Journal articles on the topic 'Control by RNA'

To see the other types of publications on this topic, follow the link: Control by RNA.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Control by RNA.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zong, Xinying, Vidisha Tripathi, and Kannanganattu V. Prasanth. "RNA splicing control." RNA Biology 8, no. 6 (November 2011): 968–77. http://dx.doi.org/10.4161/rna.8.6.17606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sheppard, Terry L. "RNA takes control." Nature Chemical Biology 9, no. 12 (November 14, 2013): 754. http://dx.doi.org/10.1038/nchembio.1397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Blencowe, Benjamin J., and May Khanna. "RNA in control." Nature 447, no. 7143 (May 2007): 391–93. http://dx.doi.org/10.1038/447391a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

HASEGAWA, TAKEMA, JUNKO TAKAHASHI, and HITOSHI IWAHASHI. "RNA Quality Control Using External Standard RNA." Polish Journal of Microbiology 67, no. 3 (2018): 347–53. http://dx.doi.org/10.21307/pjm-2018-042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bellacosa, Alfonso, and Eric G. Moss. "RNA Repair: Damage Control." Current Biology 13, no. 12 (June 2003): R482—R484. http://dx.doi.org/10.1016/s0960-9822(03)00408-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chetnani, Bhaskar, and Alfonso Mondragón. "RNA exerts self-control." Nature 500, no. 7462 (July 28, 2013): 279–80. http://dx.doi.org/10.1038/nature12460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Z. "RNA quality control: degradation of defective transfer RNA." EMBO Journal 21, no. 5 (March 1, 2002): 1132–38. http://dx.doi.org/10.1093/emboj/21.5.1132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Crombach, Anton, and Paulien Hogeweg. "Is RNA-dependent RNA polymerase essential for transposon control?" BMC Systems Biology 5, no. 1 (2011): 104. http://dx.doi.org/10.1186/1752-0509-5-104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhan, Y., J. S. Dhaliwal, P. Adjibade, J. Uniacke, R. Mazroui, and W. Zerges. "Localized control of oxidized RNA." Journal of Cell Science 128, no. 22 (October 8, 2015): 4210–19. http://dx.doi.org/10.1242/jcs.175232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Velema, Willem A., Anna M. Kietrys, and Eric T. Kool. "RNA Control by Photoreversible Acylation." Journal of the American Chemical Society 140, no. 10 (February 23, 2018): 3491–95. http://dx.doi.org/10.1021/jacs.7b12408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

KORNBERG, R. "RNA polymerase II transcription control." Trends in Biochemical Sciences 21, no. 9 (September 1996): 325–26. http://dx.doi.org/10.1016/s0968-0004(96)20021-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

PENG, J., M. LIU, J. MARION, Y. ZHU, and D. H. PRICE. "RNA Polymerase II Elongation Control." Cold Spring Harbor Symposia on Quantitative Biology 63 (January 1, 1998): 365–70. http://dx.doi.org/10.1101/sqb.1998.63.365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Zhou, Qiang, Tiandao Li, and David H. Price. "RNA Polymerase II Elongation Control." Annual Review of Biochemistry 81, no. 1 (July 7, 2012): 119–43. http://dx.doi.org/10.1146/annurev-biochem-052610-095910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ray, L. Bryan. "RNA processing for metabolic control." Science 360, no. 6394 (June 14, 2018): 1199.4–1200. http://dx.doi.org/10.1126/science.360.6394.1199-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Arnstein, H. R. V. "Control of messenger RNA stability." FEBS Letters 361, no. 1 (March 13, 1995): 132. http://dx.doi.org/10.1016/0014-5793(18)90003-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Cosman, David. "Control of messenger RNA stability." Immunology Today 8, no. 1 (January 1987): 16–17. http://dx.doi.org/10.1016/0167-5699(87)90826-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wisdom, Ron. "Control of messenger RNA stability." Trends in Genetics 10, no. 8 (August 1994): 298–99. http://dx.doi.org/10.1016/0168-9525(90)90016-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Beaud, Georges. "Control of messenger RNA stability." Trends in Biochemical Sciences 19, no. 6 (June 1994): 261–62. http://dx.doi.org/10.1016/0968-0004(94)90155-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kornberg, R. "RNA polymerase II transcription control." Trends in Biochemical Sciences 21, no. 9 (September 1996): 325–26. http://dx.doi.org/10.1016/0968-0004(96)20021-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Brown, Alistair J. P. "Control of messenger RNA stability." Trends in Cell Biology 4, no. 2 (February 1994): 68–69. http://dx.doi.org/10.1016/0962-8924(94)90017-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Doma, Meenakshi K., and Roy Parker. "RNA Quality Control in Eukaryotes." Cell 131, no. 4 (November 2007): 660–68. http://dx.doi.org/10.1016/j.cell.2007.10.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Suzuki, Toshihide, Paul J. Higgins, and Dana R. Crawford. "Control Selection for RNA Quantitation." BioTechniques 29, no. 2 (August 2000): 332–37. http://dx.doi.org/10.2144/00292rv02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Fasken, Milo B., and Anita H. Corbett. "Mechanisms of nuclear mRNA quality control." RNA Biology 6, no. 3 (July 2009): 237–41. http://dx.doi.org/10.4161/rna.6.3.8330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Michlewski, Gracjan, and Javier F. Cáceres. "Post-transcriptional control of miRNA biogenesis." RNA 25, no. 1 (October 17, 2018): 1–16. http://dx.doi.org/10.1261/rna.068692.118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kirchner, Marion, and Sabine Schneider. "Gene expression control byBacillus anthracispurine riboswitches." RNA 23, no. 5 (February 16, 2017): 762–69. http://dx.doi.org/10.1261/rna.058792.116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lin, C. L., Y. T. Huang, and J. D. Richter. "Transient CPEB dimerization and translational control." RNA 18, no. 5 (March 28, 2012): 1050–61. http://dx.doi.org/10.1261/rna.031682.111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Peltz, Stuart W., Ellen M. Welch, Christopher Trotta, Thomas Davis, and Allan Jacobson. "Targeting post-transcriptional control for drug discovery." RNA Biology 6, no. 3 (July 2009): 329–34. http://dx.doi.org/10.4161/rna.6.3.8953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

GRAVELEY, B. R. "Small molecule control of pre-mRNA splicing." RNA 11, no. 3 (January 20, 2005): 355–58. http://dx.doi.org/10.1261/rna.7229705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

McNally, Mark, T. "RNA processing control in avian retroviruses." Frontiers in Bioscience Volume, no. 13 (2008): 3869. http://dx.doi.org/10.2741/2975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Guo, Jiannan, and David H. Price. "RNA Polymerase II Transcription Elongation Control." Chemical Reviews 113, no. 11 (August 6, 2013): 8583–603. http://dx.doi.org/10.1021/cr400105n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Koziol, Magdalena J., and John L. Rinn. "RNA traffic control of chromatin complexes." Current Opinion in Genetics & Development 20, no. 2 (April 2010): 142–48. http://dx.doi.org/10.1016/j.gde.2010.03.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Bügl, Hans, Eric B. Fauman, Bart L. Staker, Fuzhong Zheng, Sidney R. Kushner, Mark A. Saper, James C. A. Bardwell, and Ursula Jakob. "RNA Methylation under Heat Shock Control." Molecular Cell 6, no. 2 (August 2000): 349–60. http://dx.doi.org/10.1016/s1097-2765(00)00035-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Heyse, G., F. Jonsson, W. J. Chang, and H. J. Lipps. "RNA-dependent control of gene amplification." Proceedings of the National Academy of Sciences 107, no. 51 (October 25, 2010): 22134–39. http://dx.doi.org/10.1073/pnas.1009284107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Breaker, R. R. "Gene expression control: Harnessing RNA switches." Gene Therapy 12, no. 9 (January 13, 2005): 725–26. http://dx.doi.org/10.1038/sj.gt.3302461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Abdelmohsen, Kotb, and Myriam Gorospe. "Noncoding RNA control of cellular senescence." Wiley Interdisciplinary Reviews: RNA 6, no. 6 (September 1, 2015): 615–29. http://dx.doi.org/10.1002/wrna.1297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Iacoangeli, Anna, Aderemi Dosunmu, Taesun Eom, Dimitre G. Stefanov, and Henri Tiedge. "Regulatory BC1 RNA in cognitive control." Learning & Memory 24, no. 7 (June 15, 2017): 267–77. http://dx.doi.org/10.1101/lm.045427.117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Houseley, Jonathan, John LaCava, and David Tollervey. "RNA-quality control by the exosome." Nature Reviews Molecular Cell Biology 7, no. 7 (July 2006): 529–39. http://dx.doi.org/10.1038/nrm1964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Du Toit, Andrea. "RNA stability control by Pol II." Nature Reviews Molecular Cell Biology 14, no. 3 (February 13, 2013): 128–29. http://dx.doi.org/10.1038/nrm3521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Simms, Carrie L., and Hani S. Zaher. "Quality control of chemically damaged RNA." Cellular and Molecular Life Sciences 73, no. 19 (May 7, 2016): 3639–53. http://dx.doi.org/10.1007/s00018-016-2261-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Soller, Matthias, and Rupert Fray. "RNA modifications in gene expression control." Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1862, no. 3 (March 2019): 219–21. http://dx.doi.org/10.1016/j.bbagrm.2019.02.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Guillier, Maude, and Francis Repoila. "RNA and gene control in bacteria." Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1863, no. 9 (September 2020): 194602. http://dx.doi.org/10.1016/j.bbagrm.2020.194602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

D’Orazio, Karole N., and Rachel Green. "Ribosome states signal RNA quality control." Molecular Cell 81, no. 7 (April 2021): 1372–83. http://dx.doi.org/10.1016/j.molcel.2021.02.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Akira, Shizuo, and Kazuhiko Maeda. "Control of RNA Stability in Immunity." Annual Review of Immunology 39, no. 1 (April 26, 2021): 481–509. http://dx.doi.org/10.1146/annurev-immunol-101819-075147.

Full text
Abstract:
Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3′ untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3′ UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.
APA, Harvard, Vancouver, ISO, and other styles
44

Kim, Joohwan, and Gina Lee. "Metabolic Control of m6A RNA Modification." Metabolites 11, no. 2 (January 30, 2021): 80. http://dx.doi.org/10.3390/metabo11020080.

Full text
Abstract:
Nutrients and metabolic pathways regulate cell growth and cell fate decisions via epigenetic modification of DNA and histones. Another key genetic material, RNA, also contains diverse chemical modifications. Among these, N6-methyladenosine (m6A) is the most prevalent and evolutionarily conserved RNA modification. It functions in various aspects of developmental and disease states, by controlling RNA metabolism, such as stability and translation. Similar to other epigenetic processes, m6A modification is regulated by specific enzymes, including writers (methyltransferases), erasers (demethylases), and readers (m6A-binding proteins). As this is a reversible enzymatic process, metabolites can directly influence the flux of this reaction by serving as substrates and/or allosteric regulators. In this review, we will discuss recent understanding of the regulation of m6A RNA modification by metabolites, nutrients, and cellular metabolic pathways.
APA, Harvard, Vancouver, ISO, and other styles
45

Richards, Jamie, and Joel G. Belasco. "Riboswitch control of bacterial RNA stability." Molecular Microbiology 116, no. 2 (April 25, 2021): 361–65. http://dx.doi.org/10.1111/mmi.14723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wachter, Andreas. "Riboswitch-mediated control of gene expression in eukaryotes." RNA Biology 7, no. 1 (January 2010): 67–76. http://dx.doi.org/10.4161/rna.7.1.10489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Widom, Julia R., Victoria Rai, Christopher E. Rohlman, and Nils G. Walter. "Versatile transcription control based on reversible dCas9 binding." RNA 25, no. 11 (July 18, 2019): 1457–69. http://dx.doi.org/10.1261/rna.071613.119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Abaza, I., and F. Gebauer. "Functional domains of Drosophila UNR in translational control." RNA 14, no. 3 (January 18, 2008): 482–90. http://dx.doi.org/10.1261/rna.802908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Foretek, Dominika, Jingyan Wu, Anita K. Hopper, and Magdalena Boguta. "Control ofSaccharomyces cerevisiaepre-tRNA processing by environmental conditions." RNA 22, no. 3 (January 4, 2016): 339–49. http://dx.doi.org/10.1261/rna.054973.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Simpson, G. G., V. Quesada, I. R. Henderson, P. P. Dijkwel, R. Macknight, and C. Dean. "RNA processing and Arabidopsis flowering time control." Biochemical Society Transactions 32, no. 4 (August 1, 2004): 565–66. http://dx.doi.org/10.1042/bst0320565.

Full text
Abstract:
Plants control their flowering time in order to ensure that they reproduce under favourable conditions. The components involved in this complex process have been identified using a molecular genetic approach in Arabidopsis and classified into genetically separable pathways. The autonomous pathway controls the level of mRNA encoding a floral repressor, FLC, and comprises three RNA-binding proteins, FCA, FPA and FLK. FCA interacts with the 3′-end RNA-processing factor FY to autoregulate its own expression post-transcriptionally and to control FLC. Other components of the autonomous pathway, FVE and FLD, regulate FLC epigenetically. This combination of epigenetic and post-transcriptional control gives precision to the control of FLC expression and flowering time.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography