Academic literature on the topic 'Continuous Time Processes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Continuous Time Processes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Continuous Time Processes"
Brockwell, Peter, Erdenebaatar Chadraa, and Alexander Lindner. "Continuous-time GARCH processes." Annals of Applied Probability 16, no. 2 (May 2006): 790–826. http://dx.doi.org/10.1214/105051606000000150.
Full textTorsello, Andrea, and Marcello Pelillo. "Continuous-time relaxation labeling processes." Pattern Recognition 33, no. 11 (November 2000): 1897–908. http://dx.doi.org/10.1016/s0031-3203(99)00174-0.
Full textBrockwell, Peter J., Jens-Peter Kreiss, and Tobias Niebuhr. "Bootstrapping continuous-time autoregressive processes." Annals of the Institute of Statistical Mathematics 66, no. 1 (May 9, 2013): 75–92. http://dx.doi.org/10.1007/s10463-013-0406-0.
Full textViano, M. C., C. Deniau, and G. Oppenheim. "Continuous-time fractional ARMA processes." Statistics & Probability Letters 21, no. 4 (November 1994): 323–36. http://dx.doi.org/10.1016/0167-7152(94)00015-8.
Full textLi, Quan-Lin, and Chuang Lin. "Continuous-Time QBD Processes with Continuous Phase Variable." Computers & Mathematics with Applications 52, no. 10-11 (November 2006): 1483–510. http://dx.doi.org/10.1016/j.camwa.2006.07.003.
Full textGonzález, Miguel, Manuel Molina, Ines del Puerto, Nikolay M. Yanev, and George P. Yanev. "Controlled branching processes with continuous time." Journal of Applied Probability 58, no. 3 (September 2021): 830–48. http://dx.doi.org/10.1017/jpr.2021.8.
Full textStramer, O., P. J. Brockwell, and R. L. Tweedie. "Continuous-time threshold AR(1) processes." Advances in Applied Probability 28, no. 3 (September 1996): 728–46. http://dx.doi.org/10.2307/1428178.
Full textIrle, A. "Stochastic ordering for continuous-time processes." Journal of Applied Probability 40, no. 2 (June 2003): 361–75. http://dx.doi.org/10.1239/jap/1053003549.
Full textBrockwell, Peter J. "Representations of continuous-time ARMA processes." Journal of Applied Probability 41, A (2004): 375–82. http://dx.doi.org/10.1239/jap/1082552212.
Full textTian, Jianjun, and Xiao-Song Lin. "Continuous Time Markov Processes on Graphs." Stochastic Analysis and Applications 24, no. 5 (September 22, 2006): 953–72. http://dx.doi.org/10.1080/07362990600870017.
Full textDissertations / Theses on the topic "Continuous Time Processes"
Li, Z. "Methods for irregularly sampled continuous time processes." Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1428862/.
Full textZhang, Yi. "Continuous-time Marlov decision processes : theory, approximations and applications." Thesis, University of Liverpool, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533901.
Full textKeller, Peter, Sylvie Roelly, and Angelo Valleriani. "On time duality for quasi-birth-and-death processes." Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/5697/.
Full textBarbu, Monica Constanta. "Stochastic modelling applications in continuous time finance /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18290.pdf.
Full textPénisson, Sophie. "Continuous-time multitype branching processes conditioned on very late extinction." Universität Potsdam, 2009. http://opus.kobv.de/ubp/volltexte/2011/4954/.
Full textSequeira, Sebastián Eloy. "Real Time Evolution (RTE) for on-line optimisation of continuous and semi-continuous chemical processes." Doctoral thesis, Universitat Politècnica de Catalunya, 2003. http://hdl.handle.net/10803/6431.
Full textA fin de "perseguir" este optimo móvil, la optimización en-línea resuelve en forma periódica problemas de optimización, usando datos que vienen directamente de la planta y un modelo el cual es actualizado continuamente. La aplicación mas frecuente de la optimización en-línea corresponde a la categoría de procesos continuos. Esto se debe principalmente a que los modelos de estado estacionario son mas simples y fáciles de desarrollar y validar, además de que los procesos continuos tienen normalmente asociado elevada producción y por ende, pequeñas mejoras en la eficiencia del proceso se traducen en importantes ganancias. Sin embargo, aunque el uso de modelos al estado estacionario simplifica enormemente las tareas de modelización, hace emerger ciertos aspectos ligados a la validez de la hipótesis de un estado estacionario.
Comenzaron a surgir varias aplicaciones a gran escala de la optimización en-línea, pero, si bien varios vendedores ofrecen productos y servicios en este área, la mayoría de las aplicaciones industriales abordan problemas de control avanzado, dejando a la optimización en un segundo plano. Los industriales han reportado que después de cuatro décadas ha tenido lugar una mejora progresiva en la metodología llevada a cabo en la optimización en-línea, pero que siguen estando presente los puntos débiles originales. Tales aspectos están directamente relacionados con la detección del estado estacionario (o las frecuencias de las perturbaciones) y la optimización en si misma.
Los objetivos de la presente tesis están dirigidos a solventar parcialmente tales puntos débiles de la metodología actual. Como resultado, se propone una estrategia alternativa que saca ventaja de las mediciones y busca una mejora continua en lugar de una optimización formal. Se muestra que tal estrategia resulta muy efectiva y puede no solo ser aplicada para la optimización de puntos de consigna, pero también para tomar (en-línea) las decisiones discretas necesarias en procesos que presentan degradación (aspecto normalmente resuelto usando programación matemática).
La estructura de la tesis es como sigue. El primer capitulo explica las principales motivaciones y objetivos del trabajo, mientras que el capitulo 2 consiste en una revisión bibliográfica que abarca, hasta cierto punto, los tópicos y funcionalidades mas importantes asociados a la optimización en-línea. Luego, los capítulos 3 y 4 presentan la estrategia propuesta a través de dos metodologías para la optimización en-línea, lo cual es la contribución mas importante de la tesis. El primero, (capitulo 3) se centra en la persecución de un optimo que se mueve por el efecto combinado de perturbaciones externas e internas. Por otro lado, en el capitulo 4 se explica una metodología paralela, concebida para procesos que presentan desempeño decreciente con el tiempo y requieren decisiones discretas en relación a acciones de mantenimiento. Ambos capítulos incluyen una primera parte, mas bien teórica, y una segunda parte dedicada a la validación usando casos de referencia. Luego, el capitulo 5 describe la aplicación de tales metodología sobre dos escenarios industriales, con la intención de complementar los resultados obtenidos sobre los casos académicos. Posteriormente, el capitulo 6 aborda dos problemas asociados a la implementación: la influencia de los parámetros ajustables y la arquitectura del software usada. Finalmente, el capitulo 7 resume las principales conclusiones y observaciones de la tesis.
In general, process control is very effective when the desired operation point has been determined from prior analysis and the control system has sufficient time to respond to disturbances. While process control is required for regulating some process variables, the application of these methods may be not appropriate for all important variables. In some situations, the best operating conditions change because of the combined effect of internal and external disturbances, and a fixed control design may not respond properly to these changes. When certain conditions are met, on-line optimisation becomes a suitable choice for tracking the moving optimum.
In order to "pursue" that moving optimum, on-line optimisation solves periodically optimisation problems using data coming directly form the plant and a continuously updated model. The most common use of on-line optimisation corresponds to the continuous processes category. This is mainly owed to that steady state models are simpler and easier to develop and validate, besides that continuous processes have commonly high production rates, thus small relative improvements in the process efficiency originates significant economic earnings. Nevertheless, although the use of steady state models greatly simplifies the modelling task, it raises other issues associated with the validity of the steady state assumption.
Large-scale applications of on-line optimisation started to spread, however, even when several vendors offer products and services in the area, most of the application address advanced control issues while on-line optimisation is released to a second plane. Industry practitioners have reported that after four decades there has been a progressive improvement in the on-line optimisation methodology, but the same initial weakness or more generally speaking some common causes of poor performance still remain. These issues are directly related with the steady state detection (or disturbance frequency) and the optimisation itself.
The objectives of this thesis work are then directed to overcome at least partially the weak points of the current approach. The result is the proposal of an alternative strategy that takes fully advantage of the on-line measurements and looks for periodical improvement rather than a formal optimisation. It is shown how the proposed approach results very efficient and can be applied not only for set-point on-line optimisation but also for taking the on-line decision required in processes that presents decaying performance (aspect typically solved of-line via mathematical programming).
The thesis is structured as follows. The first chapter explains the main motivations and objectives of the work, while chapter 2 consists in a literature review that addresses, to some extension, the most significant issues around the on-line optimisation functionality. After that, chapter 3 and chapter 4 introduce two methodologies that use the proposed strategy for on-line optimisation, which is the main thesis contribution. The first one (in chapter 3) focuses in tracking fast moving optima, which is caused mainly by the combined effect of external and internal disturbances. On the other hand, a parallel methodology is explained in 4, conceived for processes that present decaying performance and that require discrete decision related to maintenance actions. Both chapters include a first part, rather theoretical, and a second part devoted to the validation over typical benchmarks. Then, chapter 5 describes the application of such methodologies over two existing industrial scenarios, in order to complement the results obtained using the benchmarks. After that, chapter 6 addresses two issues related to the implementation aspects: the influence of the adjustable parameters of the proposed procedure and the software architectures used. Finally, chapter 7 draws conclusions and main observations.
Parra, Rojas César. "Intrinsic fluctuations in discrete and continuous time models." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/intrinsic-fluctuations-in-discrete-and-continuous-time-models(d7006a2b-1496-44f2-8423-1f2fa72be1a5).html.
Full textLee, Sanghoon. "Econometrics of jump-diffusion processes : approximation, estimation and forecasting." Thesis, University of Southampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364734.
Full textBregantini, Daniele. "Application of continuous time stochastic processes in sequential clinical research design and econometrics." Thesis, University of York, 2014. http://etheses.whiterose.ac.uk/8919/.
Full textJohnston, Samuel. "The coalescent structure of continuous-time Galton-Watson trees." Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761049.
Full textBooks on the topic "Continuous Time Processes"
Hainaut, Donatien. Continuous Time Processes for Finance. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06361-9.
Full textGuo, Xianping, and Onésimo Hernández-Lerma. Continuous-Time Markov Decision Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02547-1.
Full textPiunovskiy, Alexey, and Yi Zhang. Continuous-Time Markov Decision Processes. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54987-9.
Full textContinuous time Markov processes: An introduction. Providence, R.I: American Mathematical Society, 2010.
Find full textLiggett, Thomas M. Continuous time Markov processes: An introduction. Providence, R.I: American Mathematical Society, 2010.
Find full textFragoso, Marcelo D. Continuous-time Markov jump linear systems. Heidelberg: Springer, 2013.
Find full textCapasso, Vincenzo, and David Bakstein. An Introduction to Continuous-Time Stochastic Processes. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69653-5.
Full textCapasso, Vincenzo, and David Bakstein. An Introduction to Continuous-Time Stochastic Processes. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2757-9.
Full textCapasso, Vincenzo, and David Bakstein. An Introduction to Continuous-Time Stochastic Processes. Boston, MA: Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8346-7.
Full textHernández-Lerma, O. Lectures on continuous-time Markov control processes. Mexico, D.F. Mexico: Sociedad Matemática Mexicana, 1994.
Find full textBook chapters on the topic "Continuous Time Processes"
Doukhan, Paul. "Continuous time processes." In Mixing, 111–23. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-2642-0_10.
Full textKarandikar, Rajeeva L., and B. V. Rao. "Continuous-Time Processes." In Indian Statistical Institute Series, 35–63. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8318-1_2.
Full textWinkler, Gerhard. "Continuous Time Processes." In Image Analysis, Random Fields and Markov Chain Monte Carlo Methods, 209–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55760-6_14.
Full textJarrow, Robert A. "Stochastic Processes." In Continuous-Time Asset Pricing Theory, 3–17. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77821-1_1.
Full textJarrow, Robert A. "Stochastic Processes." In Continuous-Time Asset Pricing Theory, 3–20. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74410-6_1.
Full textDacunha-Castelle, Didier, and Marie Duflo. "Processes in Continuous Time." In Probability and Statistics, 289–330. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-4870-5_8.
Full textGirardin, Valérie, and Nikolaos Limnios. "Continuous Time Stochastic Processes." In Applied Probability, 175–214. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97412-5_4.
Full textWilliams, R. "Continuous time stochastic processes." In Graduate Studies in Mathematics, 131–34. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/gsm/072/08.
Full textSchinazi, Rinaldo B. "Continuous Time Branching Processes." In Classical and Spatial Stochastic Processes, 151–73. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1869-0_8.
Full textHuang, Chi-Fu. "Continuous-Time Stochastic Processes." In The New Palgrave Dictionary of Economics, 2198–204. London: Palgrave Macmillan UK, 2018. http://dx.doi.org/10.1057/978-1-349-95189-5_559.
Full textConference papers on the topic "Continuous Time Processes"
Brázdil, Tomás, Jan Krcál, Jan Kretínský, Antonín Kucera, and Vojtech Řehák. "Measuring performance of continuous-time stochastic processes using timed automata." In the 14th international conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1967701.1967709.
Full textKinev, Peter W. "An Algorithm For Continuous Time Processes In Discrete Time Measurement." In Robotics and IECON '87 Conferences, edited by Russell J. Niederjohn. SPIE, 1987. http://dx.doi.org/10.1117/12.968275.
Full textNeuhausser, Martin R., and Lijun Zhang. "Time-Bounded Reachability Probabilities in Continuous-Time Markov Decision Processes." In 2010 Seventh International Conference on the Quantitative Evaluation of Systems (QEST). IEEE, 2010. http://dx.doi.org/10.1109/qest.2010.47.
Full textTomasevicz, Curtis L., and Sohrab Asgarpoor. "Preventive Maintenance Using Continuous-Time Semi-Markov Processes." In 2006 38th North American Power Symposium. IEEE, 2006. http://dx.doi.org/10.1109/naps.2006.360125.
Full textHuang, Yunhan, Veeraruna Kavitha, and Quanyan Zhu. "Continuous-Time Markov Decision Processes with Controlled Observations." In 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2019. http://dx.doi.org/10.1109/allerton.2019.8919744.
Full textKowalczuk, Zdzislaw, and Mariusz Domzalski. "Asynchronous networked estimation system for continuous time stochastic processes." In 2013 Conference on Control and Fault-Tolerant Systems (SysTol). IEEE, 2013. http://dx.doi.org/10.1109/systol.2013.6693937.
Full textDai, Hanjun, Yichen Wang, Rakshit Trivedi, and Le Song. "Recurrent Coevolutionary Latent Feature Processes for Continuous-Time Recommendation." In DLRS 2016: Workshop on Deep Learning for Recommender Systems. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2988450.2988451.
Full textChang, Xiaofu, Xuqin Liu, Jianfeng Wen, Shuang Li, Yanming Fang, Le Song, and Yuan Qi. "Continuous-Time Dynamic Graph Learning via Neural Interaction Processes." In CIKM '20: The 29th ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3340531.3411946.
Full textArmaou, A. "Continuous-time control of distributed processes via microscopic simulations." In Proceedings of the 2004 American Control Conference. IEEE, 2004. http://dx.doi.org/10.23919/acc.2004.1383727.
Full textKalemkerian, Juan. "Modelling a Continuous Time Series with FOU(p) Processes." In ITISE 2022. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/engproc2022018033.
Full textReports on the topic "Continuous Time Processes"
Puerto, Inés M. del, George P. Yanev, Manuel Molina, Nikolay M. Yanev, and Miguel González. Continuous-time Controlled Branching Processes. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, March 2021. http://dx.doi.org/10.7546/crabs.2021.03.04.
Full textCambanis, Stamatis, and Elias Masry. Performance of Discrete-Time Predictors of Continuous-Time Stationary Processes. Fort Belvoir, VA: Defense Technical Information Center, December 1985. http://dx.doi.org/10.21236/ada166231.
Full textHansen, Lars Peter, and Jose Alexandre Scheinkman. Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes. Cambridge, MA: National Bureau of Economic Research, September 1993. http://dx.doi.org/10.3386/t0141.
Full textStettner, Lukasz. On the Existence and Uniqueness of Invariant Measure for Continuous Time Markov Processes,. Fort Belvoir, VA: Defense Technical Information Center, April 1986. http://dx.doi.org/10.21236/ada174758.
Full textKhomenko, Tetiana. TIME AND SPACE OF HISTORICAL PARALLELS OF EUGEN SVERSTIUK’S JOURNALISM. Ivan Franko National University of Lviv, March 2021. http://dx.doi.org/10.30970/vjo.2021.50.11095.
Full textMatus, Sean, and Daniel Gambill. Automation of gridded HEC-HMS model development using Python : initial condition testing and calibration applications. Engineer Research and Development Center (U.S.), November 2022. http://dx.doi.org/10.21079/11681/46126.
Full textWolfe, S. A., H. B. O'Neill, C. Duchesne, D. Froese, J M Young, and S. V. Kokelj. Ground ice degradation and thermokarst terrain formation in Canada over the past 16 000 years. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329668.
Full textMaydykovskiy, Igor, and Petras Užpelkis. The Physical Essence of Time. Intellectual Archive, December 2020. http://dx.doi.org/10.32370/iaj.2450.
Full textBanin, Amos, Joseph Stucki, and Joel Kostka. Redox Processes in Soils Irrigated with Reclaimed Sewage Effluents: Field Cycles and Basic Mechanism. United States Department of Agriculture, July 2004. http://dx.doi.org/10.32747/2004.7695870.bard.
Full textAit-Sahalia, Yacine, and Per Mykland. How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise. Cambridge, MA: National Bureau of Economic Research, April 2003. http://dx.doi.org/10.3386/w9611.
Full text