Academic literature on the topic 'Continuous Time Bayesian Network'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Continuous Time Bayesian Network.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Continuous Time Bayesian Network"
Stella, F., and Y. Amer. "Continuous time Bayesian network classifiers." Journal of Biomedical Informatics 45, no. 6 (December 2012): 1108–19. http://dx.doi.org/10.1016/j.jbi.2012.07.002.
Full textCodecasa, Daniele, and Fabio Stella. "Learning continuous time Bayesian network classifiers." International Journal of Approximate Reasoning 55, no. 8 (November 2014): 1728–46. http://dx.doi.org/10.1016/j.ijar.2014.05.005.
Full textXu, J., and C. R. Shelton. "Intrusion Detection using Continuous Time Bayesian Networks." Journal of Artificial Intelligence Research 39 (December 23, 2010): 745–74. http://dx.doi.org/10.1613/jair.3050.
Full textBhattacharjya, Debarun, Karthikeyan Shanmugam, Tian Gao, Nicholas Mattei, Kush Varshney, and Dharmashankar Subramanian. "Event-Driven Continuous Time Bayesian Networks." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 3259–66. http://dx.doi.org/10.1609/aaai.v34i04.5725.
Full textShelton, C. R., and G. Ciardo. "Tutorial on Structured Continuous-Time Markov Processes." Journal of Artificial Intelligence Research 51 (December 23, 2014): 725–78. http://dx.doi.org/10.1613/jair.4415.
Full textSturlaugson, Liessman, and John W. Sheppard. "Sensitivity Analysis of Continuous Time Bayesian Network Reliability Models." SIAM/ASA Journal on Uncertainty Quantification 3, no. 1 (January 2015): 346–69. http://dx.doi.org/10.1137/140953848.
Full textCodecasa, Daniele, and Fabio Stella. "Classification and clustering with continuous time Bayesian network models." Journal of Intelligent Information Systems 45, no. 2 (November 22, 2014): 187–220. http://dx.doi.org/10.1007/s10844-014-0345-0.
Full textBoudali, H., and J. B. Dugan. "A Continuous-Time Bayesian Network Reliability Modeling, and Analysis Framework." IEEE Transactions on Reliability 55, no. 1 (March 2006): 86–97. http://dx.doi.org/10.1109/tr.2005.859228.
Full textVilla, S., and F. Stella. "A continuous time Bayesian network classifier for intraday FX prediction." Quantitative Finance 14, no. 12 (April 22, 2014): 2079–92. http://dx.doi.org/10.1080/14697688.2014.906811.
Full textGatti, E., D. Luciani, and F. Stella. "A continuous time Bayesian network model for cardiogenic heart failure." Flexible Services and Manufacturing Journal 24, no. 4 (December 8, 2011): 496–515. http://dx.doi.org/10.1007/s10696-011-9131-2.
Full textDissertations / Theses on the topic "Continuous Time Bayesian Network"
CODECASA, DANIELE. "Continuous time bayesian network classifiers." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/80691.
Full textNodelman, Uri D. "Continuous time bayesian networks /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textFan, Yu. "Continuous time Bayesian Network approximate inference and social network applications." Diss., [Riverside, Calif.] : University of California, Riverside, 2009. http://proquest.umi.com/pqdweb?index=0&did=1957308751&SrchMode=2&sid=1&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1268330625&clientId=48051.
Full textIncludes abstract. Title from first page of PDF file (viewed March 8, 2010). Available via ProQuest Digital Dissertations. Includes bibliographical references (p. 130-133). Also issued in print.
ACERBI, ENZO. "Continuos time Bayesian networks for gene networks reconstruction." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/52709.
Full textVILLA, SIMONE. "Continuous Time Bayesian Networks for Reasoning and Decision Making in Finance." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/69953.
Full textThe analysis of the huge amount of financial data, made available by electronic markets, calls for new models and techniques to effectively extract knowledge to be exploited in an informed decision-making process. The aim of this thesis is to introduce probabilistic graphical models that can be used to reason and to perform actions in such a context. In the first part of this thesis, we present a framework which exploits Bayesian networks to perform portfolio analysis and optimization in a holistic way. It leverages on the compact and efficient representation of high dimensional probability distributions offered by Bayesian networks and their ability to perform evidential reasoning in order to optimize the portfolio according to different economic scenarios. In many cases, we would like to reason about the market change, i.e. we would like to express queries as probability distributions over time. Continuous time Bayesian networks can be used to address this issue. In the second part of the thesis, we show how it is possible to use this model to tackle real financial problems and we describe two notable extensions. The first one concerns classification, where we introduce an algorithm for learning these classifiers from Big Data, and we describe their straightforward application to the foreign exchange prediction problem in the high frequency domain. The second one is related to non-stationary domains, where we explicitly model the presence of statistical dependencies in multivariate time-series while allowing them to change over time. In the third part of the thesis, we describe the use of continuous time Bayesian networks within the Markov decision process framework, which provides a model for sequential decision-making under uncertainty. We introduce a method to control continuous time dynamic systems, based on this framework, that relies on additive and context-specific features to scale up to large state spaces. Finally, we show the performances of our method in a simplified, but meaningful trading domain.
GATTI, ELENA. "Graphical models for continuous time inference and decision making." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19575.
Full textAlharbi, Randa. "Bayesian inference for continuous time Markov chains." Thesis, University of Glasgow, 2019. http://theses.gla.ac.uk/40972/.
Full textParton, Alison. "Bayesian inference for continuous-time step-and-turn movement models." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/20124/.
Full textElshamy, Wesam Samy. "Continuous-time infinite dynamic topic models." Diss., Kansas State University, 2012. http://hdl.handle.net/2097/15176.
Full textDepartment of Computing and Information Sciences
William Henry Hsu
Topic models are probabilistic models for discovering topical themes in collections of documents. In real world applications, these models provide us with the means of organizing what would otherwise be unstructured collections. They can help us cluster a huge collection into different topics or find a subset of the collection that resembles the topical theme found in an article at hand. The first wave of topic models developed were able to discover the prevailing topics in a big collection of documents spanning a period of time. It was later realized that these time-invariant models were not capable of modeling 1) the time varying number of topics they discover and 2) the time changing structure of these topics. Few models were developed to address this two deficiencies. The online-hierarchical Dirichlet process models the documents with a time varying number of topics. It varies the structure of the topics over time as well. However, it relies on document order, not timestamps to evolve the model over time. The continuous-time dynamic topic model evolves topic structure in continuous-time. However, it uses a fixed number of topics over time. In this dissertation, I present a model, the continuous-time infinite dynamic topic model, that combines the advantages of these two models 1) the online-hierarchical Dirichlet process, and 2) the continuous-time dynamic topic model. More specifically, the model I present is a probabilistic topic model that does the following: 1) it changes the number of topics over continuous time, and 2) it changes the topic structure over continuous-time. I compared the model I developed with the two other models with different setting values. The results obtained were favorable to my model and showed the need for having a model that has a continuous-time varying number of topics and topic structure.
Acciaroli, Giada. "Calibration of continuous glucose monitoring sensors by time-varying models and Bayesian estimation." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3425746.
Full textI sensori minimamente invasivi per il monitoraggio in continua della glicemia, indicati con l’acronimo CGM (continuous glucose monitoring), sono dei dispositivi medici indossabili capaci di misurare la glicemia in tempo reale, ogni 1-5 minuti, per più giorni consecutivi. Questo tipo di misura fornisce un profilo di glicemia quasi continuo che risulta essere un’informazione molto utile per la gestione quotidiana della terapia del diabete. La maggior parte dei dispositivi CGM ad oggi disponibili nel mercato dispongono di un sensore di tipo elettrochimico, solitamente inserito nel tessuto sottocutaneo, che misura una corrente elettrica generata dalla reazione chimica di glucosio-ossidasi. Le misure di corrente elettrica sono fornite dal sensore con campionamento uniforme ad elevata frequenza temporale e vengono convertite in tempo reale in valori di glicemia interstiziale attraverso un processo di calibrazione. La procedura di calibrazione prevede l’acquisizione da parte del paziente di qualche misura di glicemia plasmatica di riferimento tramite dispositivi pungidito. Solitamente, le aziende produttrici di sensori CGM implementano un processo di calibrazione basato su un modello di tipo lineare che approssima, sebbene in intervalli di tempo di durata limitata, la più complessa relazione tra corrente elettrica e glicemia. Di conseguenza, si rendono necessarie frequenti calibrazioni (per esempio, due al giorno) per aggiornare i parametri del modello di calibrazione e garantire una buona accuratezza di misura. Tuttavia, ogni calibrazione prevede l’acquisizione da parte del paziente di misure di glicemia tramite dispositivi pungidito. Questo aumenta la già numerosa lista di azioni che i pazienti devono svolgere quotidianamente per gestire la loro terapia. Lo scopo di questa tesi è quello di sviluppare un nuovo algoritmo di calibrazione per sensori CGM minimamente invasivi capace di garantire una buona accuratezza di misura con il minimo numero di calibrazioni. Nello specifico, si propone i) di sostituire il guadagno ed offset tempo-invarianti solitamente utilizzati nei modelli di calibrazione di tipo lineare con delle funzioni tempo-varianti, capaci di descrivere il comportamento del sensore per intervalli di tempo di più giorni, e per cui sia disponibile dell’informazione a priori riguardante i parametri incogniti; ii) di stimare il valore numerico dei parametri del modello di calibrazione con metodo Bayesiano, sfruttando l’informazione a priori sui parametri di calibrazione in aggiunta ad alcune misure di glicemia plasmatica di riferimento. La tesi è organizzata in 6 capitoli. Nel Capitolo 1, dopo un’introduzione sulle tecnologie dei sensori CGM, viene illustrato il problema della calibrazione. In seguito, vengono discusse alcune tecniche di calibrazione che rappresentano lo stato dell’arte ed i loro problemi aperti, che risultano negli scopi della tesi descritti alla fine del capitolo. Nel Capitolo 2 vengono descritti i dataset utilizzati per l’implementazione delle tecniche di calibrazione. Inoltre, vengono illustrate le metriche di accuratezza e le tecniche di analisi statistica utilizzate per analizzare la qualità dei risultati. Nel Capitolo 3 viene illustrato un algoritmo di calibrazione recentemente proposto in letteratura (Vettoretti et al., IEEE, Trans Biomed Eng 2016). Questo algoritmo rappresenta il punto di partenza dello studio svolto in questa tesi. Più precisamente, viene dimostrato che, grazie all’utilizzo di un prior Bayesiano specifico per ogni giorno di utilizzo, l’algoritmo diventa efficace nel ridurre le calibrazioni da due a una al giorno senza perdita di accuratezza. Tuttavia, il modello lineare di calibrazione utilizzato dall’algoritmo ha dominio di validità limitato a brevi intervalli di tempo tra due calibrazioni successive, rendendo impossibile l’ulteriore riduzione delle calibrazioni a meno di una al giorno senza perdita di accuratezza. Questo determina la necessità di sviluppare un nuovo modello di calibrazione valido per intervalli di tempo più estesi, fino a più giorni consecutivi, come quello sviluppato nel resto di questa tesi. Nel Capitolo 4 viene presentato un nuovo algoritmo di calibrazione di tipo Bayesiano (Bayesian multi-day, BMD). L’algoritmo si basa su un modello della tempo-varianza delle caratteristiche del sensore nei suoi giorni di utilizzo e sulla disponibilità di informazione statistica a priori sui suoi parametri incogniti. Per ogni coppia paziente-sensore, il valore numerico dei parametri del modello è determinato tramite stima Bayesiana sfruttando alcune misure plasmatiche di riferimento acquisite dal paziente con dispositivi pungidito. Inoltre, durante la stima dei parametri, la dinamica introdotta dalla cinetica plasma-interstizio viene compensata tramite deconvoluzione nonparametrica. L’algoritmo di calibrazione BMD viene applicato a due differenti set di dati acquisiti con il sensore commerciale Dexcom (Dexocm Inc., San Diego, CA) G4 Platinum (DG4P) e con un prototipo di sensore Dexcom di nuova generazione (NGD). Nei dati acquisiti con il sensore DG4P, i risultati dimostrano che, nonostante le calibrazioni vengano ridotte (in media da 2 al giorno a 0.25 al giorno), l’ algoritmo BMD migliora significativamente l’accuratezza del sensore rispetto all’algoritmo di calibrazione utilizzato dall’azienda produttrice del sensore. Nei dati acquisiti con il sensore NGD, i risultati sono ancora migliori, permettendo di ridurre ulteriormente le calibrazioni fino a zero. Nel Capitolo 5 vengono analizzati i potenziali margini di miglioramento dell’algoritmo di calibrazione BMD discusso nel capitolo precedente e viene proposta un’ulteriore estensione dello stesso. In particolare, per meglio gestire la variabilità tra sensori e tra soggetti, viene proposto un approccio di calibrazione multi-modello e un metodo Bayesiano di selezione del modello (Multi-model Bayesian framework, MMBF) in cui il modello di calibrazione più probabile a posteriori viene scelto tra un set di possibili candidati. Tale approccio multi-modello viene analizzato in via preliminare su un set di dati simulati generati da un simulatore del paziente diabetico di tipo 1 ben noto in letteratura. I risultati dimostrano che l’accuratezza del sensore migliora in modo significativo con MMBF rispetto ad utilizzare un unico modello di calibrazione. Infine, nel Capitolo 6 vengono riassunti i principali risultati ottenuti in questa tesi, le possibili applicazioni, e i margini di miglioramento per gli sviluppi futuri.
Books on the topic "Continuous Time Bayesian Network"
Das, Monidipa, and Soumya K. Ghosh. Enhanced Bayesian Network Models for Spatial Time Series Prediction. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27749-9.
Full textGhosh, Soumya K., and Monidipa Das. Enhanced Bayesian Network Models for Spatial Time Series Prediction: Recent Research Trend in Data-Driven Predictive Analytics. Springer, 2020.
Find full textGhosh, Soumya K., and Monidipa Das. Enhanced Bayesian Network Models for Spatial Time Series Prediction: Recent Research Trend in Data-Driven Predictive Analytics. Springer, 2019.
Find full textButz, Martin V., and Esther F. Kutter. Top-Down Predictions Determine Perceptions. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780198739692.003.0009.
Full textRamsay, James. Curve registration. Edited by Frédéric Ferraty and Yves Romain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.013.9.
Full textUnger, Herwig, and Wolfgang A. Halang, eds. Autonomous Systems 2016. VDI Verlag, 2016. http://dx.doi.org/10.51202/9783186848109.
Full textBook chapters on the topic "Continuous Time Bayesian Network"
Shi, Dongyu, and Jinyuan You. "Update Rules for Parameter Estimation in Continuous Time Bayesian Network." In Lecture Notes in Computer Science, 140–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-36668-3_17.
Full textLiu, Manxia, Fabio Stella, Arjen Hommersom, and Peter J. F. Lucas. "Representing Hypoexponential Distributions in Continuous Time Bayesian Networks." In Communications in Computer and Information Science, 565–77. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91479-4_47.
Full textvan der Heijden, Maarten, and Arjen Hommersom. "Causal Independence Models for Continuous Time Bayesian Networks." In Probabilistic Graphical Models, 503–18. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11433-0_33.
Full textCerotti, Davide, and Daniele Codetta-Raiteri. "Mean Field Analysis for Continuous Time Bayesian Networks." In Communications in Computer and Information Science, 156–69. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91632-3_12.
Full textAcerbi, Enzo, and Fabio Stella. "Continuous Time Bayesian Networks for Gene Network Reconstruction: A Comparative Study on Time Course Data." In Bioinformatics Research and Applications, 176–87. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08171-7_16.
Full textCodecasa, Daniele, and Fabio Stella. "A Classification Based Scoring Function for Continuous Time Bayesian Network Classifiers." In New Frontiers in Mining Complex Patterns, 35–50. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08407-7_3.
Full textWang, Jing, Jinglin Zhou, and Xiaolu Chen. "Probabilistic Graphical Model for Continuous Variables." In Intelligent Control and Learning Systems, 251–65. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8044-1_14.
Full textKaeding, Matthias. "Continuous Time Models." In Bayesian Analysis of Failure Time Data Using P-Splines, 69–85. Wiesbaden: Springer Fachmedien Wiesbaden, 2014. http://dx.doi.org/10.1007/978-3-658-08393-9_6.
Full textFan, Chenglin, Jun Luo, and Binhai Zhu. "Continuous-Time Moving Network Voronoi Diagram." In Lecture Notes in Computer Science, 129–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25249-5_5.
Full textYi, Zhang, and K. K. Tan. "Other Models of Continuous Time Recurrent Neural Networks." In Network Theory and Applications, 171–93. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-3819-3_7.
Full textConference papers on the topic "Continuous Time Bayesian Network"
Villa, Simone, and Fabio Stella. "Learning Continuous Time Bayesian Networks in Non-stationary Domains." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/804.
Full textGrößl, Martin. "Modeling dependable systems with continuous time Bayesian networks." In SAC 2015: Symposium on Applied Computing. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2695664.2695729.
Full textPerreault, Logan, Monica Thornton, Shane Strasser, and John W. Sheppard. "Deriving prognostic continuous time Bayesian networks from D-matrices." In 2015 IEEE AUTOTESTCON. IEEE, 2015. http://dx.doi.org/10.1109/autest.2015.7356482.
Full textPoropudas, Jirka, and Kai Virtanen. "Simulation metamodeling in continuous time using dynamic Bayesian networks." In 2010 Winter Simulation Conference - (WSC 2010). IEEE, 2010. http://dx.doi.org/10.1109/wsc.2010.5679098.
Full textSchupbach, Jordan, Elliott Pryor, Kyle Webster, and John Sheppard. "Combining Dynamic Bayesian Networks and Continuous Time Bayesian Networks for Diagnostic and Prognostic Modeling." In 2022 IEEE AUTOTESTCON. IEEE, 2022. http://dx.doi.org/10.1109/autotestcon47462.2022.9984758.
Full textPerreault, Logan, John Sheppard, Houston King, and Liessman Sturlaugson. "Using continuous-time Bayesian networks for standards-based diagnostics and prognostics." In 2014 IEEE AUTOTEST. IEEE, 2014. http://dx.doi.org/10.1109/autest.2014.6935145.
Full textCodetta Raiteri, Daniele, and Luigi Portinale. "A GSPN based tool to inference Generalized Continuous Time Bayesian Networks." In 7th International Conference on Performance Evaluation Methodologies and Tools. ICST, 2014. http://dx.doi.org/10.4108/icst.valuetools.2013.254400.
Full textCodetta-Raiteri, Daniele, and Luigi Portinale. "Modeling and analysis of dependable systems through Generalized Continuous Time Bayesian Networks." In 2015 Annual Reliability and Maintainability Symposium (RAMS). IEEE, 2015. http://dx.doi.org/10.1109/rams.2015.7105131.
Full textPerreault, Logan, Monica Thornton, and John W. Sheppard. "Valuation and optimization for performance based logistics using continuous time Bayesian networks." In 2016 IEEE AUTOTESTCON. IEEE, 2016. http://dx.doi.org/10.1109/autest.2016.7589568.
Full textPerreault, Logan J., Monica Thornton, Rollie Goodman, and John W. Sheppard. "A Swarm-Based Approach to Learning Phase-Type Distributions for Continuous Time Bayesian Networks." In 2015 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2015. http://dx.doi.org/10.1109/ssci.2015.259.
Full textReports on the topic "Continuous Time Bayesian Network"
Zhao, Binghao, Yu Wang, and Wenbin Ma. Comparative Efficacy and Safety of Therapeutics for Elderly Glioblastoma: a Bayesian Network Analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, March 2022. http://dx.doi.org/10.37766/inplasy2022.3.0094.
Full textHe, zhe, liwei Xing, ming He, yuhuan Sun, jinlong Xu, and rong Zhao. Effect of Acupuncture on Mammary Gland Hyperplasia (MGH): a Bayesian network meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, September 2022. http://dx.doi.org/10.37766/inplasy2022.9.0058.
Full textDuan, Jingwei, Jie Yu, Qiangrong Zhai, and Qingbian Ma. Survival and Neurologic Outcome of Different Time of Collapse to return of Spontaneous Circulation in Cardiac Arrest with Targeted Temperature Management: a Bayesian Network Meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2021. http://dx.doi.org/10.37766/inplasy2021.8.0027.
Full textRosse, Anine, and Myles Cramer. Water quality monitoring for Knife River Indian Villages National Historic Site: 2019 data report. National Park Service, December 2022. http://dx.doi.org/10.36967/2295547.
Full textYatsymirska, Mariya. SOCIAL EXPRESSION IN MULTIMEDIA TEXTS. Ivan Franko National University of Lviv, February 2021. http://dx.doi.org/10.30970/vjo.2021.49.11072.
Full textFinancial Stability Report - First Semester of 2020. Banco de la República de Colombia, March 2021. http://dx.doi.org/10.32468/rept-estab-fin.1sem.eng-2020.
Full text