Dissertations / Theses on the topic 'Control methodology][Fuzzy logic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Control methodology][Fuzzy logic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Al-Assaf, Y. "Self-tuning control : Theory and applications." Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235033.
Full textEmami, Mohammad Reza. "Systematic methodology of fuzzy-logic modeling and control and application to robotics." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ28276.pdf.
Full textOtero, Angel Rafael. "An Information Security Control Assessment Methodology for Organizations." NSUWorks, 2014. http://nsuworks.nova.edu/gscis_etd/266.
Full textVoutchkov, Ivan I. "A methodology for modelling, optimisation and control of the friction surfacing process." Thesis, University of Portsmouth, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326995.
Full textHoyle, W. J. "Fuzzy logic, control and optimisation." Thesis, University of Canterbury. Mechanical Engineering, 1996. http://hdl.handle.net/10092/6458.
Full textAli, Agha Rehmat. "Predicted Speed Control based on Fuzzy Logic for Belt Conveyors : Fuzzy Logic Control for Belt Conveyors." Thesis, Karlstads universitet, Avdelningen för fysik och elektroteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-70106.
Full textMarriott, Jack. "Adaptive robust fuzzy logic control design." Thesis, Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/15819.
Full textFarah, Hassan. "The fuzzy logic control of aircraft." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0003/MQ43339.pdf.
Full textFarah, Hassan (Hassan Kahiye) Carleton University Dissertation Engineering Mechanical and Aerospace. "The Fuzzy logic control of aircraft." Ottawa, 1999.
Find full textCook, Brandon M. "Multi-Agent Control Using Fuzzy Logic." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1447688633.
Full textWang, Jian Zhou. "Robust control with fuzzy logic algorithms." Thesis, University of Edinburgh, 1997. http://hdl.handle.net/1842/13195.
Full textGarcía, Z. Yohn E. "Fuzzy logic in process control : a new fuzzy logic controller and an improved fuzzy-internal model controller." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001552.
Full textGarcÃa, Z. Yohn E. "Fuzzy logic in process control: A new fuzzy logic controller and an improved fuzzy-internal model controller." Scholar Commons, 2006. http://scholarcommons.usf.edu/etd/2529.
Full textFeng, Yi. "Dynamic Fuzzy Logic Control of GeneticAlgorithm Probabilities." Thesis, Högskolan Dalarna, Datateknik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:du-3286.
Full textBell, Michael Ray. "Fuzzy logic control of uncertain industrial processes." Thesis, Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/18998.
Full textMian, Tariq M. "Fuzzy Logic based Automotive Airbag Control System." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0011/MQ52612.pdf.
Full textLin, Yuetong. "MODULAR CONSTRUCTION OF FUZZY LOGIC CONTROL SYSTEMS." Diss., The University of Arizona, 2005. http://hdl.handle.net/10150/193845.
Full text馮潤開 and Yun-hoi Fung. "Linguistic fuzzy-logic control of autonomous vehicles." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B29812690.
Full textEl-Deen, M. M. G. Naser. "Adaptive fuzzy logic control for solar buildings." Thesis, Northumbria University, 2002. http://nrl.northumbria.ac.uk/2084/.
Full textFung, Yun-hoi. "Linguistic fuzzy-logic control of autonomous vehicles /." Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19660583.
Full textMathur, Garima. "Fuzzy logic control for infant-incubator systems." University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1153768682.
Full textGalor, Abraham. "Fuzzy logic control: The active cell method." Case Western Reserve University School of Graduate Studies / OhioLINK, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=case1057689901.
Full textEdalath, Sanooj Sadique. "Fuzzy Logic Seismic Vibration Control of Buildings." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1335462916.
Full textMelek, Wael William. "On the robustness of a systematic methodology of fuzzy-logic modeling." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0002/MQ40974.pdf.
Full textPetermann, Bertrand. "Attitude control of small satellites using fuzzy logic." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ29622.pdf.
Full textAl-Mawali, Salim. "Centrifugal compressor surge suppression using fuzzy logic control." Thesis, University of Newcastle Upon Tyne, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493201.
Full textBaxter, Jeremy. "Fuzzy logic control of an automated guided vehicle." Thesis, Durham University, 1994. http://etheses.dur.ac.uk/5817/.
Full textKhalil, Azher Othamn K. "Fuzzy logic control and navigation of mobile vehicles." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323486.
Full textFarbrother, Howard Nicholas Richard. "Fuzzy logic control of a remotely operated vehicle." Thesis, University of Exeter, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363427.
Full textRENTERIA, ALEXANDRE ROBERTO. "TRAFFIC CONTROL THROUGH FUZZY LOGIC AND NEURAL NETWORKS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2002. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=2695@1.
Full textEste trabalho apresenta a utilização de lógica fuzzy e de redes neurais no desenvolvimento de um controlador de semáforos - o FUNNCON. O trabalho realizado consiste em quatro etapas principais: estudo dos fundamentos de engenharia de tráfego; definição de uma metodologia para a avaliação de cruzamentos sinalizados; definição do modelo do controlador proposto; e implementação com dados reais em um estudo de caso.O estudo sobre os fundamentos de engenharia de tráfego aborda a definição de termos,os parâmetros utilizados na descrição dos fluxos de tráfego, os tipos de cruzamentos e seus semáforos, os sistemas de controle de tráfego mais utilizados e as diversas medidas de desempenho.Para se efetuar a análise dos resultados do FUNNCON, é definida uma metodologia para a avaliação de controladores. Apresenta-se, também, uma investigação sobre simuladores de tráfego existentes, de modo a permitir a escolha do mais adequado para o presente estudo. A definição do modelo do FUNNCON compreende uma descrição geral dos diversos módulos que o compõem. Em seguida, cada um destes módulos é estudado separadamente: o uso de redes neurais para a predição de tráfego futuro; a elaboração de um banco de cenários ótimos através de um otimizador; e a criação de regras fuzzy a partir deste banco.No estudo de caso, o FUNNCON é implementado com dados reais fornecidos pela CET-Rio em um cruzamento do Rio de Janeiro e comparado com o controlador existente.É constatado que redes neurais são capazes de fornecer bons resultados na predição do tráfego futuro. Também pode ser observado que as regras fuzzy criadas a partir do banco de cenários ótimos proporcionam um controle efetivo do tráfego no cruzamento estudado. Uma comparação entre o desempenho do FUNNCON e o do sistema atualmente em operação é amplamente favorável ao primeiro.
This work presents the use of fuzzy logic and neural networks in the development of a traffic signal controller - FUNNCON. The work consists of four main sections: study of traffic engineering fundamentals; definition of a methodology for evaluation of traffic controls; definition of the proposed controller model; and implementation on a case study using real data.The study of traffic engineering fundamentals considers definitions of terms,parameters used for traffic flow description, types of intersections and their traffic signals,commonly used traffic control systems and performance measures.In order to analyse the results provided by FUNNCON, a methodology for the evaluation of controllers is defined. The existing traffic simulators are investigated, in order to select the best one for the present study.The definition of the FUNNCON model includes a brief description of its modules.Thereafter each module is studied separately: the use of neural networks for future traffic prediction; the setup of a best scenario database using an optimizer; and the extraction of fuzzy rules from this database.In the case study, FUNNCON is implemented with real data supplied by CET-Rio from an intersection in Rio de Janeiro; its performance is compared with that of the existing controller.It can be observed that neural networks can present good results in the prediction of future traffic and that the fuzzy rules created from the best scenario database lead to an effective traffic control at the considered intersection. When compared with the system in operation, FUNNCON reveals itself much superior.
Shook, David Adam. "Control of a benchmark structure using GA-optimized fuzzy logic control." [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1088.
Full textPolkinghorne, Martyn Neal. "A self-organising fuzzy logic autopilot for small vessels." Thesis, University of Plymouth, 1994. http://hdl.handle.net/10026.1/1100.
Full textJin, Gang-Gyoo. "Intelligent fuzzy logic control of processes with time delays." Thesis, Cardiff University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388058.
Full textZhu, Jiayi. "Adaptive Fuzzy Logic Control for Time-Delayed Bilateral Teleoperation." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20626.
Full textMorozoff, Edmund Pavel. "Modelling and fuzzy logic control of neonatal oxygen therapy." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq24210.pdf.
Full textVerma, Sasha Santosh Magnus. "Maximum efficiency fuzzy logic control of an electric vehicle." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ37988.pdf.
Full textBarr, Andrew J. "The fuzzy logic control of an active vehicle suspension /." Connect to online version, 1996. http://hdl.handle.net/1989/3557.
Full textKirawanich, Phumin. "Fuzzy logic control for an active power line conditioner /." free to MU campus, to others for purchase, 2002. http://wwwlib.umi.com/cr/mo/fullcit?p3060114.
Full textAntão, Rómulo José Magalhães Martins. "Type-2 fuzzy logic: uncertain systems' modeling and control." Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/18041.
Full textA última fronteira da Inteligência Artificial será o desenvolvimento de um sistema computacional autónomo capaz de "rivalizar" com a capacidade de aprendizagem e de entendimento humana. Ainda que tal objetivo não tenha sido até hoje atingido, da sua demanda resultam importantes contribuições para o estado-da-arte tecnológico atual. A Lógica Difusa é uma delas que, influenciada pelos princípios fundamentais da lógica proposicional do raciocínio humano, está na base de alguns dos sistemas computacionais "inteligentes" mais usados da atualidade. A teoria da Lógica Difusa é uma ferramenta fundamental na suplantação de algumas das limitações inerentes à representação de informação incerta em sistemas computacionais. No entanto esta apresenta ainda algumas lacunas, pelo que diversos melhoramentos à teoria original têm sido introduzidos ao longo dos anos, sendo a Lógica Difusa de Tipo-2 uma das mais recentes propostas. Os novos graus de liberdade introduzidos por esta teoria têm-se demonstrado vantajosos, particularmente em aplicações de modelação de sistemas não-lineares complexos. Uma das principais vantagens prende-se com o aumento da robustez dos modelos assim desenvolvidos comparativamente àqueles baseados nos princípios da Lógica Difusa de Tipo-1 sem implicar necessariamente um aumento da sua dimensão. Tal propriedade é particularmente vantajosa considerando que muitas vezes estes modelos são utilizados como suporte ao desenvolvimento de sistemas de controlo que deverão ser capazes de assegurar o comportamento ótimo de um processo em condições de operação variáveis. No entanto, o estado-da-arte da teoria de controlo de sistemas baseada em modelos não tem integrado todos os melhoramentos proporcionados pelo desenvolvimento de modelos baseados nos princípios da Lógica Difusa de Tipo-2. Por essa razão, a presente tese propõe-se a abordar este tópico desenvolvendo uma metodologia de síntese de Controladores Preditivos baseados em modelos Takagi-Sugeno seguindo os princípios da Lógica Difusa de Tipo-2. De modo a cumprir este objetivo, quatro linhas de investigação serão debatidas neste trabalho.Primeiramente proceder-se-á ao desenvolvimento de uma metodologia de treino de Modelos Difusos de Tipo-2 simplificada, focada em dois paradigmas: manter a clareza dos intervalos de incerteza introduzidos sobre um Modelo Difuso de Tipo-1; assegurar a validade dos diversos modelos localmente lineares que constituem a estrutura Takagi- Sugeno, de modo a torná-los adequados a métodos de síntese de controladores baseados em modelos. O modelo desenvolvido é tipicamente utilizado para extrapolar o comportamento do sistema numa janela temporal futura. No entanto, quando usados em aproximações de sistemas não lineares, os modelos do tipo Takagi-Sugeno estabelecem um compromisso entre exatidão e complexidade computacional. Assim, é proposta a utilização dos princípios da Lógica Difusa de Tipo-2 para reduzir a influência dos erros de modelação nas estimações obtidas através do ajuste dos intervalos de incerteza dos parâmetros do modelo. Com base na estrutura Takagi-Sugeno, um método de linearização local de modelos não-lineares será utilizado em cada ponto de funcionamento do sistema de modo a obter os parâmetros necessários para a síntese de um controlador otimizado numa janela temporal futura de acordo com os princípios da teoria de Controlo Preditivo Generalizado - um dos algoritmos de Controlo Preditivo mais utilizado na indústria. A qualidade da resposta do sistema em malha fechada e a sua robustez a perturbações serão então comparadas com implementações do mesmo algoritmo baseadas em métodos de modelação mais simples. Para concluir, o controlador proposto será implementado num System-on-Chip baseado no core ARM Cortex-M4. Com o propósito de facilitar a realização de testes de implementação de algoritmos de controlo em sistemas embutidos, será apresentada também uma plataforma baseada numa arquitetura Processor-In-the-Loop, que permitirá avaliar a execução do algoritmo proposto em sistemas computacionais com recursos limitados, aferindo a existência de possíveis limitações antes da sua aplicação em cenários reais. A validade do novo método proposto é avaliada em dois cenários de simulação comummente utilizados em testes de sistemas de controlo não-lineares: no Controlo da Temperatura de uma Cuba de Fermentação e no Controlo do Nível de Líquidos num Sistema de Tanques Acoplados. É demonstrado que o algoritmo de controlo desenvolvido permite uma melhoria da performance dos processos supramencionados, particularmente em casos de mudança rápida dos regimes de funcionamento e na presença de perturbações ao processo não medidas.
The development of an autonomous system capable of matching human knowledge and learning capabilities embedded in a compact yet transparent way has been one of the most sought milestones of Artificial Intelligence since the invention of the first mechanical general purpose computers. Such accomplishment is yet to come but, in its pursuit, important contributions to the state-of-the-art of current technology have been made. Fuzzy Logic is one of such, supporting some of the most used frameworks for embedding human-like knowledge in computational systems. The theory of Fuzzy Logic overcame some of the difficulties that the inherent uncertainty in information representations poses to the development of computational systems. However, it does present some limitations so, aiming to further extend its capabilities, several improvements over its original formalization have been proposed over the years such as Type-2 Fuzzy Logic - one of its most recent advances. The additional degrees of freedom of Type-2 Fuzzy Logic are showing greater potential to supplant its original counterpart, especially in complex non-linear modeling tasks. One of its main outcomes is its capability of improving the developed model’s robustness without necessarily increasing its dimensionality comparatively to a Type-1 Fuzzy Model counterpart. Such feature is particularly advantageous if one considers these model as a support for developing control systems capable of maintaining a process’s optimal performance over changing operating conditions. However, state-of-the art model-based control theory does not seem to be taking full advantage of the improvements achieved with the development of Type-2 Fuzzy Logic based models. Therefore, this thesis proposes to address this problem by developing a Model Predictive Control system supported by Interval Type-2 Takagi- Sugeno Fuzzy Models. To accomplish this goal, four main research directions are covered in this work.Firstly, a simpler method for training a Type-2 Takagi-Sugeno Fuzzy Model focused on two main paradigms is proposed: maintaining a meaningful interpretation of the uncertainty intervals embedded over an estimated Type-1 Fuzzy Model; ensuring the validity of several locally linear models that constitute the Takagi-Sugeno structure in order to make them suitable for model-based control approaches. Based on the developed model, a multi-step ahead estimation of the process behavior is extrapolated. However, as Takagi-Sugeno Fuzzy Models establish a trade-off between accuracy and computational complexity when used as a non-linear process approximation, it is proposed to apply the principles of Type-2 Fuzzy Logic to reduce the influence of modeling uncertainties on the obtained estimations by adjusting the model parameters’ uncertainty intervals. Supported by the developed Type-2 Takagi-Sugeno Fuzzy Model, a locally linear approximation of each current operation point is used to obtain the optimal control law over a prediction horizon according to the principles of Generalized Predictive Control - one of the most used Model Predictive Control algorithms in Industry. The improvements in terms of closed loop tracking performance and robustness to unmodeled operation conditions are then assessed comparatively to Generalized Predictive Control implementations based on simpler modeling approaches. Ultimately, the proposed control system is implemented in a general purpose System-on-a-Chip based on a ARM Cortex-M4 core. A Processor-In-the-Loop testing framework, developed to support the implementation of control loops in embedded systems, is used to evaluate the algorithm’s turnaround time when executed in such computationally constrained platform, assessing its possible limitations before deployment in real application scenarios. The applicability of the new methods introduced in this thesis is illustrated in two simulated processes commonly used in non-linear control benchmarking: the Temperature Control of a Fermentation Reactor and the Liquid Level Control of a Coupled Tanks System. It is shown that the developed control system achieves an improved closed loop performance of the above mentioned processes, particularly in the cases of quick changes in the operation regime and in presence of unmeasured external disturbances.
FNU, Vijaykumar Sureshkumar. "Autonomous Control of A Quadrotor UAV Using Fuzzy Logic." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1428049378.
Full textBreedon, Philip James. "Multiple axis fuzzy logic control of an industrial robot." Thesis, Nottingham Trent University, 2001. http://irep.ntu.ac.uk/id/eprint/10298/.
Full textNemoto, Tadashi. "Automatic control of pressure support ventilation using fuzzy logic." Kyoto University, 2003. http://hdl.handle.net/2433/149372.
Full textKandiah, Sivasothy. "Fuzzy model based predictive control of chemical processes." Thesis, University of Sheffield, 1996. http://etheses.whiterose.ac.uk/3029/.
Full textPeters, Barry. "Stable fuzzy logic controllers for uncertain dynamic systems." Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/18223.
Full textÖman, Lundin Gustav. "Enhancements of an auto-thrustfunction using fuzzy logic." Thesis, KTH, Optimeringslära och systemteori, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-153940.
Full textLloyd, John William. "Generalized Predictive Control Parameter Adaptation Using a Fuzzy Logic Approach." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/29306.
Full textPh. D.
Ting, Sio Weng. "Advanced control approaches for time-variant system : fuzzy logic control and adaptive inverse control." Thesis, University of Macau, 1997. http://umaclib3.umac.mo/record=b1445630.
Full textHouchin, Scott J. "Pendulum : controlling an inverted pendulum using fuzzy logic /." Online version of thesis, 1991. http://hdl.handle.net/1850/11294.
Full textDaneshpooy, Alireza. "Artificial neural network and fuzzy logic control for HVDC systems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq23593.pdf.
Full textTessier, Thomas R. "Implementation of a fuzzy logic based seeding depth control system." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq23523.pdf.
Full text