To see the other types of publications on this topic, follow the link: Continuum mechanics.

Journal articles on the topic 'Continuum mechanics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Continuum mechanics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Liu,, I.-Shih, and E. DeSantiago,. "Continuum Mechanics." Applied Mechanics Reviews 56, no. 3 (May 1, 2003): B34—B35. http://dx.doi.org/10.1115/1.1566392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Romano, Giovanni, Raffaele Barretta, and Marina Diaco. "Geometric continuum mechanics." Meccanica 49, no. 1 (June 28, 2013): 111–33. http://dx.doi.org/10.1007/s11012-013-9777-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Silbermann, C. B., and J. Ihlemann. "Analogies between continuum dislocation theory, continuum mechanics and fluid mechanics." IOP Conference Series: Materials Science and Engineering 181 (March 2017): 012037. http://dx.doi.org/10.1088/1757-899x/181/1/012037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang-ji, Lu. "Micropolar continuum mechanics is more profound than classical continuum mechanics." Applied Mathematics and Mechanics 8, no. 10 (October 1987): 939–46. http://dx.doi.org/10.1007/bf02454256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Molerus, O. "Fluid mechanics and continuum mechanics." Heat and Mass Transfer 44, no. 5 (May 30, 2007): 625–33. http://dx.doi.org/10.1007/s00231-007-0284-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Burr, A., F. Hild, and F. A. Leckie. "Micro-mechanics and continuum damage mechanics." Archive of Applied Mechanics 65, no. 7 (September 1995): 437–56. http://dx.doi.org/10.1007/bf00835656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Santaoja, Kari Juhani. "On continuum damage mechanics." Rakenteiden Mekaniikka 52, no. 3 (August 31, 2019): 125–47. http://dx.doi.org/10.23998/rm.76025.

Full text
Abstract:
A material containing spherical microvoids with a Hookean matrix response was shown to take the appearance usually applied in continuum damage mechanics. However, the commonly used variable damage D was replaced with the void volume fraction f , which has a clear physical meaning, and the elastic strain tensor \Bold {ε}^e with the damage-elastic strain tensor \Bold {ε}^{de}. The postulate of strain equivalence with the effective stress concept was reformulated and applied to a case where the response of the matrix obeys Hooke’s law. In contrast to many other studies, in the derived relation between the effective stress tensor \Bold {\Tilde{σ}} and the stress tensor \Bold {σ}, the tensor \Bold {\Tilde{σ}} is symmetric. A uniaxial bar model was introduce for clarifying the derived results. Other candidates for damage were demonstrated by studying the effect of carbide coarsening on creep rate.
APA, Harvard, Vancouver, ISO, and other styles
8

Pavelka, Michal, Ilya Peshkov, and Václav Klika. "On Hamiltonian continuum mechanics." Physica D: Nonlinear Phenomena 408 (July 2020): 132510. http://dx.doi.org/10.1016/j.physd.2020.132510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Besseling, J. F. "Mechanics and continuum thermodynamics." Archive of Applied Mechanics (Ingenieur Archiv) 70, no. 1-3 (February 22, 2000): 115–26. http://dx.doi.org/10.1007/s004199900049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alfredsson, K. S., and U. Stigh. "Continuum damage mechanics revised." International Journal of Solids and Structures 41, no. 15 (July 2004): 4025–45. http://dx.doi.org/10.1016/j.ijsolstr.2004.02.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kum, Oyeon, and William G. Hoover. "Time-reversible continuum mechanics." Journal of Statistical Physics 76, no. 3-4 (August 1994): 1075–81. http://dx.doi.org/10.1007/bf02188699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Peshkov, Ilya, Evgeniy Romenski, and Michael Dumbser. "Continuum mechanics with torsion." Continuum Mechanics and Thermodynamics 31, no. 5 (April 10, 2019): 1517–41. http://dx.doi.org/10.1007/s00161-019-00770-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ramkissoon, H. "Representations in Continuum Mechanics." ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 66, no. 1 (1986): 60–61. http://dx.doi.org/10.1002/zamm.19860660116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

KOTAKE, Shigeo. "Explanation of Mechanical Properties from Quantum Continuum Mechanics." Proceedings of the JSME annual meeting 2000.3 (2000): 355–56. http://dx.doi.org/10.1299/jsmemecjo.2000.3.0_355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Oller, Sergio, Omar Salomón, and Eugenio Oñate. "A continuum mechanics model for mechanical fatigue analysis." Computational Materials Science 32, no. 2 (February 2005): 175–95. http://dx.doi.org/10.1016/j.commatsci.2004.08.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sciammarella, Cesar A., Luciano Lamberti, and Federico M. Sciammarella. "Verification of Continuum Mechanics Predictions with Experimental Mechanics." Materials 13, no. 1 (December 22, 2019): 77. http://dx.doi.org/10.3390/ma13010077.

Full text
Abstract:
The general goal of the study is to connect theoretical predictions of continuum mechanics with actual experimental observations that support these predictions. The representative volume element (RVE) bridges the theoretical concept of continuum with the actual discontinuous structure of matter. This paper presents an experimental verification of the RVE concept. Foundations of continuum kinematics as well as mathematical functions relating displacement vectorial fields to the recording of these fields by a light sensor in the form of gray-level scalar fields are reviewed. The Eulerian derivative field tensors are related to the deformation of the continuum: the Euler–Almansi tensor is extracted, and its properties are discussed. The compatibility between the Euler–Almansi tensor and the Cauchy stress tensor is analyzed. In order to verify the concept of the RVE, a multiscale analysis of an Al–SiC composite material is carried out. Furthermore, it is proven that the Euler–Almansi strain tensor and the Cauchy stress tensor are conjugate in the Hill–Mandel sense by solving an identification problem of the constitutive model of urethane rubber.
APA, Harvard, Vancouver, ISO, and other styles
17

Howarth, J. A., and A. Bedford. "Hamilton's Principle in Continuum Mechanics." Mathematical Gazette 70, no. 454 (December 1986): 329. http://dx.doi.org/10.2307/3616226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Chen, Wei-qiu. "The renaissance of continuum mechanics." Journal of Zhejiang University SCIENCE A 15, no. 4 (April 2014): 231–40. http://dx.doi.org/10.1631/jzus.a1400079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Saanouni, K., and J. M. A. César De Sá. "Advances in Continuum Damage Mechanics." International Journal of Damage Mechanics 20, no. 4 (May 2011): 483. http://dx.doi.org/10.1177/1056789510395435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Fosdick, Roger, and Huang Tang. "Surface Transport in Continuum Mechanics." Mathematics and Mechanics of Solids 14, no. 6 (March 11, 2008): 587–98. http://dx.doi.org/10.1177/1081286507087316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Talpaert,, YR, and JG Simmonds,. "Tensor Analysis and Continuum Mechanics." Applied Mechanics Reviews 57, no. 1 (January 1, 2004): B1. http://dx.doi.org/10.1115/1.1641771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bedford, A., and S. L. Passman. "Hamilton’s Principle in Continuum Mechanics." Journal of Applied Mechanics 53, no. 3 (September 1, 1986): 731. http://dx.doi.org/10.1115/1.3171846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kachanov, L. M., and D. Krajcinovic. "Introduction to Continuum Damage Mechanics." Journal of Applied Mechanics 54, no. 2 (June 1, 1987): 481. http://dx.doi.org/10.1115/1.3173053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Maugin, Gerard A., and A. C. Eringen. "Continuum Mechanics of Electromagnetic Solids." Journal of Applied Mechanics 56, no. 4 (December 1, 1989): 986. http://dx.doi.org/10.1115/1.3176205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Béda, Gyula. "Constitutive Equations in Continuum Mechanics." International Applied Mechanics 39, no. 2 (February 2003): 123–31. http://dx.doi.org/10.1023/a:1023951829541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Shariff, M. H. B. M. "Spectral Derivatives in Continuum Mechanics." Quarterly Journal of Mechanics and Applied Mathematics 70, no. 4 (August 18, 2017): 479–96. http://dx.doi.org/10.1093/qjmam/hbx014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gould, Tim, Georg Jansen, I. V. Tokatly, and John F. Dobson. "Quantum continuum mechanics made simple." Journal of Chemical Physics 136, no. 20 (May 28, 2012): 204115. http://dx.doi.org/10.1063/1.4721269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Graham, G. A. C., and S. K. Malik. "Continuum mechanics and its applications." International Journal of Plasticity 6, no. 5 (January 1990): 633. http://dx.doi.org/10.1016/0749-6419(90)90048-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Potapov, V. D. "Stability via nonlocal continuum mechanics." International Journal of Solids and Structures 50, no. 5 (March 2013): 637–41. http://dx.doi.org/10.1016/j.ijsolstr.2012.10.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Tang, C. Y. "Anisotropy in continuum damage mechanics." Scripta Metallurgica et Materialia 29, no. 2 (July 1993): 183–88. http://dx.doi.org/10.1016/0956-716x(93)90305-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Cherepanov, G. P. "Invariant integrals in continuum mechanics." Soviet Applied Mechanics 26, no. 7 (July 1990): 619–30. http://dx.doi.org/10.1007/bf00889398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Barnaby, J. T. "Introduction to continuum damage mechanics." Materials & Design 8, no. 4 (July 1987): 242. http://dx.doi.org/10.1016/0261-3069(87)90152-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Gollub, Jerry. "Continuum Mechanics in Physics Education." Physics Today 56, no. 12 (December 2003): 10–11. http://dx.doi.org/10.1063/1.1650202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

TOKUOKA, Tatsuo. "What is Rational Continuum Mechanics?" Journal of the Society of Mechanical Engineers 88, no. 796 (1985): 253–59. http://dx.doi.org/10.1299/jsmemag.88.796_253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Temam,, R., A. Miranville,, and P. Gremaud,. "Mathematical Modeling in Continuum Mechanics." Applied Mechanics Reviews 54, no. 4 (July 1, 2001): B57. http://dx.doi.org/10.1115/1.1383668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

MURAKAMI, Sumio. "Progress of continuum damage mechanics." JSME international journal 30, no. 263 (1987): 701–10. http://dx.doi.org/10.1299/jsme1987.30.701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kuropatenko, V. F. "New models of continuum mechanics." Journal of Engineering Physics and Thermophysics 84, no. 1 (January 2011): 77–99. http://dx.doi.org/10.1007/s10891-011-0457-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gegelia, T., and L. Jentsch. "Potential methods in continuum mechanics." Georgian Mathematical Journal 1, no. 6 (November 1994): 599–640. http://dx.doi.org/10.1007/bf02254683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Angoshtari, Arzhang, and Arash Yavari. "Differential Complexes in Continuum Mechanics." Archive for Rational Mechanics and Analysis 216, no. 1 (November 5, 2014): 193–220. http://dx.doi.org/10.1007/s00205-014-0806-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Malyarenko, Anatoliy, and Martin Ostoja-Starzewski. "Towards stochastic continuum damage mechanics." International Journal of Solids and Structures 184 (February 2020): 202–10. http://dx.doi.org/10.1016/j.ijsolstr.2019.02.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Scholle, Markus. "Variational formulations in continuum mechanics." PAMM 11, no. 1 (December 2011): 693–94. http://dx.doi.org/10.1002/pamm.201110336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Altenbach, H. "Book Review:Fridtjov Irgens, Continuum Mechanics." ZAMM 88, no. 6 (June 5, 2008): 520. http://dx.doi.org/10.1002/zamm.200890008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Capecchi, Danilo, and Giuseppe C. Ruta. "Piola’s contribution to continuum mechanics." Archive for History of Exact Sciences 61, no. 4 (March 23, 2007): 303–42. http://dx.doi.org/10.1007/s00407-007-0002-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ragueneau, Frédéric, Arnaud Delaplace, and Luc Davenne. "Mechanical behaviour related to continuum damage mechanics for concrete." Revue Française de Génie Civil 7, no. 5 (May 2003): 635–45. http://dx.doi.org/10.1080/12795119.2003.9692514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Rodriguez, Miguel A., Christoph M. Augustin, and Shawn C. Shadden. "FEniCS mechanics: A package for continuum mechanics simulations." SoftwareX 9 (January 2019): 107–11. http://dx.doi.org/10.1016/j.softx.2018.10.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Stuke, Bernward. "Towards a Fundamental Structure of Continuum Mechanics." Zeitschrift für Naturforschung A 48, no. 8-9 (September 1, 1993): 883–94. http://dx.doi.org/10.1515/zna-1993-8-909.

Full text
Abstract:
Abstract For a class of systems obeying Euler's equation of motion the existence of a quantity to be named "proper mechanical energy" (PME) is shown which, together with internal energy, results in a quantity to be named "proper energy" (PE), which is conserved under conditions of time-dependent potentials. The appertaining formal structure for the continuum mechanics of such systems is the counterpart to Gibbs' fundamental equation of thermodynamics and the relations deriving therefrom. Euler's equation of motion, in particular, corresponds to the Gibbs-Duhem equation of thermodynamics. The transport properties of PME and PE are different from those of the corresponding conventional energies. The results point to a general structure of this kind for continuum mechanics.
APA, Harvard, Vancouver, ISO, and other styles
47

Delphenich, D. H. "The optical-mechanical analogy for wave mechanics: a new hope." Journal of Physics: Conference Series 2197, no. 1 (March 1, 2022): 012005. http://dx.doi.org/10.1088/1742-6596/2197/1/012005.

Full text
Abstract:
Abstract The continuum-mechanical formulation of wave mechanics suggests that there is an intermediate stage of theoretical generality between wave mechanics and point mechanics, namely, continuum mechanics. When that argument is applied to the corresponding transition from wave optics to geometrical optics, the corresponding intermediate stage is essentially the geometrical theory of diffraction, i.e., the theory of diffracted geodesics.
APA, Harvard, Vancouver, ISO, and other styles
48

Engelbrecht, J., T. Peets, and K. Tamm. "Continuum mechanics and signals in nerves." Proceedings of the Estonian Academy of Sciences 70, no. 1 (2021): 3. http://dx.doi.org/10.3176/proc.2021.1.02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Leech, C. M. "Book Review: Continuum Mechanics for Engineers." International Journal of Mechanical Engineering Education 29, no. 2 (April 2001): 186. http://dx.doi.org/10.7227/ijmee.29.2.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hanson, Benjamin, Robin Richardson, Robin Oliver, Daniel J. Read, Oliver Harlen, and Sarah Harris. "Modelling biomacromolecular assemblies with continuum mechanics." Biochemical Society Transactions 43, no. 2 (April 1, 2015): 186–92. http://dx.doi.org/10.1042/bst20140294.

Full text
Abstract:
We have developed a continuum mechanical description of proteins using a finite element algorithm which has been generalized to include thermal fluctuations and which is therefore known as fluctuating finite element analysis (FFEA). Whereas conventional molecular dynamics (MD) simulations provide a trajectory in which each individual atomic position fluctuates, a FFEA trajectory shows how the overall shape of the protein changes due to thermal agitation. We describe the theoretical background to FFEA, its relationship to more established biomolecular modelling methods and provide examples of its application to the mesoscale biomolecular dynamics of the molecular motor dynein.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography