11, no. 23 (2021): 11355. http://dx.doi.org/10.3390/app112311355.

Full text
Abstract:
A smart microgrid is a bidirectional electricity generation system—a type of system that is becoming more prevalent in energy production at the distribution level. Usually, these systems have intermittent renewable energy sources, e.g., solar and wind energy. These low voltage networks contribute to decongestion through the efficient use of resources within the microgrid. In this investigation, an energy management strategy and a control scheme for DG units are proposed for DC/AC microgrids. The objective is to implement these strategies in an experimental microgrid that will be developed on t
APA, Harvard, Vancouver, ISO, and other styles
32

Kavitha, K., K. Meenendranath Reddy, and Dr P. Sankar Babu. "An Improvement of Power Control Method in Microgrid Based PV-Wind Integration of Renewable Energy Sources." Journal of Energy Engineering and Thermodynamics, no. 26 (November 28, 2022): 18–28. http://dx.doi.org/10.55529/jeet.26.18.28.

Full text
Abstract:
Microgrids are quickly becoming a great success for the future of electricity. The notion of the microgrid combines several microsources without interfering with the functioning of the larger utility grid. The DC and AC networks of this hybrid Microgrid are powered by photovoltaic and wind generators. Both AC and DC Microgrids may couple with energy storage devices. A microgrid powered by a combination of renewable energy sources, such as wind and solar, is shown and controlled in this project. The wind energy conversion machine is a doubly fed induction generator (DFIG), and it is coupled to
APA, Harvard, Vancouver, ISO, and other styles
33

Barros, João Dionísio Simões, Luis Rocha, and J. Fernando Silva. "Backstepping Control of NPC Multilevel Converter Interfacing AC and DC Microgrids." Energies 16, no. 14 (2023): 5515. http://dx.doi.org/10.3390/en16145515.

Full text
Abstract:
This work introduces modified backstepping methods to design controllers for neutral point clamped (NPC) converters interfacing a DC/AC microgrid. The modified backstepping controllers are derived from a proper converter model, represented in dq coordinates, and are designed to regulate the DC voltage and to balance the two NPC converter DC capacitor voltages through a DC offset in the sinusoidal pulse width modulation (SPWM) carriers. The averaged and separated dynamics backstepping controllers also enforce nearly sinusoidal AC currents at a given power factor. The two proposed NPC converter
APA, Harvard, Vancouver, ISO, and other styles
34

Awais, Muhammad, Laiq Khan, Said Ghani Khan, Qasim Awais, and Mohsin Jamil. "Adaptive Neural Network Q-Learning-Based Full Recurrent Adaptive NeuroFuzzy Nonlinear Control Paradigms for Bidirectional-Interlinking Converter in a Grid-Connected Hybrid AC-DC Microgrid." Energies 16, no. 4 (2023): 1902. http://dx.doi.org/10.3390/en16041902.

Full text
Abstract:
The stability of a hybrid AC-DC microgrid depends mainly upon the bidirectional interlinking converter (BIC), which is responsible for power transfer, power balance, voltage solidity, frequency and transients sanity. The varying generation from renewable resources, fluctuating loads, and bidirectional power flow from the utility grid, charging station, super-capacitor, and batteries produce various stability issues on hybrid microgrids, like net active-reactive power flow on the AC-bus, frequency oscillations, total harmonic distortion (THD), and voltage variations. Therefore, the control of B
APA, Harvard, Vancouver, ISO, and other styles
35

Alidrissi, Youssef, Radouane Ouladsine, Abdellatif Elmouatamid, Rachid Errouissi, and Mohamed Bakhouya. "Constant Power Load Stabilization in DC Microgrids Using Continuous-Time Model Predictive Control." Electronics 11, no. 9 (2022): 1481. http://dx.doi.org/10.3390/electronics11091481.

Full text
Abstract:
Despite its advantages over its AC counterparts, DC microgrids present a lot of challenges. One of these challenges is the instability issues caused by constant power loads (CPLs). CPLs deteriorate the system’s performance due to their incremental negative impedance characteristics. In this paper, a DC microgrid composed of a PV/battery system feeding a pure CPL was considered. A continuous-time model predictive control combined with a disturbance observer was applied to the DC–DC bidirectional converter. The purpose of the composite controller is to address the nonlinearity of the CPL and to
APA, Harvard, Vancouver, ISO, and other styles
36

Aljafari, Belqasem, Subramanian Vasantharaj, Vairavasundaram Indragandhi, and Rhanganath Vaibhav. "Optimization of DC, AC, and Hybrid AC/DC Microgrid-Based IoT Systems: A Review." Energies 15, no. 18 (2022): 6813. http://dx.doi.org/10.3390/en15186813.

Full text
Abstract:
Smart microgrids, as the foundations of the future smart grid, combine distinct Internet of Things (IoT) designs and technologies for applications that are designed to create, regulate, monitor, and protect the microgrid (MG), particularly as the IoT develops and evolves on a daily basis. A smart MG is a small grid that may operate individually or in tandem with the electric grid, and it is ideal for institutional, commercial, and industrial consumers, as well as urban and rural societies. A MG can operate in two methods (stand-alone and grid-connected), with the ability to transition between
APA, Harvard, Vancouver, ISO, and other styles
37

Zhou, Jianqiao, Jianwen Zhang, Xu Cai, Gang Shi, Jiacheng Wang, and Jiajie Zang. "Design and Analysis of Flexible Multi-Microgrid Interconnection Scheme for Mitigating Power Fluctuation and Optimizing Storage Capacity." Energies 12, no. 11 (2019): 2132. http://dx.doi.org/10.3390/en12112132.

Full text
Abstract:
With the rapid increase of renewable energy integration, more serious power fluctuations are introduced in distribution systems. To mitigate power fluctuations caused by renewables, a microgrid with energy storage systems (ESSs) is an attractive solution. However, existing solutions are still not sufficiently cost-effective for compensating enormous power fluctuations considering the high unit cost of ESS. This paper proposes a new flexible multi-microgrid interconnection scheme to address this problem while optimizing the utilization of ESSs as well. The basic structure and functions of the p
APA, Harvard, Vancouver, ISO, and other styles
38

Albarakati, Aiman J., Younes Boujoudar, Mohamed Azeroual, et al. "Real-Time Energy Management for DC Microgrids Using Artificial Intelligence." Energies 14, no. 17 (2021): 5307. http://dx.doi.org/10.3390/en14175307.

Full text
Abstract:
Microgrids are defined as an interconnection of several renewable energy sources in order to provide the load power demand at any time. Due to the intermittence of renewable energy sources, storage systems are necessary, and they are generally used as a backup system. Indeed, to manage the power flows along the entire microgrid, an energy management strategy (EMS) is necessary. This paper describes a microgrid energy management system, which is composed of solar panels and wind turbines as renewable sources, Li-ion batteries, electrical grids as backup sources, and AC/DC loads. The proposed EM
APA, Harvard, Vancouver, ISO, and other styles
39

Dehnavi, Saeed Daneshvar, and Ehsan Shayani. "Compensation of Voltage disturbances in hybrid AC/DC Microgrids using series converter." Ciência e Natura 37 (December 19, 2015): 349. http://dx.doi.org/10.5902/2179460x20794.

Full text
Abstract:
In this paper a series power electronic converter is proposed to improve power quality of AC/DC hybrid microgrids. An injection transformer which is series with AC microgrid is used beside the series converter to inject voltage for the purpose of voltage disturbances compensation. The series converter by using a simple and effective control system in stationary reference framework of d-q-0 is proposed to compensate voltage sag and swell, source unbalanced voltages, voltage harmonics of the utility. In these types of micrigrids a lot of voltage disturbances have occurred due to large number of
APA, Harvard, Vancouver, ISO, and other styles
40

Bharatee, Anindya, Pravat Kumar Ray, Bidyadhar Subudhi, and Arnab Ghosh. "Power Management Strategies in a Hybrid Energy Storage System Integrated AC/DC Microgrid: A Review." Energies 15, no. 19 (2022): 7176. http://dx.doi.org/10.3390/en15197176.

Full text
Abstract:
The limited availability of fossil fuel and the growing energy demand in the world creates global energy challenges. These challenges have driven the electric power system to adopt the renewable source-based power production system to get green and clean energy. However, the trend of the introduction of renewable power sources increases the uncertainty in the production, control, and operation of power systems due to the erratic nature of the environment. To overcome these meteorological conditions, some support systems, such as storage devices, are integrated with renewable energy sources (RE
APA, Harvard, Vancouver, ISO, and other styles
41

Liu, Yingpei, Yan Li, Haiping Liang, Jia He, and Hanyang Cui. "Energy Routing Control Strategy for Integrated Microgrids Including Photovoltaic, Battery-Energy Storage and Electric Vehicles." Energies 12, no. 2 (2019): 302. http://dx.doi.org/10.3390/en12020302.

Full text
Abstract:
The Energy Internet is an inevitable trend of the development of electric power system in the future. With the development of microgrids and distributed generation (DG), the structure and operation mode of power systems are gradually changing. Energy routers are considered as key technology equipment for the development of the Energy Internet. This paper mainly studies the control of the LAN-level energy router, and discusses the structure and components of the energy router. For better control of the power transmission of an energy router, the energy routing control strategy for an integrated
APA, Harvard, Vancouver, ISO, and other styles
42

Liu, Xinbo, Zhenkang Zhu, Junfu Shi, Xiaotong Song, and Jinghua Zhou. "Large Signal Stability Criteria Combined with a 3D Region of Asymptotic Stability Method for Islanded AC/DC Hybrid Microgrids." Electronics 11, no. 23 (2022): 4042. http://dx.doi.org/10.3390/electronics11234042.

Full text
Abstract:
Large disturbances frequently happen in isolated AC/DC Hybrid Microgrids. Unfortunately, constant power loads (CPLs) with negative impedance characteristics are equivalent to positive feedback, resulting in an increase in large disturbances. The system can easily become unstable. Consequently, large signal stability criteria are proposed in this paper. Combined with a three-dimensional region of asymptotic stability (3D RAS) method for islanded AC/DC Hybrid Microgrids, important parameters to increase stability margins were determined. Firstly, mixed potential theory was used to derive a large
APA, Harvard, Vancouver, ISO, and other styles
43

Shebani, Muamer M., M. Tariq Iqbal, and John E. Quaicoe. "Control Algorithm for Equal Current Sharing between Parallel-Connected Boost Converters in a DC Microgrid." Journal of Electrical and Computer Engineering 2020 (March 12, 2020): 1–11. http://dx.doi.org/10.1155/2020/6876317.

Full text
Abstract:
DC microgrids are gaining more attention compared to AC microgrids due to their high efficiency and uncomplicated interconnection of renewable sources. In standalone DC microgrid, parallel-connected converters connect the storage system to the load. To achieve equal current sharing among parallel converters, several methods have been presented, but they vary in their current sharing performance, complexity, cost, and reliability. In DC microgrid, the conventional droop control method is preferred because it is more competitive in terms of cost, suitability, and reliability compared to the mast
APA, Harvard, Vancouver, ISO, and other styles
44

Qachchachi, Nabil, Hassane Mahmoudi, and Abdennebi El Hassnaoui. "Control Strategy of Hybrid AC/DC Microgrid in Standalone Mode." International Journal of Renewable Energy Development 9, no. 2 (2020): 295–301. http://dx.doi.org/10.14710/ijred.9.2.295-301.

Full text
Abstract:
The fluctuation of production of renewable energy resources (RESs) is a big problem for its installation and integration in isolated residential buildings. A hybrid AC/DC microgrid facilitates the good operation of RESs with a storage system in standalone mode and the possibilities of smart energy management. In this paper optimization research of the hybrid ac/dc microgrid in isolated mode of operation is presented. The power system is supplied by various Renewable Energy Resources (RESs), Photovoltaic arrays (PVA), a Wind Turbine Generator (WTG), Diesel Generator (DG) and supported by Batter
APA, Harvard, Vancouver, ISO, and other styles
45

Bulatov, Yuri, Andrey Kryukov, and Konstantin Suslov. "Simulation of Power Router-Based DC Distribution Systems with Distributed Generation and Energy Storage Units." Energies 16, no. 1 (2022): 214. http://dx.doi.org/10.3390/en16010214.

Full text
Abstract:
The development of the electric power industry needs to be understood against the current backdrop of the transition to technological platforms facilitating the adoption of smart grids. Smart grids can be made up of separate clusters (microgrids) consisting of power consumers, power grids, and distributed generation (DG) units. To improve energy efficiency, DC microgrids can be integrated into smart grids to deliver power to consumers within a building (or several buildings) and at the sites of C&I facilities. It is advisable to carry out integrations of DC and AC microgrids with DG and en
APA, Harvard, Vancouver, ISO, and other styles
46

Cabana-Jiménez, Katherine, John E. Candelo-Becerra, and Vladimir Sousa Santos. "Comprehensive Analysis of Microgrids Configurations and Topologies." Sustainability 14, no. 3 (2022): 1056. http://dx.doi.org/10.3390/su14031056.

Full text
Abstract:
Microgrids have been proposed as a solution to the growing deterioration of traditional electrical power systems and the energy transition towards renewable sources. One of the most important aspects of the efficient operation of a microgrid is its topology, that is, how the components are connected. Some papers have studied microgrid topologies; however, these studies do not perform an exhaustive analysis of the types of topologies, their applications, characteristics, or technical advantages and disadvantages. The contribution of this paper is the integration of the most important functional
APA, Harvard, Vancouver, ISO, and other styles
47

Chaturvedi, Shivam, Mengqi Wang, Yaoyu Fan, et al. "Control Methodologies to Mitigate and Regulate Second-Order Ripples in DC–AC Conversions and Microgrids: A Brief Review." Energies 16, no. 2 (2023): 817. http://dx.doi.org/10.3390/en16020817.

Full text
Abstract:
Second-order ripples occur in the voltage and current during any DC–AC power conversion. These conversions occur in the voltage source inverters (VSIs), current source inverters (CSIs), and various single-stage inverters (SSIs) topologies. The second-order ripples lead to oscillating source node currents and DC bus voltages when there is an interconnection between the AC and DC microgrids or when an AC load is connected to the DC bus of the microgrid. Second-order ripples have various detrimental effects on the sources and the battery storage. In the storage battery, they lead to the depletion
APA, Harvard, Vancouver, ISO, and other styles
48

Santos, Nelson, J. Fernando Silva, and Vasco Soares. "Control of Single-Phase Electrolytic Capacitor-Less Isolated Converter for DC Low Voltage Residential Networks." Electronics 9, no. 9 (2020): 1401. http://dx.doi.org/10.3390/electronics9091401.

Full text
Abstract:
In recent years, there has been a desire to improve electricity generation and consumption, to reach sustainability. Technological solutions today allow a rational use of electricity with good overall performance. Traditionally, from production to distribution, electrical energy is AC-supported for compatibility reasons and easy voltage level transformation. However, nowadays most electric loads need DC power to work properly. A single high-efficiency central AC-DC power converter may be advantageous in eliminating several less efficient AC-DC embedded converters, distributed all over a reside
APA, Harvard, Vancouver, ISO, and other styles
49

Al Sumarmad, Khaizaran Abdulhussein, Nasri Sulaiman, Noor Izzri Abdul Wahab, and Hashim Hizam. "Energy Management and Voltage Control in Microgrids Using Artificial Neural Networks, PID, and Fuzzy Logic Controllers." Energies 15, no. 1 (2022): 303. http://dx.doi.org/10.3390/en15010303.

Full text
Abstract:
Microgrids, comprising distributed generation, energy storage systems, and loads, have recently piqued users’ interest as a potentially viable renewable energy solution for combating climate change. According to the upstream electricity grid conditions, microgrid can operate in grid-connected and islanded modes. Energy storage systems play a critical role in maintaining the frequency and voltage stability of an islanded microgrid. As a result, several energy management systems techniques have been proposed. This paper introduces a microgrid system, an overview of local control in a microgrid,
APA, Harvard, Vancouver, ISO, and other styles
50

D, Lokesh, and Senthil Singh C. "Extaction of Maximum Power from PV and Wind Energy Sources Using Predictive Control System in Microgrids." ECS Transactions 107, no. 1 (2022): 2791–801. http://dx.doi.org/10.1149/10701.2791ecst.

Full text
Abstract:
The impact of global warming and changing climatic conditions due to over exploitation of fossil fuels, emission of high carbon levels, and increased demand for energy have necessitated the application of renewable energy sources. Load demand is addressed by the default design of microgrids, with minimal changes in their architecture to adhere the introduction of electricity generated from different renewable sources. Renewable energy sources are generated from photovoltaic cells (solar), wind, and ocean tides, and India has been extending the deployment of solar and wind energy generation cen
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!