Academic literature on the topic 'Control system- AC and DC microgrids'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Control system- AC and DC microgrids.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Control system- AC and DC microgrids"

1

Sheng, Wanxing, Yinqiu Hong, Ming Wu, and Yu Ji. "A Cooperative Control Scheme for AC/DC Hybrid Autonomous Microgrids." Processes 8, no. 3 (March 7, 2020): 311. http://dx.doi.org/10.3390/pr8030311.

Full text
Abstract:
The AC/DC hybrid microgrid (MG) has been widely promoted due to its high flexibility. The capability to operate in islanding mode is an appealing advantage of the MG, and also sets higher requirements for its control system. A droop control strategy is proposed on account of its distinguishing feature of automatic power sharing between distributed generations (DGs), but it introduces some drawbacks. Therefore, distributed cooperative secondary control is introduced as an improvement. In order to optimize the active power sharing in AC/DC hybrid microgrids, a number of cooperative control strategies have been proposed. However, most studies of AC/DC hybrid microgrids have mainly focused on the control of the bidirectional converter, ignoring the effects of secondary control within subnets, which may make a difference to the droop characteristic. This paper extends the cooperative control to AC/DC hybrid microgrids based on normalizing and synthesizing the droop equations, and proposes a global cooperative control scheme for AC/DC autonomous hybrid microgrids, realizing voltage restoration within AC and DC subnets as well as accurate global power sharing. Ultimately, the simulation results demonstrate that the proposed control scheme has a favorable performance in the test AC/DC hybrid system.
APA, Harvard, Vancouver, ISO, and other styles
2

Ohm Vignesh V & Dr. Latha Mercy E. "Implementation and Optimal Control of DC Microgrid." International Journal for Modern Trends in Science and Technology 7, no. 05 (May 27, 2021): 89–95. http://dx.doi.org/10.46501/ijmtst0705014.

Full text
Abstract:
The degradation of non-renewable energy resources has been increasing widely. The objective of this research is to effectively utilize solar power using DC microgrid technology. Compared with AC microgrids, DC microgrids obtain some advantages and more suitable to access distributed power sources. A methodology “Plug and Play” approach based on the “System of Systems” philosophy controls interconnecting several elements to a DC microgrid. The main aim of this research work is to supply the power to the critical load at any condition. When power availability is less, the non-critical load will be cut down to manage the critical load. In this system, solar array, AC grid (EB), and battery are used as sources and are connected to the buck converter for power conditioning.
APA, Harvard, Vancouver, ISO, and other styles
3

Vinothkumar, J., and R. Thamizhselvan. "Efficient Power Management and Control Strategy of Hybrid Renewable Energy System in Microgrid." International Journal on Applied Physics and Engineering 2 (July 17, 2023): 106–27. http://dx.doi.org/10.37394/232030.2023.2.11.

Full text
Abstract:
Currently, the use of renewable energy has gradually increased due to the environmental problems present nowadays. The intermittency of distributed renewable generation poses significant challenges for the operation and integration of microgrids. Unlike the main power grid, where load balancing resources, in general, are abundant, the balancing of generation and load in a microgrid must be done by small gas turbines, diesel generators, or energy storage devices with very limited capacity and at much higher costs. Consequently, the proposed methodology seeks a model for minimizing the Energy Cost (EC) and enhancing the power supply for rural areas by designing and analyzing four different hybrid system configurations based on integrating a biomass system with a photovoltaic (PV), wind turbine (WT) and battery system. To ensure the desired power demand with minimum production cost, the research proposed an energy-efficient Hybrid DC/AC microgrid using four renewable energy sources. Lithium-ion batteries were chosen for this study due to their high energy density, long life cycle, and high efficiency. The existence of both AC and DC microgrids has led to a new concept of hybrid AC/DC microgrids which consists of both AC and DC grids tied by an Interlinking Converter (ILC). It comprises a DC grid and AC grid interlinked by a bidirectional DC/AC converter. Such a hybrid AC/DC microgrid has the advantages of both AC and DC with increased efficiency and less cost. To provide higher voltages, the Multi-Input Booster (MIB) DC-DC converters are used as a power converter in between load and source to enforce and increase the PV depending on the voltage output signal. Further extract maximum power from the solar PV system, perturb and observe algorithm-based power point tracking control mechanism is proposed DC link voltage of ILC is regulated usually by DC side control in load sharing among sources in the DC microgrid. In addition, to overcome the load fluctuation problem in a microgrid, the research introduced a Mamdani type 2 PID-fuzzy controller. Performance index parameters of the transient response characteristics are also improved by using the proposed control approach. The time-domain dynamic responses reveal that the proposed type-II fuzzy PID controller can balance the power generation and demand properly and control both system frequency and tie-line power effectively.
APA, Harvard, Vancouver, ISO, and other styles
4

Barros, J. Dionísio, Luis Rocha, and J. Fernando Silva. "Backstepping Predictive Control of Hybrid Microgrids Interconnected by Neutral Point Clamped Converters." Electronics 10, no. 10 (May 19, 2021): 1210. http://dx.doi.org/10.3390/electronics10101210.

Full text
Abstract:
In this work, DC and AC parts of hybrid microgrids are interconnected by a neutral point clamped—NPC converter controlled using a new backstepping predictive (BP) method. The NPC converter is controlled to operate in the DC microgrid voltage control mode or in the AC microgrid power control mode. The novel backstepping predictive controller is designed using the dq state space dynamic model of the NPC converter connected to the hybrid microgrid. The designed BP controller regulates the DC voltage or AC injected power, balances the capacitor voltages, controls the AC currents, and enforces the near unity power factor. Simulation (MATLAB/Simulink) and experimental (laboratory prototype) results show that the converter can regulate the DC voltage in the DC microgrid interconnection point, by adjusting the AC power conversion to compensate variations on the loads or on the distributed renewable energy sources in the DC microgrid. AC currents are sinusoidal with low harmonic distortion. The obtained BP controller is faster at balancing capacitor voltages than PWM (pulse width modulation) control with carrier offset. The fast AC power response allows the converter to be used as a primary frequency regulator of the AC microgrid. This research is appropriate for power and voltage control in hybrid microgrids with renewable energy.
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Xinbo, Shi Wang, Xiaotong Song, and Jinghua Zhou. "Stability Control Strategies for Bidirectional Energy Storage Converters Considering AC Constant Power Loads." Electronics 12, no. 4 (February 20, 2023): 1067. http://dx.doi.org/10.3390/electronics12041067.

Full text
Abstract:
In islanded AC microgrids, negative impedance characteristics of AC constant power loads (AC CPLs) easily introduce large signal instability to the system, while energy storage systems sometimes compensate for the dynamic characteristics of AC CPLs, and increase the system stability. Although energy storage control techniques and characteristics have gained a lot of attention, few studies have derived quantitative design guidelines for energy storage systems from the aspect of stability improvement. In order to fill this gap, this paper proposes stability control strategies for bidirectional energy storage converters considering the characteristics of AC CPLs to guarantee large signal stability of islanded AC microgrids. The presented control techniques create quantitative limits for the DC bus voltage loop control parameters of the energy storage DC/DC converter and the integral control loop control parameter of the energy storage DC/AC converter, and also interpret the positive stability influence of energy storage systems and the negative stability influence of AC CPLs. The structure of the paper is as follows. Firstly, DQ coordinate transformation is adopted, and AC microgrid nonlinear models with the energy storage system in charging and discharging states are constructed. Then, large signal models are constructed depending on mixed potential theory. Stability control strategies for bidirectional energy storage converters are obtained, and AC CPLs power, storage system equivalent resistor, and micro power source power are all taken into account. Finally, based on simulation and experimental results, it is obvious that regulating the control parameters of the energy storage converter significantly increases the large signal stability of islanded AC microgrids without extra equipment. The method is very simple and easy to implement.
APA, Harvard, Vancouver, ISO, and other styles
6

Azeem, Omar, Mujtaba Ali, Ghulam Abbas, Muhammad Uzair, Ayman Qahmash, Abdulmohsen Algarni, and Mohammad Rashid Hussain. "A Comprehensive Review on Integration Challenges, Optimization Techniques and Control Strategies of Hybrid AC/DC Microgrid." Applied Sciences 11, no. 14 (July 6, 2021): 6242. http://dx.doi.org/10.3390/app11146242.

Full text
Abstract:
The depletion of natural resources and the intermittence of renewable energy resources have pressed the need for a hybrid microgrid, combining the benefits of both AC and DC microgrids, minimizing the overall deficiency shortcomings and increasing the reliability of the system. The hybrid microgrid also supports the decentralized grid control structure, aligning with the current scattered and concentrated load scenarios. Hence, there is an increasing need to explore and reveal the integration, optimization, and control strategies regarding the hybrid microgrid. A comprehensive study of hybrid microgrid’s performance parameters, efficiency, reliability, security, design flexibility, and cost-effectiveness is required. This paper discusses major issues regarding the hybrid microgrids, the integration of AC and DC microgrids, their security and reliability, the optimization of power generation and load management in different scenarios, the efficient management regarding uncertainty for renewable energy resources, the optimal placement of feeders, and the cost-effective control methodologies for the hybrid microgrid. The major research areas are briefly explained, aiming to find the research gap that can further improve the performance of the grid. In light of the recent trends in research, novel strategies are proposed that are found most effective and cost-friendly regarding the hybrid microgrid. This paper will serve as a baseline for future research, comparative analysis, and further development of novel techniques regarding hybrid microgrids.
APA, Harvard, Vancouver, ISO, and other styles
7

Volnyi, Vladislav, Pavel Ilyushin, Konstantin Suslov, and Sergey Filippov. "Approaches to Building AC and AC–DC Microgrids on Top of Existing Passive Distribution Networks." Energies 16, no. 15 (August 4, 2023): 5799. http://dx.doi.org/10.3390/en16155799.

Full text
Abstract:
The process of building microgrids on top of existing passive distribution networks warrants a multi-criteria analysis. Besides the calculation of the investment outlays needed for the modernization of distribution networks, such an analysis covers an assessment of the technological and economic effects of building microgrids. The resulting effects depend on the topology and configuration of distribution networks, specific microgrid features, the choice of the current type for the entire microgrid or its individual parts, the methods of connecting distributed energy resources (DERs), the availability and maturity of information and communications technology (ICT) infrastructure, and other factors. Comprehensive input data allow for designing an optimal microgrid configuration, but the main technological and economic effects are determined by the algorithms of operation and the parameter settings of the automatic control system (ACS) and the protection system. The known approaches to designing microgrids focus on addressing basic tasks while minimizing the investment required for their implementation. The above is fully justified when constructing new microgrids, but building microgrids on top of existing distribution networks, given the uniqueness of their topology and configuration, does not allow the use of standardized solutions. The development of approaches to the design of microgrids under such constraints, with minimized investment in the modernization of existing distribution networks, is an urgent task. The use of different types of current for individual microgrid segments determines the choice of the particular ACS and protection system, which depends on the availability of information and communications technology infrastructure. This article contributes a review of approaches to designing AC and AC–DC microgrids so as to maximize their technological and economic effects. We review techniques for analyzing the existing distribution networks aimed at choosing the type of current for the entire microgrid or its individual parts, the optimal points for the connection of microgrids to distribution networks, and the mix and capacity of DERs, with such choices informed by the conditions of the switching devices and information and communications technology infrastructure. This article presents the results of the analysis of approaches to choosing the optimal configuration of microgrids, microgrid ACS, and protection system, with an evaluation of the technological and economic effects subject to the minimization of investment in the modernization of the existing distribution networks.
APA, Harvard, Vancouver, ISO, and other styles
8

El-Shahat, Adel, and Sharaf Sumaiya. "DC-Microgrid System Design, Control, and Analysis." Electronics 8, no. 2 (January 24, 2019): 124. http://dx.doi.org/10.3390/electronics8020124.

Full text
Abstract:
Recently direct current (DC) microgrids have drawn more consideration because of the expanding use of direct current (DC) energy sources, energy storages, and loads in power systems. Design and analysis of a standalone solar photovoltaic (PV) system with DC microgrid has been proposed to supply power for both DC and alternating current (AC) loads. The proposed system comprises of a solar PV system with boost DC/DC converter, Incremental conductance (IncCond) maximum power point tracking (MPPT), bi-directional DC/DC converter (BDC), DC-AC inverter and batteries. The proposed bi-directional DC/DC converter (BDC) lessens the component losses and upsurges the efficiency of the complete system after many trials for its components’ selection. Additionally, the IncCond MPPT is replaced by Perturb & Observe (P&O) MPPT, and a particle swarm optimization (PSO) one. The three proposed techniques’ comparison shows the ranking of the best choice in terms of the achieved maximum power and fast—dynamic response. Furthermore, a stability analysis of the DC microgrid system is investigated with a boost converter and a bidirectional DC-DC converter with the Lyapunov function for the system has been proposed. The complete system is designed and executed in a MATLAB/SIMULINK environment and validated utilizing an OPAL real-time simulator.
APA, Harvard, Vancouver, ISO, and other styles
9

Rangarajan, Shriram S., Rahul Raman, Amritpal Singh, Chandan Kumar Shiva, Ritesh Kumar, Pradip Kumar Sadhu, E. Randolph Collins, and Tomonobu Senjyu. "DC Microgrids: A Propitious Smart Grid Paradigm for Smart Cities." Smart Cities 6, no. 4 (July 3, 2023): 1690–718. http://dx.doi.org/10.3390/smartcities6040079.

Full text
Abstract:
Recent years have seen a surge in interest in DC microgrids as DC loads and DC sources like solar photovoltaic systems, fuel cells, batteries, and other options have become more mainstream. As more distributed energy resources (DERs) are integrated into an existing smart grid, DC networks have come to the forefront of the industry. DC systems completely sidestep the need for synchronization, reactive power control, and frequency control. DC systems are more dependable and productive than ever before because AC systems are prone to all of these issues. There is a lot of unrealized potential in DC power, but it also faces some significant challenges. Protecting a DC system is difficult because there is no discrete location of where the current disappears. DC microgrid stability that is dependent on inertia must also be considered during the planning stage. The problems that DC microgrids have include insufficient power quality and poor communication. The power quality, inertia, communication, and economic operations of these value streams, as well as their underlying architectures and protection schemes, are all extensively discussed in this paper. This review paper examines the pros and cons of both grid-connected and isolated DC microgrids. In addition, the paper compares the different kinds of microgrids in terms of power distribution and energy management agency, such as the prerequisites for a DC microgrid’s planning, operation, and control that must be met before state-of-the-art systems can be implemented.
APA, Harvard, Vancouver, ISO, and other styles
10

Ilyushin, Pavel, Vladislav Volnyi, Konstantin Suslov, and Sergey Filippov. "State-of-the-Art Literature Review of Power Flow Control Methods for Low-Voltage AC and AC-DC Microgrids." Energies 16, no. 7 (March 31, 2023): 3153. http://dx.doi.org/10.3390/en16073153.

Full text
Abstract:
The development of AC distribution systems provides for the seamless integration of low-voltage microgrids with distributed energy resources (DERs). This poses new challenges for the control of normal, emergency, and post-emergency states of microgrids, calling for the creation and development of information and communications technology infrastructure. Power converters/inverters that are used to integrate renewable DERs lack inertia. Along with them, fossil fuel-fired generation units are also being integrated into microgrids. These include gas generator sets, diesel generator sets, and microturbines, having small (up to 1–2 s) values of mechanical inertia constants—Tj. This leads to an increase in the rate of transients by a factor of 5–10. Under these conditions, the technical requirements for the speed of automatic power flow control systems, as well as the methods they rely on, have to be reconsidered. Microgrids include DC microgrids, AC microgrids, and hybrid (AC-DC) microgrids. In the case of hybrid microgrids, DERs are connected to the DC grid and are integrated into the AC grid through a common inverter. The complexity of the task of microgrid control is due to the need to choose properly the type and extent of control actions so as to prevent the emergence and development of accidents. The employed control methods must ensure the reliable power supply to consumers and the quality of power in microgrids, as well as the reliable operation of the external distribution systems into which they are integrated. The article gives an overview of control methods for low-voltage AC and AC-DC microgrids, which allow one to tackle effectively solve the tasks.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Control system- AC and DC microgrids"

1

Perez, Filipe. "Control of AC/DC Microgrids with Renewables in the Context of Smart Grids : Including Ancillary Services and Electric Mobility." Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPASG011.

Full text
Abstract:
Les Microgrids sont une excellente solution aux problèmes actuels soulevés par la croissance constante de la demande de charge et la forte pénétration des sources d’énergie renouvelables, qui se traduisent par une modernisation du réseau grâce au concept de “Smart-Grids”. L’impact des sources d’énergie distribuées basées sur l’électronique de puissance est une préoccupation importante pour les systèmes d’alimentation, où la régulation naturelle de la fréquence du système est entravée en raison de la réduction de l’inertie. Dans ce contexte, les réseaux à courant continu (CC) sont considérés comme une solution pertinente, car la nature CC des appareils électroniques de puissance apporte des avantages technologiques et économiques par rapport au courant alternatif (CA). La thèse propose la conception et le contrôle d’une Microgrid hybride AC/DC pour intégrer différentes sources renouvelables, y compris la récupération d’énergie solaire et de freinage des trains, aux systèmes de stockage d’énergie sous forme de batteries et de supercondensateurs et à des charges telles que les véhicules électriques ou d’autres réseaux (AC ou DC), pour un fonctionnement et une stabilité fiables. La stabilisation des tensions des bus du Microgrid et la fourniture de services systèmes sont assurées par la stratégie de contrôle proposée, où une étude de stabilité rigoureuse est réalisée. Un contrôleur non linéaire distribué de bas niveau, basé sur une approche “Systemof- Systems”, est développé pour un fonctionnement correct de l’ensemble du Microgrid. Un supercondensateur est appliqué pour faire face aux transitoires, équilibrant le bus CC du Microgrid et absorbant l’énergie injectée par des sources d’énergie intermittentes et possiblement très fortes comme celle provenant du freinage régénératif de trains ou metros, tandis que la batterie réalise le flux de puissance à long terme. Un contrôle de linéarisation par bouclage dynamique basé sur une analyse par perturbation singulière est développé pour les supercondensateurs et les trains. Des fonctions de Lyapunov sont construites en tenant compte des dispositifs interconnectés au Microgrid pour assurer la stabilité de l’ensemble du système. Les simulations mettent en évidence les performances du contrôle proposé avec des tests de robustesse paramétriques et une comparaison avec le contrôleur linéaire traditionnel. L’approche VSM (Virtual Synchronous Machine) est implémentée dans le Microgrid pour le partage de puissance et l’amélioration de la stabilité de fréquence. Une inertie virtuelle adaptative est proposée, puis la constante d’inertie devient une variable d’état du système qui peut être conçue pour améliorer la stabilité de fréquence et le support inertiel, où l’analyse de stabilité est effectuée. Par conséquent, le VSM est la connexion de liaison entre les côtés DC et AC du Microgrid, où la puissance disponible dans le réseau DC est utilisée pour les services système dans les Microgrids AC. Les résultats de la simulation montrent l’efficacité de l’inertie adaptative proposée, où une comparaison avec la solution de statisme et le contrôle standard est effectuée
Microgrids are a very good solution for current problems raised by the constant growth of load demand and high penetration of renewable energy sources, that results in grid modernization through “Smart-Grids” concept. The impact of distributed energy sources based on power electronics is an important concern for power systems, where natural frequency regulation for the system is hindered because of inertia reduction. In this context, Direct Current (DC) grids are considered a relevant solution, since the DC nature of power electronic devices bring technological and economical advantages compared to Alternative Current (AC). The thesis proposes the design and control of a hybrid AC/DC Microgrid to integrate different renewable sources, including solar power and braking energy recovery from trains, to energy storage systems as batteries and supercapacitors and to loads like electric vehicles or another grids (either AC or DC), for reliable operation and stability. The stabilization of the Microgrid buses’ voltages and the provision of ancillary services is assured by the proposed control strategy, where a rigorous stability study is made. A low-level distributed nonlinear controller, based on “System-of-Systems” approach is developed for proper operation of the whole Microgrid. A supercapacitor is applied to deal with transients, balancing the DC bus of the Microgrid and absorbing the energy injected by intermittent and possibly strong energy sources as energy recovery from the braking of trains and subways, while the battery realizes the power flow in long term. Dynamical feedback control based on singular perturbation analysis is developed for supercapacitor and train. A Lyapunov function is built considering the interconnected devices of the Microgrid to ensure the stability of the whole system. Simulations highlight the performance of the proposed control with parametric robustness tests and a comparison with traditional linear controller. The Virtual Synchronous Machine (VSM) approach is implemented in the Microgrid for power sharing and frequency stability improvement. An adaptive virtual inertia is proposed, then the inertia constant becomes a system’s state variable that can be designed to improve frequency stability and inertial support, where stability analysis is carried out. Therefore, the VSM is the link between DC and AC side of the Microgrid, regarding the available power in DC grid, applied for ancillary services in the AC Microgrid. Simulation results show the effectiveness of the proposed adaptive inertia, where a comparison with droop and standard control techniques is conducted
APA, Harvard, Vancouver, ISO, and other styles
2

Farhadi, Mustafa. "Hybrid Energy Storage Implementation in DC and AC Power System for Efficiency, Power Quality and Reliability Improvements." FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2471.

Full text
Abstract:
Battery storage devices have been widely utilized for different applications. However, for high power applications, battery storage systems come with several challenges, such as the thermal issue, low power density, low life span and high cost. Compared with batteries, supercapacitors have a lower energy density but their power density is very high, and they offer higher cyclic life and efficiency even during fast charge and discharge processes. In this dissertation, new techniques for the control and energy management of the hybrid battery-supercapacitor storage system are developed to improve the performance of the system in terms of efficiency, power quality and reliability. To evaluate the findings of this dissertation, a laboratory-scale DC microgrid system is designed and implemented. The developed microgrid utilizes a hybrid lead-acid battery and supercapacitor energy storage system and is loaded under various grid conditions. The developed microgrid has also real-time monitoring, control and energy management capabilities. A new control scheme and real-time energy management algorithm for an actively controlled hybrid DC microgrid is developed to reduce the adverse impacts of pulsed power loads. The developed control scheme is an adaptive current-voltage controller that is based on the moving average measurement technique and an adaptive proportional compensator. Unlike conventional energy control methods, the developed controller has the advantages of controlling both current and voltage of the system. This development is experimentally tested and verified. The results show significant improvements achieved in terms of enhancing the system efficiency, reducing the AC grid voltage drop and mitigating frequency fluctuation. Moreover, a novel event-based protection scheme for a multi-terminal DC power system has been developed and evaluated. In this technique, fault identification and classifications are performed based on the current derivative method and employing an artificial inductive line impedance. The developed scheme does not require high speed communication and synchronization and it transfers much less data when compared with the traditional method such as the differential protection approach. Moreover, this scheme utilizes less measurement equipment since only the DC bus data is required.
APA, Harvard, Vancouver, ISO, and other styles
3

Salehi, Pour Mehr Vahid. "Development and Verification of Control and Protection Strategies in Hybrid AC/DC Power Systems for Smart Grid Applications." FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/804.

Full text
Abstract:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Jianzhe. "On Control and Optimization of DC Microgrids." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1512049527948171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lo, Franco Francesco. "Integrazione di sistemi di accumulo a batterie e impianti fotovoltaici di grande taglia per applicazioni grid-connected." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.

Find full text
Abstract:
In un impianto fotovoltaico connesso alla rete elettrica, l’ integrazione di un sistema di accumulo permette di raccogliere l’ energia dal solare nelle ore di minor richiesta di rete (di giorno), ed erogarla nei momenti di bassa produzione e di maggiore richiesta di rete (la sera). In collaborazione con ENGIE Eps, è sorta l’ esigenza di confrontare tre diverse tipologie di accoppiamento delle batterie in un impianto ibrido PV+Batteria connesso alla rete elettrica. La prima architettura è chiamata AC coupling poiché il BESS (Battery Energy Storage System) è connesso tramite opportuni convertitori, direttamente alla rete elettrica. La terza e la seconda architettura sono denominate DC Coupling poiché il BESS è collegato tramite un convertitore o senza, al lato DC dell’ impianto. Il confronto è stato realizzato analizzando i flussi di potenza dell’ impianto facendo riferimento a dati di produzione reali forniti da ENGIE Eps. Più in particolare, sono stati forniti i dati di produzione e di irraggiamento di un impianto reale di potenza massima pari a 285 MW, con storage di capacità pari a 275 MWh. La valutazione della potenza richiesta all’ impianto è stata ottenuta dall’analisi del segnale AGC relativo alla rete nella quale l’ impianto è inserito. Tale segnale `e stato generato a partire da dati di frequenza di rete forniti dall’ azienda. Dall’ analisi precedentemente descritta si è individuata l’ architettura migliore in termini di rendimento, che risulta essere la DC coupling con DC/DC sulla batteria. Nell’ ultima parte della tesi si è inoltre svolto su richiesta di ENGIE Eps, lo studio del controllo dei convertitori relativi all’ architettura in esame. La strategia di controllo individuata è descritta nel dettaglio in questo documento.
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Fang. "Control of DC Power Distribution Systems and Low-Voltage Grid-Interface Converter Design." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77532.

Full text
Abstract:
DC power distribution has gained popularity in sustainable buildings, renewable energy utilization, transportation electrification and high-efficiency data centers. This dissertation focuses on two aspects of facilitating the application of dc systems: (a) system-level control to improve load sharing, voltage regulation and efficiency; (b) design of a high-efficiency interface converter to connect dc microgrids with the existing low-voltage ac distributions, with a special focus on common-mode (CM) voltage attenuation. Droop control has been used in dc microgrids to share loads among multiple sources. However, line resistance and sensor discrepancy deteriorate the performance. The quantitative relation between the droop voltage range and the load sharing accuracy is derived to help create droop design guidelines. DC system designers can use the guidelines to choose the minimum droop voltage range and guarantee that the sharing error is within a defined range even under the worst cases. A nonlinear droop method is proposed to improve the performance of droop control. The droop resistance is a function of the output current and increases when the output current increases. Experiments demonstrate that the nonlinear droop achieves better load sharing under heavy load and tighter bus voltage regulation. The control needs only local information, so the advantages of droop control are preserved. The output impedances of the droop-controlled power converters are also modeled and measured for the system stability analysis. Communication-based control is developed to further improve the performance of dc microgrids. A generic dc microgrid is modeled and the static power flow is solved. A secondary control system is presented to achieve the benefits of restored bus voltage, enhanced load sharing and high system efficiency. The considered method only needs the information from its adjacent node; hence system expendability is guaranteed. A high-efficiency two-stage single-phase ac-dc converter is designed to connect a 380 V bipolar dc microgrid with a 240 V split-phase single-phase ac system. The converter efficiencies using different two-level and three-level topologies with state-of-the-art semiconductor devices are compared, based on which a two-level interleaved topology using silicon carbide (SiC) MOSFETs is chosen. The volt-second applied on each inductive component is analyzed and the interleaving angles are optimized. A 10 kW converter prototype is built and achieves an efficiency higher than 97% for the first time. An active CM duty cycle injection method is proposed to control the dc and low-frequency CM voltage for grounded systems interconnected with power converters. Experiments with resistive and constant power loads in rectification and regeneration modes validate the performance and stability of the control method. The dc bus voltages are rendered symmetric with respect to ground, and the leakage current is reduced. The control method is generalized to three-phase ac-dc converters for larger power systems.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
7

Obradovic, Danilo. "Coordinated Frequency Control Between Interconnected AC/DC Systems." Licentiate thesis, KTH, Elkraftteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280156.

Full text
Abstract:
With ambitions of reducing the environmental pollution, power systems integrate larger shares of Renewable Energy Sources (RES) to phase out conventional thermal and nuclear generators. Since RES (such as wind and solar power) are connected to the grid through power electronics devices, they do not inherently contribute to system inertia. With decreasing inertia, the Instantaneous Frequency Deviation (IFD), which follows a power unbalance, is significantly impacted. Frequency Containment Reserves (FCR) are designed to provide a fast dynamic response, counteract power imbalances and stabilize the frequency within a short time interval. Besides inertia, the significant factors affecting frequency behavior are the available amount of FCR and the capability of their fast and stable response. System operators define the list of requirements that a generating unit has to satisfy to participate in FCR. Generators, which are the major part of FCR, have different governors and turbines properties. This study assesses the dynamical performance of typical generators in both open-loop testing and closed-loop varying inertia systems. The goal is to evaluate if specific FCR requirements present a sufficient condition for the desired response, and which governor properties are capable of satisfying them. As an additional, and sometimes necessary, support to FCR, HVDC interconnections are utilized in the form of Emergency Power Control (EPC). This thesis investigates which of the EPC methods performs appropriately in terms of IFD improvement, closed-loop stability, and power and energy provided. The analysis is a continuation from the previous investigation on FCR, and mainly compare two EPC methods related to Nordic Power System (NPS) test case: ramp/step method which is currently implemented in the NPS, and droop frequency-based EPC, proposed by this study for the future operation in the NPS. Apart from ensuring a proper system frequency response, the influence of implemented HVDC supplementary active power control is analyzed to rotor angle stability. In further, this thesis presents a comprehensive analysis of the impact that proposed HVDC supplementary power control has on the linearized dynamics of power systems. By building a generic system, this analytical study is the first of its kind that includes both higher order generator dynamics, and local angle/frequency input of the controller. The methodological approach here analytically formulates the impact the HVDC supplementary control has mainly on the generator synchronizing and damping torque components. The positive impact of the droop frequency-based HVDC power support is highlighted using both single and multi-machine systems. In that way, the implementation of desired droop frequency-based HVDC control to mainly improve system frequency is motivated furthermore. It shows that a proper HVDC supplementary control may impose the various positive impacts for future variable and low inertia scenarios, and ensure a proper power system sustainability.

QC 20200907


multiDC - Advanced Control and Optimization Methods for AC and HVDC Grids
APA, Harvard, Vancouver, ISO, and other styles
8

White, Terence H. "A three-phase hybrid dc-ac inverter system utilizing hysteresis control." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Jun%5FWhite%5FTerence.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mohamed, Samy. "Control and Optimization of Energy Storage in AC and DC Power Grids." FIU Digital Commons, 2019. https://digitalcommons.fiu.edu/etd/3967.

Full text
Abstract:
Energy storage attracts attention nowadays due to the critical role it will play in the power generation and transportation sectors. Electric vehicles, as moving energy storage, are going to play a key role in the terrestrial transportation sector and help reduce greenhouse emissions. Bulk hybrid energy storage will play another critical role for feeding the new types of pulsed loads on ship power systems. However, to ensure the successful adoption of energy storage, there is a need to control and optimize the charging/discharging process, taking into consideration the customer preferences and the technical aspects. In this dissertation, novel control and optimization algorithms are developed and presented to address the various challenges that arise with the adoption of energy storage in the electricity and transportation sectors. Different decentralized control algorithms are proposed to manage the charging of a mass number of electric vehicles connected to different points of charging in the power distribution system. The different algorithms successfully satisfy the preferences of the customers without negatively impacting the technical constraints of the power grid. The developed algorithms were experimentally verified at the Energy Systems Research Laboratory at FIU. In addition to the charge control of electric vehicles, the optimal allocation and sizing of commercial parking lots are considered. A bi-layer Pareto multi-objective optimization problem is formulated to optimally allocate and size a commercial parking lot. The optimization formulation tries to maximize the profits of the parking lot investor, as well as minimize the losses and voltage deviations for the distribution system operator. Sensitivity analysis to show the effect of the different objectives on the selection of the optimal size and location is also performed. Furthermore, in this dissertation, energy management strategies of the onboard hybrid energy storage for a medium voltage direct current (MVDC) ship power system are developed. The objectives of the management strategies were to maintain the voltage of the MVDC bus, ensure proper power sharing, and ensure proper use of resources, where supercapacitors are used during the transient periods and batteries are used during the steady state periods. The management strategies were successfully validated through hardware in the loop simulation.
APA, Harvard, Vancouver, ISO, and other styles
10

Shen, Li. "Model integration and control interaction analysis of AC/VSC HVDC system." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/model-integration-and-control-interaction-analysis-of-acvsc-hvdc-system(2d4bcb21-a97f-4c7f-b413-1a2a54086145).html.

Full text
Abstract:
The development of voltage source converter (VSC) based high voltage direct current (HVDC) transmission has progressed rapidly worldwide over the past few years. The UK transmission system is going through a radical change in the energy landscape which requires a number of VSC HVDC installations to connect large Round 3 windfarms and for interconnections to other countries. For bulk power long distance transmission, VSC HVDC technology offers flexibility and controllability in power flow, which can benefit and strengthen the conventional AC system. However, the associated uncertainties and potential problems need to be identified and addressed. To carry out this research, integrated mathematical dynamic AC/DC system models are developed in this thesis for small disturbance stability analysis. The fidelity of this research is further increased by developing a dynamic equivalent representative Great Britain (GB) like system, which is presented as a step-by-step procedure with the intention of providing a road map for turning a steady-state load flow model into a dynamic equivalent. This thesis aims at filling some of the gaps in research regarding the integration of VSC HVDC technology into conventional AC systems. The main outcome of this research is a systematic assessment of the effects of VSC controls on the stability of the connected AC system. The analysis is carried out for a number of aspects which mainly orbit around AC/DC system stability issues, as well as the control interactions between VSC HVDC and AC system components. The identified problems and interactions can mainly be summarized into three areas: (1) the effect of VSC HVDC controls on the AC system electromechanical oscillations, (2) the potential control interactions between VSC HVDC and flexible alternating current transmission systems (FACTS) and (3) the active power support capability of VSC HVDC for improving AC system stability. The effect of VSC controls on the AC system dynamics is assessed with a parametric sensitivity analysis to highlight the trade-offs between candidate VSC HVDC outer control schemes. A combination of analysis techniques including relative gain array (RGA) and modal analysis, is then applied to give an assessment of the interactions – within the plant model and the outer controllers – between a static synchronous compensator (STATCOM) and a VSC HVDC link operating in the same AC system. Finally, a specific case study is used to analyse the capability of VSC HVDC for providing active power support to the connected AC system through a proposed frequency droop active power control strategy.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Control system- AC and DC microgrids"

1

Hofheinz, Wolfgang. Fault current monitoring in electrical installations: Foundations, applications and methods of measuring residual current in AC and DC systems with residual current monitors (RCMs) according to IEC 62020 and other international standards. Berlin: VDE Verlag GMBH, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Jianhui, and Xiaonan Lu. Integrated Distribution Systems with AC/DC/Hybrid Microgrids: Planning, Control and Operation. Wiley & Sons, Incorporated, John, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Jianhui, and Xiaonan Lu. Integrated Distribution Systems with AC/DC/Hybrid Microgrids: Planning, Control and Operation. Wiley & Sons, Incorporated, John, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Jianhui, and Xiaonan Lu. Integrated Distribution Systems with AC/DC/Hybrid Microgrids: Planning, Control and Operation. Wiley-IEEE Press, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Jianhui, and Xiaonan Lu. Integrated Distribution Systems with AC/DC/Hybrid Microgrids: Planning, Control and Operation. Wiley & Sons, Incorporated, John, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Yunwei (Ryan), Farzam Nejabatkhah, and Hao Tian. Smart Hybrid AC/DC Microgrids: Power Management, Energy Management, and Power Quality Control. Wiley & Sons, Incorporated, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Yunwei (Ryan), Farzam Nejabatkhah, and Hao Tian. Smart Hybrid AC/DC Microgrids: Power Management, Energy Management, and Power Quality Control. Wiley & Sons, Incorporated, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Yunwei (Ryan), Farzam Nejabatkhah, and Hao Tian. Smart Hybrid AC/DC Microgrids: Power Management, Energy Management, and Power Quality Control. Wiley & Sons, Limited, John, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Yunwei (Ryan), Farzam Nejabatkhah, and Hao Tian. Smart Hybrid AC/DC Microgrids: Power Management, Energy Management, and Power Quality Control. Wiley & Sons, Incorporated, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

A Three-Phase Hybrid DC-AC Inverter System Utilizing Hysteresis Control. Storming Media, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Control system- AC and DC microgrids"

1

Sofla, Mohammadhassan Abdollahi, Lingfeng Wang, and Roger King. "Modeling and Control of DC-AC Power Converters of Distributed Energy Resources in Microgrids." In Modeling and Control of Sustainable Power Systems, 341–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22904-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Braitor, Andrei-Constantin. "Stability Analysis of Parallel-Operated Bidirectional AC/DC and DC/DC Converters." In Advanced Hierarchical Control and Stability Analysis of DC Microgrids, 91–122. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95415-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Puranik, Sachin, Ali Keyhani, and Abir Chatterjee. "Control of Single-Phase DC-AC Inverters in Residential Microgrid Systems." In Smart Power Grids 2011, 235–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-21578-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sun, Qiuye. "Coordinated Power Management Control Strategy for Interconnected AC and DC Microgrids." In Energy Internet and We-Energy, 93–127. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0523-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jayachandran, M., Gundala Srinivasa Rao, and Ch Rami Reddy. "A Unique Interlinking Converter Control for Hybrid AC/DC Islanded Microgrids." In Sustainable Communication Networks and Application, 177–86. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6605-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dong, Xinzhou. "DC Participation in Emergency Tidal Control." In AC/DC Hybrid Large-Scale Power Grid System Protection, 207–83. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6486-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jayachandran, M., Gundala Srinivasa Rao, and Ch Rami Reddy. "Correction to: A Unique Interlinking Converter Control for Hybrid AC/DC Islanded Microgrids." In Sustainable Communication Networks and Application, C1. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6605-6_66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Yuwei, Qian Xiao, Zhipeng Jiao, Wenbiao Lu, Jin Xu, Yunfei Mu, and Hongjie Jia. "A Dual-Loop Control Strategy for Interlinking Converters in Hybrid AC/DC Microgrids." In Lecture Notes in Electrical Engineering, 954–64. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1528-4_98.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dong, Xinzhou. "Commutation Failure Prevention and Control." In AC/DC Hybrid Large-Scale Power Grid System Protection, 141–206. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6486-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rodríguez, José, Haitham Abu-Rub, Marcelo A. Perez, and Samir Kouro. "Application of Predictive Control in Power Electronics: An AC-DC-AC Converter System." In Advanced and Intelligent Control in Power Electronics and Drives, 227–48. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03401-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Control system- AC and DC microgrids"

1

Johnston, AN, DA Wetz, and GK Turner. "A Medium Voltage AC and DC Distributed Power Generation Testbed Deploying Transient Loads." In International Ship Control Systems Symposium. IMarEST, 2020. http://dx.doi.org/10.24868/issn.2631-8741.2020.007.

Full text
Abstract:
Microgrids have been studied considerably over the last decade. They are being uniquely designed and controlled in a variety of applications to supply countless different loads, many of which may operate in a transient manner. Given their isolated nature, ships are often treated as microgrids allowing much of the same theory to apply. Historically, both electric grids and ships have relied upon fossil fuel powered motors to spin generators that source the electric power they need. Microgrids can deploy a host of different distributed generation sources that are interconnected and controlled in real time to improve overall grid reliability and redundancy. The use of medium-voltage-direct-current (MVDC) power distribution is one possible solution to minimize power loss in the conductors and to reduce the power conversion requirement when high voltage loads are present. The non-continuous operation of loads may introduce harmonics into the power system that severely impact power quality. Avoiding this is critical and more must be understood for successful mitigation. Model development and validation is critical for successfully deploying new architectures and control strategies. To study the reliable operation and control of such a power system, as well as to validate the models being developed, the Pulsed Power and Energy Laboratory (PPEL) at the University of Texas at Arlington (UTA) has designed and installed a testbed that can be used to study a small microgrid deploying transient loads. The testbed, operating at power levels higher than 300 kW, utilizes distributed AC and DC power sources and loads operating at the 480 VAC, 4160 VAC, 1 kVDC, 6 kVDC, and 12 kVDC, respectively. The testbed is being virtually extended utilizing a hardware in the loop (HIL) simulator. This paper will discuss the design of the testbed, the test plan methodology, and the results collected so far.
APA, Harvard, Vancouver, ISO, and other styles
2

Miyoshi, Hiroaki, Takashi Takeda, Kazuto Yukita, Yasuyuki Goto, and Katsuhiro Ichiyanagi. "Operation method of AC/DC power system with DGs using power control." In 2015 IEEE First International Conference on DC Microgrids (ICDCM). IEEE, 2015. http://dx.doi.org/10.1109/icdcm.2015.7152026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jianfang, Xiao, Wang Peng, Leonardy Setyawan, Jin Chi, and Choo Fook Hoong. "Energy management system for control of hybrid AC/DC microgrids." In 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2015. http://dx.doi.org/10.1109/iciea.2015.7334214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rao Korada, Durga Malleswara, and Mahesh Kumar Mishra. "DC Bus Voltage Control in Hybrid AC/DC Microgrid System." In 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). IEEE, 2020. http://dx.doi.org/10.1109/eeeic/icpseurope49358.2020.9160793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jia, Lihu, and Hongxian Li. "Analysis of AC Asymmetrical Fault on DC Control System in Hybrid AC/DC Microgrid." In 2018 China International Conference on Electricity Distribution (CICED). IEEE, 2018. http://dx.doi.org/10.1109/ciced.2018.8592361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shi, Haixu, Kai Sun, and Yongdong Li. "Dual-port Machine Imitation Control for AC-DC Interlinking Converters in Hybrid Microgrids." In 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2020. http://dx.doi.org/10.1109/ei250167.2020.9346751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bagudai, Sunil Kumar, Olive Ray, and S. R. Samantaray. "Evaluation of Control Strategies within Hybrid DC/AC Microgrids using Typhoon HIL." In 2019 8th International Conference on Power Systems (ICPS). IEEE, 2019. http://dx.doi.org/10.1109/icps48983.2019.9067331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kong, Jiansheng, Chunguang Ren, Xinwei Wei, Yue Qin, Dongxin Guo, Baifu Zhang, Yifan Wang, Xuejin Li, and Guanfei Hao. "A Control Strategy of CLLLC DC Transformers under Unbalanced AC Voltage Conditions in Hybrid Microgrids." In 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2021. http://dx.doi.org/10.1109/ei252483.2021.9713333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Guo, Hui, Dandan Gong, Lijun Zhang, Fei Wang, Mingting Zhou, and Dajun Du. "Distributed Power Management and Coordinated Control for AC/DC Hybrid Microgrids Based on Solid-State Transformer." In 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). IEEE, 2022. http://dx.doi.org/10.1109/icpsasia55496.2022.9949733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Tan, Xueting Cheng, Jinhao Wang, Xiao Chang, Guanchang Zhang, Da Lei, Shifeng Zhang, and Jun Zhao. "Review of Coordinated Control Strategy for AC/DC Hybrid Microgrid." In 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2018. http://dx.doi.org/10.1109/ei2.2018.8581990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography