Academic literature on the topic 'Control in neuroscience'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Control in neuroscience.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Control in neuroscience"

1

Stern, P. R. "NEUROSCIENCE: Dendritic Control of Rhythmicity." Science 293, no. 5532 (August 10, 2001): 1015e—1017. http://dx.doi.org/10.1126/science.293.5532.1015e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chin, G. J. "NEUROSCIENCE: Pathways to Pain Control." Science 288, no. 5475 (June 30, 2000): 2287b—2287. http://dx.doi.org/10.1126/science.288.5475.2287b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Madhav, Manu S., and Noah J. Cowan. "The Synergy Between Neuroscience and Control Theory: The Nervous System as Inspiration for Hard Control Challenges." Annual Review of Control, Robotics, and Autonomous Systems 3, no. 1 (May 3, 2020): 243–67. http://dx.doi.org/10.1146/annurev-control-060117-104856.

Full text
Abstract:
Here, we review the role of control theory in modeling neural control systems through a top-down analysis approach. Specifically, we examine the role of the brain and central nervous system as the controller in the organism, connected to but isolated from the rest of the animal through insulated interfaces. Though biological and engineering control systems operate on similar principles, they differ in several critical features, which makes drawing inspiration from biology for engineering controllers challenging but worthwhile. We also outline a procedure that the control theorist can use to draw inspiration from the biological controller: starting from the intact, behaving animal; designing experiments to deconstruct and model hierarchies of feedback; modifying feedback topologies; perturbing inputs and plant dynamics; using the resultant outputs to perform system identification; and tuning and validating the resultant control-theoretic model using specially engineered robophysical models.
APA, Harvard, Vancouver, ISO, and other styles
4

Ahmed, S. Ejaz. "Dynamic Neuroscience Statistic, Modeling, and Control." Technometrics 61, no. 4 (October 2, 2019): 568. http://dx.doi.org/10.1080/00401706.2019.1679542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Matsumoto, K. "NEUROSCIENCE: Enhanced: Conflict and Cognitive Control." Science 303, no. 5660 (February 13, 2004): 969–70. http://dx.doi.org/10.1126/science.1094733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rakic, P. "NEUROSCIENCE: Genetic Control of Cortical Convolutions." Science 303, no. 5666 (March 26, 2004): 1983–84. http://dx.doi.org/10.1126/science.1096414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fox, Douglas. "Remote control brains: a neuroscience revolution." New Scientist 195, no. 2613 (July 2007): 30–34. http://dx.doi.org/10.1016/s0262-4079(07)61838-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bridgeman, Bruce. "Applications of predictive control in neuroscience." Behavioral and Brain Sciences 36, no. 3 (May 10, 2013): 208. http://dx.doi.org/10.1017/s0140525x12002282.

Full text
Abstract:
AbstractThe sensory cortex has been interpreted as coding information rather than stimulus properties since Sokolov in 1960 showed increased response to an unexpected stimulus decrement. The motor cortex is also organized around expectation, coding the goal of an act rather than a set of muscle movements. Expectation drives not only immediate responses but also the very structure of the cortex, as demonstrated by development of receptive fields that mirror the structure of the visual world.
APA, Harvard, Vancouver, ISO, and other styles
9

Schoofs, Andreas, and Michael J. Pankratz. "Neuroscience: Moving thoughts control insulin release." Current Biology 33, no. 7 (April 2023): R274—R276. http://dx.doi.org/10.1016/j.cub.2023.02.054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Castro, L. C. "Affective Neuroscience: A Crucial Role in Psychiatry." European Psychiatry 24, S1 (January 2009): 1. http://dx.doi.org/10.1016/s0924-9338(09)71130-7.

Full text
Abstract:
Background:Neuroscience has been a growing revolutionary field of scientific knowledge. The increasing recognition of the importance of emotional processes and subjective experience in several aspects of human behaviour parallel the growing amount of research in the field of affective neuroscience. Affective neuroscience studies the brain mechanisms subjacent to emotional behaviour.Aim:To discuss the relevance of affective neuroscience research in social and biological sciences, namely within psychiatric and psychological researches.Methods:Review of the literature. MEDLINE and PubMed databases searches for peer-reviewed studies, published between 1994 and 2008, using combinations of the Medline Subject Heading terms affective neuroscience, emotions, affective sciences and psychiatry, psychology, biological sciences, social sciences.Results:Several studies addresses brain functions and how emotions relate to genetics, learning, primary motivations, stress response and human behaviour. Some actual areas of research within affective neuroscience include: emotional learning, affective behaviour, emotional empathy, psychosomatic medicine, functional and structural biomarkers, emotional disorders and stress response, among others.Discussion:In Psychiatry, affective neurosciences find application in understanding the neurobiology of mood disorders, the neural control of interpersonal and social behaviour and the emotional systems that underlie psychopathology. Affective neuroscience reflects the integration of knowledge across disciplines allowing a broader understanding of human functioning. The field of affective neuroscience is an exciting field of future psychiatric research and it provides an investigational framework for studying psychiatric morbidity.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Control in neuroscience"

1

Yamanaka, Juri. "Anticipatory grip force control in stroke." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97235.

Full text
Abstract:
When moving the arm while holding an object, grip force (GF) increases at movement onset (anticipatory control; AC). Post-stroke individuals preserve AC in some tasks but few of these have been ecological. We hypothesized that post-stroke individuals will have problems in AC during functional hand tasks. Subjects lifted a 63.5g load cell (lift) with the thumb and index finger and held it (hold) while flexing or extending the elbow (transport). GF, EMG activity of the elbow and thumb, and forearm acceleration were recorded. Stroke subjects had no impairments in AC between GF and acceleration. However, they used higher GF, had deficits in maintaining constant GF during hold, demonstrated abnormal couplings between GF and temporal parameters of grasp and had disrupted timing of muscle activation between thumb and elbow flexors during flexion movements. These findings suggest that people with stroke have disruptions in the patterns of grasping during functional arm tasks.
Quand le bras en mouvement tient un objet, la force de préhension (FdP) augmente en début de mouvement (contrôle anticipatoire; CA). Après un accident vasculaire cérébral (AVC), les personnes conservent le CA dans quelques tâches mais peu d'entre elles sont écologiques. Nous avons émis l'hypothèse que l'AVC entraîne des problèmes de CA lors de tâches fonctionnelles. Les sujets ont levé un capteur de force de 63,5g (lever) avec le pouce et l'index et l'ont tenu (maintien) tout en fléchissant ou allongeant le coude (transport). La FdP, l'activité EMG des muscles du coude et du pouce ainsi que l'accélération de l'avant-bras ont été enregistrées. Les sujets avec un AVC n'avaient pas de déficience dans le CA entre la FdP et l'accélération. Toutefois, ils utilisaient plus de FdP; ils avaient des déficits dans le maintien de la FdP; ils ont démontrés des relations anormales entre la PdF et les paramètres temporels de préhension et ils présentaient une perturbation temporelle de l'activation musculaires entre le fléchisseurs du coude et du pouce lors des mouvements de flexion. Ces résultats suggèrent que les l'AVC altère les patrons de préhension lors de tâches fonctionnelles du bras.
APA, Harvard, Vancouver, ISO, and other styles
2

Leonard, Julia Anne. "The feedforward control of posture and movement." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114142.

Full text
Abstract:
Goal-directed arm movements performed in the standing position potentially disturb the body's equilibrium as a result of the multi-linked structure of the musculoskeletal system. To compensate for these disturbances and ensure that stability is maintained, the central nervous system (CNS) organizes postural adjustments preceding and accompanying the voluntary movement in a feedforward manner (Massion 1992) using knowledge of the dynamics of the body (Bouisset and Zattara 1981). To date, most studies investigating the control of posture during voluntary movements in humans have focused on either the role of the postural activity preceding the movement or on the temporal structure of these anticipatory postural adjustments (APAs) with respect to the focal movement. As such, detailed knowledge about the spatial organization of postural activity is lacking. Furthermore, it is not clear how posture is coordinated when the goal of a voluntary movement changes online. Therefore, the studies in this thesis were aimed at addressing these questions to develop a greater understanding of the organization of feedforward postural control during voluntary movements. Muscle activity, kinetics and kinematics were recorded as subjects performed unperturbed and perturbed reaching movements to targets located in multiple directions while standing. Feedforward postural control strategies preceding and accompanying the reaching movements were quantified. Characterization of the spatial and temporal patterns of muscle activity and ground reaction forces of postural adjustments preceding reach movements revealed that muscle activity was directionally-tuned to reach direction and forces that were constrained to two principal directions. Also, muscle synergies were able to explain the spatial and temporal variability in postural muscle activity in the period preceding the reaching movements, suggesting that a modular organization of muscle recruitment is adopted for this task. Overall, these strategies are similar to those observed for feedback postural responses, suggesting that the CNS relies on shared neural structures for controlling posture in both modes of control. Lastly, the nature of postural control was examined when reaching movements were perturbed with a shift of the visual target after the reaching movement was initiated. Here, muscle activity in the legs was consistently modulated prior to changes in the muscle activity related to the online correction of the arm trajectory.Taken together, the findings of this thesis provide important insights into how the brain coordinates the control of posture and movement. This work provides a measure of feedforward postural control strategies in healthy, young adults as a first step to understanding how and why deficits in balance control may occur during the execution of voluntary movements in fall-prone individuals.
Les mouvements volontaires effectués dans la position debout peuvent engendrer des perturbations de l'équilibre en raison de la structure complexe du système musculo-squelettique. Pour amorcer ces perturbations et s'assurer que l'équilibre est maintenu, le système nerveux central (SNC) amorce le déplacement du centre de masse (CM) par la mise en jeu d'ajustements posturaux avant et accompagnant les mouvements programmés en mode proactif (Massion 1992) en utilisant des représentations internes du corps et de l'environnement. À ce jour, la majorité des études portant sur le contrôle de la posture lors des mouvements volontaires chez l'homme ont comme but soit l'identification du rôle ou la caractérisation de la structure temporelle de ces ajustements posturaux anticipateurs. Cependant, une connaissance approfondie concernant l'organisation spatiale de l'activité posturale est manquante. De plus, ce n'est pas évident comment la posture est coordonnée lorsque le but du mouvement change après le commencement du mouvement. Ainsi, les études présentées ici ont comme but de répondre à ces questions pour développer une meilleure compréhension de l'organisation centrale de la posture et le mouvement. Les signaux électromyographiques, les forces de réaction au sol et la cinématique tridimensionnelle ont été enregistrés pendant que les sujets effectuaient des mouvements de pointage vers des cibles distinctes dans la position debout. Les stratégies posturales organisées en mode proactif ont été quantifiées sans pertubations et avect des pertubations visuomotrices des movements d'atteinte. La caractérisation de l'organisation spatiale et temporelle de l'éléctromyographie et des forces appliquées au sol ont révélé que l'activité des muscles était biaisée vers la direction de pointage ('directionally-tuned') mais que les forces au sol étaient appliquées dans un nombre de directions limitées ('force constraint strategy'). De plus, la variabilité spatiale et temporelle de l'activité des muscles posturaux était expliquée par les synergies musculaires. Ceci suggère qu'une organisation modulaire est utilisée par le SNC pour faciliter la tâche de contrôle de la posture. Ces stratégies sont similaires à celles observées pour les ajustements posturaux compensatoires (à base de 'feedback' ou rétroaction), ce qui suggère que le SNC dépend des mêmes structures neuronales pour contrôler la posture dans la mode proactif et rétroactif. Par la suite, la nature du signal pour le contrôle de la posture a été examinée lors des mouvements de pointage qui ont été perturbés avec un déplacement de la cible visuelle après que le mouvement ait été commencé. Ici, l'activité musculaire dans les jambes était modulée avant la modulation de l'activité musculaire liée à la correction de la trajectoire du bras. Ensemble, les conclusions de cette thèse fournissent un aperçu important sur la façon dont le cerveau coordonne le contrôle de la posture et du mouvement. Les résultats présentés supportent la conclusion que les commandes centrales pour la posture et le mouvement interagissent dans le SNC, et que les structures neuronales sont partagées pour la posture organisée de façon anticipatoire, ou proactif, et compensatoire. Les stratégies posturales typiques dans les jeunes adultes en santé sont quantifiées et forment une base de données pour la comparaison avec des gens sujets au déséquilibre lors de la performance des mouvements volontaires.
APA, Harvard, Vancouver, ISO, and other styles
3

Bailey, Phoebe Elizabeth Psychology Faculty of Science UNSW. "The social cognitive neuroscience of empathy in older adulthood." Awarded By:University of New South Wales. Psychology, 2009. http://handle.unsw.edu.au/1959.4/44506.

Full text
Abstract:
Empathy is an essential prerequisite for the development and maintenance of close interpersonal relationships. Given that older adults are particularly vulnerable to the negative consequences of loneliness and social isolation, it is surprising that few studies have assessed empathy in this group. The current programme of research addressed this gap in the literature by testing competing predictions derived from Socioemotional Selectivity Theory and the Ageing-Brain Model for age-related sparing and impairment of empathy, respectively. Study 1 compared young (N = 80) and older (N = 49) adults?? self-reported levels of cognitive and affective empathy, and engagement in social activities. It was found that although affective empathy is spared, cognitive empathy is subject to age-related decline, and this decline mediates reductions in social participation. These data therefore affirmed the importance of further investigation into the nature, causes and potential consequences of age-related differences in empathy. Since disinhibition is one mechanism contributing to difficulty taking the perspective of another, and is known to increase with age, in Study 2, behavioural measures sensitive to inhibitory failure and to cognitive empathy were administered to young (N = 36) and older (N = 33) adults. One of the measures of cognitive empathy directly manipulated inhibitory demands, involving either high or low levels of self-perspective inhibition. The results indicated that older adults were selectively impaired on the high-inhibition condition, with cognitive disinhibition mediating this association. Study 2 therefore provided important evidence relating to one potential mechanism that contributes to age-related difficulties in perspective-taking. Studies 3 and 4 provided the first behavioural assessments of age-related differences in affective empathy by using electromyography to index facial expression mimicry. Study 3 found that young (N = 35) and older (N = 35) adults?? demonstrate comparable mimicry of anger, but older adults?? initial (i.e., implicit) reactions were associated with reduced anger recognition. Thus, to test the possibility that despite explicit recognition difficulties, implicit processing of facial expressions may be preserved in older adulthood, Study 4 compared young (N = 46) and older (N = 40) adults?? mimicry responses to subliminally presented angry and happy facial expressions. As predicted, the two groups demonstrated commensurate subconscious mimicry of these expressions. Taken together, these studies indicate that separate components of empathy are differentially affected by healthy adult ageing. Implications for competing perspectives of socioemotional functioning in older adulthood are discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Wee, Caroline Lei. "Neuromodulatory Control of Motivated Behavior in the Larval Zebrafish." Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493507.

Full text
Abstract:
An animal’s behavior is strongly influenced by homeostatic drives that are crucial for survival and reproduction, such as the drive to eat, or to escape from harmful threats. In vertebrates, an evolutionarily ancient brain structure, the hypothalamus, is particularly important for coordinating these essential survival functions. Here, I leverage the simple and transparent brain of the vertebrate larval zebrafish to dissect the conserved hypothalamic networks that regulate appetite and defensive behaviors, focusing on how these overlapping circuits interact with and influence each other. By using an unbiased brain-wide activity mapping approach, I pinpoint hypothalamic oxytocin (OXT) neurons as a key hub for the control of defensive behaviors against pain. I show that OXT neurons integrate multiple noxious stimuli, in particular input from TRPA1 damage-sensing receptors, to drive pain avoidance behavior via co-release of OXT and glutamate in the hindbrain and spinal cord. Furthermore, OXT neurons can also integrate information about the animal’s social context to control appetite, a separate homeostatic drive. These findings provide insight into how a single neuromodulatory circuit can exert flexible, context-dependent control over diverse social and non-social behaviors. To further probe the hypothalamic networks controlling appetite, I have utilized whole-brain activity mapping to identify hypothalamic neural populations encoding hunger and satiety. My results indicate that, similar to mammals, medial and lateral regions of the hypothalamus show anti-correlated activity patterns, which likely regulate distinct phases of appetite. In hungry fish, medial hypothalamic nuclei report an energy deficit, whereas more lateral regions may be involved in voracious eating. I demonstrate that one medial hypothalamic population, the serotonergic caudal periventricular hypothalamus, is an important regulator of lateral hypothalamic (LH) activity and food intake, and a separate serotonergic population, the superior raphe nucleus, is important for regulating food intake during satiety, also via the LH, but is dispensable during hunger. Thus, by dissecting serotonin circuit function in the context of other hypothalamic feeding networks, I show how a single neuromodulator can control food intake in a satiation state-dependent manner. Overall, these studies provide insights into the underlying evolutionary principles and logic governing hypothalamic function, and demonstrate how diverse neuromodulatory circuits in the hypothalamus and beyond can exert state-dependent control over an animal’s most primitive, yet essential, survival drives.
Biology, Molecular and Cellular
APA, Harvard, Vancouver, ISO, and other styles
5

Venugopalan, Viswanath. "Compulsion and control: prefrontal and mesolimbic systems in human addiction." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103490.

Full text
Abstract:
Introduction: Addiction to drugs is a chronic disorder characterized by loss of control over substance use despite adverse personal consequences. Addiction can be conceived as the point where drug use is no longer under volitional control and, becomes characterized by compulsive seeking and taking. Drugs of abuse are believed to target two systems thought to be critical for adaptive behaviour, 1) a goal-oriented system relying on prefrontal cortex activity to exert control over behaviour and 2) a motivation system supported by mesocorticolimbic dopamine transmission. These systems are thought to be subverted in addiction. Interestingly, there is a subset of long-term drug users, 'chippers', who, despite considerable exposure to drug, do not manifest the hallmark loss of control or exaggerated drive for drugs that typifies addicted users. To better understand whether prefrontal function, motivation or both distinguish 'chippers' from addicted individuals, we conducted the follwing experiments. Methods: We first examined the effects of lowering dopamine synthesis on motivation to smoke both nicotine-containing and denicotinized cigarettes in three groups of smokers: (i) low-frequency smokers who have smoked for no more than a year, (ii) low-frequency smokers who have stabilized at this level for at least 3 years, and (iii) high-frequency smokers. Next we used a neurocognitive battery testing regional aspects of prefrontal function in low- vs. high-frequency smokers while sated and following an 18 h abstinence period. Finally we examined the effects of lowering dopamine synthesis on regional prefrontal function. Results: 1) All smokers worked for more nicotine-containing cigarettes than de-nicotinized ones. 2) High-frequency smokers worked for more nicotine-containing cigarettes compared to low-frequency smokers. 3) Lowering dopamine synthesis reduced the self-administration of nicotine-containing cigarettes in all three smoker groups and did so without influencing conscious craving or pleasure. 4) Low-frequency smokers were better than high-frequency smokers at inhibiting an on-going motor response indicated by lower stop signal reaction time, consistent with dysfunction in lateral or dorsomedial prefrontal cortex. 5) Overall, lowering dopamine synthesis did not affect executive function. However, post-hoc analyses revealed that the personality trait of novelty seeking, a hypothesized proxy for baseline dopamine function, predicted changes in executive function subsequent to lowered dopamine synthesis. Using this approach, we discovered that lowering dopamine synthesis altered attentional biases to smoking cues as measured by the smoking Stroop in a pattern consistent with an inverted 'U' relationship between dopamine and performance. Conclusion: These data suggest the following. i) Dopamine transmission is involved in the motivation to smoke nicotine-containing cigarettes, and this role persists across stages of tobacco use and addiction. ii) Response inhibition mediated by dorso-medial prefrontal cortex and right inferior frontal gyrus distinguishes low- from high-frequency smokers. This group difference might influence the ability to restrict smoking, and protect low-frequency smokers from addiction. iii) No group-wise differences in prefrontal function were observed following reduction of dopamine synthesis. However, post-hoc analyses revealed that the personality trait of novelty-seeking, used as a proxy for baseline dopamine reactivity, predicted the effect of reduced dopamine synthesis on a task measuring attention to smoking cues according to an inverted 'U' function. Together, these studies add to our understanding of the role of dopamine in maintaining motivation to obtain nicotine-containing cigarettes, the neurobiological differences between low- and high-frequency smokers and the role of individual differences in personality traits in predicting the effects of dopamine manipulation on task performance.
Introduction : La toxicomanie est un trouble complexe, chronique et qui revient, caractérisée par une perte de contrôle sur la consommation de drogues malgré la menace très réelle de se faire du mal. C'est le point où l'utilisation de drogues n'est plus volontaire mais caractérisée par la recherche et prise de drogues compulsives. La transition à la toxicomanie serait le résultat de changements à des circuits neuronaux induits par la drogue. Le système de la dopamine (DA) méso-cortico-limbique est impliqué dans le motivation, le renforcement et la modulation du contrôle exécutif et le cortex préfrontral (CPF) est impliqué dans le contrôle exécutif. Durant la progression à la toxicomanie, des adaptations à ces systèmes 1) érodent la capacité de résister à la prise de drogues, et 2) exagèrent la saillance encourageante de la drogue et des stimuli associés aux drogues. Ce qui est intéressant c'est que l'exposition à la drogue ne mène pas nécessairement à la toxicomanie. Un sous-ensemble de consommateurs de drogues, les « chippers », ne manifestent pas la perte de contrôle typifiant les toxicomanes. Qu'est-ce qui protège ces gens contre la toxicomanie? Ce qui est remarquable c'est que les différences neurobiologiques des circuits neuraux de la motivation et du contrôle qui distinguent les toxicomanes des chippers n'ont pas encore été étudiées de manière systématique. Méthodes : Nous avons mesuré l'effet d'une manipulation de la DA sur la motivation de fumer et le biais de l'attention vers les stimuli associés à l'action de fumer et sur les tâches qui jaugent la fonction exécutive, contrôlée par le CPF, chez (i) les fumeurs à basse fréquence qui fument depuis un maximum de un an (FBF), (ii) les fumeurs à basse fréquence qui se sont stabilisés à ce niveau pour au moins trois ans (FBFS), et (iii) les fumeurs à haute fréquence stables (FHF). Les résultats principaux sont les suivants. Résultats: 1) Baisser la synthèse de la DA a diminué la consommation de cigarettes contenant de la nicotine chez les 3 groupes de fumeurs mais n'a pas eu d'effet sur le goût conscient ou le plaisir de fumer. 2) Tous les fumeurs ont travaillé plus pour des cigarettes contenant de la nicotine que pour celles qui n'en contenaient pas. 3) Les FHF ont aussi plus travaillé pour les cigarettes avec nicotine que les FBF et FBFS. 4) Les FBF/FBFS étaient meilleurs que les FHF à une tâche consistant d'empêcher une réponse motrice en cours, jaugée par le temps de réaction suivant un signal d'arrêt, un modèle de déficience déjà observé chez les patients avec des lésions focales au CPF latéral et dorso-médial. 5) En général, la déplétion aigue de phénylalanine et tyrosine (DAPT) n'a pas eu d'effet sur la fonction exécutive (FE). Par contre, des analyses post-hoc ont démontré que la recherche de la nouveauté (RN), un index que l'on croit représenter la fonction DA de base, prédisait les changements à la FE induite par la DAPT. En utilisant cette approche, nous avons découvert qu'en accordance avec une fonction « U » inversée, la DAPT modifie les biais de l'attention vers les stimuli associés à l'action de fumer, mesurés par le Stroop de la cigarette. Conclusion: En résumé, l'inhibition de réponses contrôlées par un réseau du CPF dorso-médial/gyrus inférieur droit, distingue les chippers de tabac des FHF. Ceci peut être perçu comme étant un facteur clé contribuant à la capacité de restreindre son habitude de fumer, protégeant ainsi les chippers de tabac contre la progression à la dépendance aux drogues. Nous présentons donc de nouvelles données qui ajoutent à notre compréhension des différences neurobiologiques qui séparent les fumeurs à basse et haute fréquence, et du rôle de la DA dans le maintien de la motivation d'obtenir des cigarettes avec nicotine. Ces données pourraient être utiles pour concevoir des interventions mieux ciblées pour les fumeurs.
APA, Harvard, Vancouver, ISO, and other styles
6

Jayaraman, Divya. "The role of centriole biogenesis in control of brain size." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:23845435.

Full text
Abstract:
Mutations in several genes that encode centrosomal proteins dramatically decrease the size of the human brain, which is the largest in the primate lineage, but how the proteins encoded by these microcephaly (‘small brain’) genes interact in a cellular process is poorly understood. The centrosome is the main microtubule-nucleating organelle in animal cells and consists of two centrioles, which duplicate once per cell cycle. Asymmetric inheritance of centrosomes may be critical to the maintenance of stem cells but the mechanism is controversial. In this dissertation, I characterize the functions of ASPM and WDR62, the two most common genetic causes of primary microcephaly, in centriole biogenesis and neocortical development, using in vivo loss-of-function studies in the mouse, combined with biochemical and cell biological approaches. Here, I show that WDR62 and ASPM encode proteins that localize to the mother centriole, interact physically, control a common cellular function, and interact genetically to control brain size in mice. Whereas mice lacking either Wdr62 or Aspm are microcephalic but viable, mice lacking both are embryonically lethal, and heterozygous mutation in either gene enhances the phenotype of mutations in the other, suggesting a genetic interaction between Wdr62 and Aspm. Mass spectrometry analysis of the WDR62 interactome identified ASPM as a binding partner of WDR62, which was confirmed by co-immunoprecipitation. Mouse embryonic fibroblasts (MEFs) deficient in Wdr62, Aspm or both show similar defects in centriole duplication, with the severity of the cellular defect proportional to the severity of the microcephaly. This defect in centriole duplication was also confirmed in situ in the developing mouse brain by crossbreeding with a GFP-Centrin reporter line. WDR62 is required for centrosomal localization of ASPM and other microcephaly-associated proteins. Loss of Wdr62 causes a reduction in centrosomes and cilia, as well as a premature dissociation of ciliary membrane remnants from centrosomes during neurogenesis, resulting in a precocious generation of basal progenitors at the expense of apical progenitors. Together, these results reveal previously unknown functions of, and interactions between, WDR62 and ASPM in centriole biogenesis and neocortical development. Microcephaly genes may thus cooperate in ensuring centriole duplication, maintaining adequate numbers of centrosomes, cilia and apical progenitors during neurogenesis, and regulating brain size.
Medical Sciences
APA, Harvard, Vancouver, ISO, and other styles
7

Keen, Douglas Andrew. "Neural and muscular control of the human extensor digitorum muscle." Diss., The University of Arizona, 2002. http://hdl.handle.net/10150/280191.

Full text
Abstract:
The human hand has incredible dexterity which depends, in large part, on the ability to move the fingers relatively independently. Interestingly, many of the primary finger flexor and extensor muscles possess a single belly that gives rise distally to multiple tendons that insert onto all the fingers and consequently might produce movement in all of the fingers. Therefore, the objective of this dissertation was to examine the neuromuscular organization of a multi-tendoned finger extensor muscle, the human extensor digitorum (ED). Initially, we found that ED spike-triggered average motor unit force was broadly distributed across the digits. Consequently, we hypothesized that linkages between the distal tendons of ED may cause force developed in a single compartment to be transmitted to neighboring tendons. However, force arising from intramuscular stimulation was fairly focused to a single digit suggesting that inter-tendonous connections account for little of the broad distribution of motor unit force. An alternative possibility was that our spike-triggered averages of motor unit force were contaminated by correlated activity among motor units residing in different compartments. Strong motor unit synchrony was found for motor unit pairs within compartments and a modest degree of synchrony for motor unit pairs in neighboring compartments which likely contributed to the appearance of spike-triggered average motor unit force on multiple fingers. These results suggest that last-order synaptic projections appear to supply predominantly sub-sets of motor neurons innervating specific finger compartments of ED but also branch to supply motor neurons innervating other compartments. Finally, single motor axons branch to innervate muscle fibers situated in multiple compartments of ED. Interestingly, force resulting from intraneural micro stimulation of single motor axons innervating ED was highly focused to a single digit. Therefore, it appears that the muscle fibers innervated by a motor axon are primarily confined to one of four distinct compartments of ED. Based on these experiments we believe that each finger is acted upon by ED through a discreet population of motor units. Consequently, extension of an individual finger would require the selective activation of motor neurons innervating a specific compartment of ED.
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Andrew Moses. "Neural circuit for locomotor control, brain state modulation, and decision-making." Thesis, University of California, San Francisco, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3599392.

Full text
Abstract:

Locomotion is a behavior essential for survival. It is important for guiding goal-directed approach towards desired outcomes and avoidance of aversive stimuli. To this end, a large number of processes in the brain are both regulated by and serve to inform the locomotor behavior of animals. Here, we attempt to define the neural circuits underlying locomotor control, the associated changes that locomotion has upon brain states, and the neurobiological basis of locomotor decisions. In Chapter 1, we describe what is known regarding the neural circuits guiding locomotor behaviors. We provide background also regarding the known mechanisms that guide changes in brain states and are associated with locomotion. We then touch upon recent literature attempting to understand how information is used to guide decision-making to better understand the specific problem of how locomotor decisions are made. In Chapter 2, we then present novel findings, identifying brainstem circuits that control locomotion and concurrently regulate visual processing of information in the cortex through the basal forebrain. These findings may apply to other networks beyond the visual system and form a general mechanism by which various brain regions are modulated by behavioral state. In Chapter 3, we demonstrate that these brainstem circuits are under the regulation of the basal ganglia. These studies identify a conserved, phylogenetically ancient pathway for guiding locomotion that may exist in all vertebrates and represent one of the earliest functions of the basal ganglia system. In chapter 4, we leverage our understanding of the basal ganglia pathways for locomotor control to understand the processes of goal-directed decision-making. In chapter 5, we find that the ventral striatal shares a parallel organization to the dorsal striatum for implementing reinforcement learning to guide future locomotor decision-making. These studies into the basis of goal-directed locomotor behaviors may elucidate general principles for decision-making. Collectively, these results demonstrate control systems for locomotion are deeply interconnected with a diverse array of processes throughout the brain that guide goal-directed locomotor behaviors.

APA, Harvard, Vancouver, ISO, and other styles
9

Johnson, Otto Luke Ross. "Physiological and anatomical control of burst firing in the substantia nigra." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Murphy, Alexander James. "RNA and Protein Networks That Locally Control Brain Wiring During Development." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467385.

Full text
Abstract:
The molecular machineries of growth cones control the formation of neural circuits in the developing brain. Although great progress has been made in elucidating axon guidance cues and their growth cone receptors, we still lack an understanding of the projection-specific RNA and protein networks in growth cones that likely control the wiring of specific circuits in vivo. To understand how specific projection neurons make wiring decisions, I focus on callosal projection neurons (CPN), which connect the two cerebral hemispheres through the corpus callosum. I developed an approach to profile and quantify the full-depth transcriptomes and proteomes of CPN growth cones and their parent cell bodies isolated in vivo. Using this comparative approach, I uncover general patterns of RNA and protein subcellular localization, with several previously unrecognized features, that might control the wiring of specific brain circuits. First, while most transcripts are expressed at similar levels in cell bodies and growth cones, a select subset are more than 10-fold enriched in growth cones compared to cell bodies, indicating active localization of those transcripts to the growth cone. By then correlating transcriptomic and proteomic data, I characterize the spatial relationship between coding transcripts and their encoded proteins. Intriguingly, many of the growth cone-enriched transcripts are noncoding RNA with unknown function. Further, growth cones appear to have distinct ribosomes. These ribosomes lack several large subunit proteins, raising the intriguing possibility of growth cone-specific translational mechanisms for selective mRNA expression. This approach is readily adaptable to other projection types in the brain, enabling high-throughput, quantitative investigation of RNA and protein controls over circuit development and, potentially, the regeneration of damaged circuitry. In addition, the approach is scalable to include epigenetic profiling, enabling full investigation of DNA, RNA, and protein networks that collectively coordinate brain wiring during development. The insights derived from this approach exemplify its capacity to quantify and characterize the molecular and translational mechanisms that control specific brain wiring at the subcellular level in vivo.
Medical Sciences
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Control in neuroscience"

1

Paszkiel, Szczepan, ed. Control, Computer Engineering and Neuroscience. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72254-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Neural control engineering: The emerging intersection between control theory and neuroscience. Cambridge, MA: MIT Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

The neuroscience of attention: Attentional control and selection. New York: Oxford University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hemmen, J. L. van 1947- and Sejnowski Terrence J, eds. 23 problems in systems neuroscience. New York: Oxford University Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vanderwolf, Case H. The evolving brain: The mind and the neural control of behavior. New York, NY: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rosenbaum, David A. Human motor control. 2nd ed. Amsterdam: Elsevier Inc, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Human motor control. San Diego: Academic Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Third generation leadership and the locus of control: Knowledge, change, and neuroscience. Burlington, VT: Gower Pub., 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Third generation leadership and the locus of control: Knowledge, change and neuroscience. Abingdon, Oxon: Routledge, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sensorimotor control and learning: An introduction to the behavioral neuroscience of action. Basingstoke, Hampshire: Palgrave Macmillan, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Control in neuroscience"

1

Mishra, Ramesh Kumar. "Neuroscience of Bilingualism." In Bilingualism and Cognitive Control, 91–112. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92513-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ferrée, Thomas C., and Shawn R. Lockery. "Chemotaxis Control by Linear Recurrent Networks." In Computational Neuroscience, 373–77. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-4831-7_62.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cisek, Paul, Daniel Bullock, and Stephen Grossberg. "Cortical Circuits for Control of Voluntary Arm Movements." In Computational Neuroscience, 287–92. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9800-5_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wadden, Tom, and Örjan Ekeberg. "Localized Neural Network Control of Spring Actuated Leg." In Computational Neuroscience, 543–46. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9800-5_85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ting, Lena H., and Jessica L. Allen. "Neuromechanics of Postural Control." In Encyclopedia of Computational Neuroscience, 1951–54. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Moschovakis, Adonis K. "Oculomotor Control, Models of." In Encyclopedia of Computational Neuroscience, 2125–29. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Queisser, Gillian. "Transcriptional Control Dysfunction, Modeling." In Encyclopedia of Computational Neuroscience, 2984–86. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dietz, V., and G. A. Horstmann. "Afferent Control of Posture." In Tutorials in Motor Neuroscience, 209–22. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3626-6_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ting, Lena H., and Jessica L. Allen. "Neuromechanics of Postural Control." In Encyclopedia of Computational Neuroscience, 1–4. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7320-6_574-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moschovakis, Adonis K. "Oculomotor Control, Models of." In Encyclopedia of Computational Neuroscience, 1–6. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7320-6_653-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Control in neuroscience"

1

Huang, J., A. Isidori, L. Marconi, M. Mischiati, E. Sontag, and W. M. Wonham. "Internal Models in Control, Biology and Neuroscience." In 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018. http://dx.doi.org/10.1109/cdc.2018.8619624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Castiñeiras de Saa, Juan R., and Alfonso Renart. "Control Limited Perceptual Decision Making." In 2023 Conference on Cognitive Computational Neuroscience. Oxford, United Kingdom: Cognitive Computational Neuroscience, 2023. http://dx.doi.org/10.32470/ccn.2023.1725-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Santosa, Hendrik. "Optical Imaging Technique: A Powerful Tool for Neuroscience." In 2021 International Conference on Instrumentation, Control, and Automation (ICA). IEEE, 2021. http://dx.doi.org/10.1109/ica52848.2021.9625668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Garcia-Violini, Demian, Nicolas I. Bertone, Sebastian Martinez, Franco Chiesa-Docampo, Veronica De la Fuente, Mariano Belluscio, Joaquin Piriz, and Ricardo S. Sanchez-Poria. "Closed-Loop in Neuroscience: Can a Brain be Controlled?" In 2018 Argentine Conference on Automatic Control (AADECA). IEEE, 2018. http://dx.doi.org/10.23919/aadeca.2018.8577350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zheng, Rui, Xinkai Kuai, Guosheng Yang, and Siyao Fu. "A tri-modal Schema for cognitive neuroscience research." In 2012 Third International Conference on Intelligent Control and Information Processing (ICICIP). IEEE, 2012. http://dx.doi.org/10.1109/icicip.2012.6391465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bashivan, Pouya, Kohitij Kar, and James DiCarlo. "Neural Population Control via Deep ANN Image Synthesis." In 2018 Conference on Cognitive Computational Neuroscience. Brentwood, Tennessee, USA: Cognitive Computational Neuroscience, 2018. http://dx.doi.org/10.32470/ccn.2018.1222-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dong, Cody, Qihong Lu, and Kenneth Norman. "Strategic Control of Episodic Memory Through Post-Gating." In 2023 Conference on Cognitive Computational Neuroscience. Oxford, United Kingdom: Cognitive Computational Neuroscience, 2023. http://dx.doi.org/10.32470/ccn.2023.1340-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sandbrink, Kai, and Christopher Summerfield. "Learning the value of control with Deep RL." In 2023 Conference on Cognitive Computational Neuroscience. Oxford, United Kingdom: Cognitive Computational Neuroscience, 2023. http://dx.doi.org/10.32470/ccn.2023.1640-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bustamante, Laura, Falk Lieder, Sebastian Musslick, Amitai Shenhav, and Jonathan Cohen. "Learning to overexert cognitive control in the Stroop task." In 2018 Conference on Cognitive Computational Neuroscience. Brentwood, Tennessee, USA: Cognitive Computational Neuroscience, 2018. http://dx.doi.org/10.32470/ccn.2018.1094-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

McNamee, Daniel, Matthew Botvinick, and Samuel Gershman. "Corticostriatal signatures of learning efficient internal models for control." In 2018 Conference on Cognitive Computational Neuroscience. Brentwood, Tennessee, USA: Cognitive Computational Neuroscience, 2018. http://dx.doi.org/10.32470/ccn.2018.1125-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Control in neuroscience"

1

Singh, Anjali. What Is Optogenetics and How Does It Work? ConductScience, July 2022. http://dx.doi.org/10.55157/cs20220704.

Full text
Abstract:
Optogenetics is a biotechnological method that combines optical systems and genetic engineering to control and monitor the functions of cells, tissues, and organisms. It involves using light-sensitive proteins called opsins to manipulate specific cells or regions with precision. This technique has revolutionized neuroscience, allowing researchers to study neural circuits and behavior by turning cells on and off. Opsins are categorized into microbial and animal types, each with specific functions. Optogenetic experiments require opsins, suitable plasmids or viral vectors, and a light source. This method has broad applications in neurology, animal behavior, and physiology, providing insights into various biological processes. It is used to map neural circuits, study diseases, and understand behaviors.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography