Journal articles on the topic 'Continuous spin detonations'

To see the other types of publications on this topic, follow the link: Continuous spin detonations.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 35 journal articles for your research on the topic 'Continuous spin detonations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bykovskii, Fedor A., Sergey A. Zhdan, and Evgenii F. Vedernikov. "Continuous Spin Detonations." Journal of Propulsion and Power 22, no. 6 (November 2006): 1204–16. http://dx.doi.org/10.2514/1.17656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Popov, E. L., A. N. Samsonov, F. A. Bykovskii, and E. F. Vedernikov. "MHD effects in continuous spin detonation." Доклады Академии наук 484, no. 5 (May 16, 2019): 550–53. http://dx.doi.org/10.31857/s0869-56524845550-553.

Full text
Abstract:
Conversion possibility of the chemical energy of combustion products of a hydrogen–oxygen mixture into electrical energy with the use of continuous spin detonation has been demonstrated for the first time in an MHD system. The specific conductivity of detonation products in the region of rotation of the detonation front was measured to be ~3 · 10–2 Ω–1 m–1. The structure of transverse detonation waves was examined, their velocity was measured (2220 ± 50 m/s), and the flow in their vicinity was studied.
APA, Harvard, Vancouver, ISO, and other styles
3

Popov, E. L., A. N. Samsonov, F. A. Bykovskii, and E. F. Vedernikov. "MHD Effects in Continuous Spin Detonation." Doklady Physics 64, no. 2 (February 2019): 77–79. http://dx.doi.org/10.1134/s102833581902006x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bykovskii, F. A., S. A. Zhdan, and E. F. Vedernikov. "Continuous Spin Detonation in Annular Combustors." Combustion, Explosion, and Shock Waves 41, no. 4 (July 2005): 449–59. http://dx.doi.org/10.1007/s10573-005-0055-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bykovskii, F. A., S. A. Zhdan, and E. F. Vedernikov. "Continuous spin detonation of fuel-air mixtures." Combustion, Explosion, and Shock Waves 42, no. 4 (July 2006): 463–71. http://dx.doi.org/10.1007/s10573-006-0076-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bykovskii, F. A., S. A. Zhdan, and E. F. Vedernikov. "Continuous spin detonation of synthesis gas-air mixtures." Combustion, Explosion, and Shock Waves 49, no. 4 (July 2013): 435–41. http://dx.doi.org/10.1134/s0010508213040060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bykovskii, F. A., S. A. Zhdan, E. F. Vedernikov, and A. N. Samsonov. "Scaling factor in continuous spin detonation of syngas–air mixtures." Combustion, Explosion, and Shock Waves 53, no. 2 (March 2017): 187–98. http://dx.doi.org/10.1134/s0010508217020095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Trotsyuk, A. V. "Numerical modelling of continuous spin detonation in rich methane-oxygen mixture." Journal of Physics: Conference Series 754 (October 2016): 052006. http://dx.doi.org/10.1088/1742-6596/754/5/052006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bykovskii, F. A., S. A. Zhdan, and E. F. Vedernikov. "Continuous spin detonation of hydrogen-oxygen mixtures. 1. Annular cylindrical combustors." Combustion, Explosion, and Shock Waves 44, no. 2 (March 2008): 150–62. http://dx.doi.org/10.1007/s10573-008-0021-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Heister, Stephen D., John Smallwood, Alexis Harroun, Kevin Dille, Ariana Martinez, and Nathan Ballintyn. "Rotating Detonation Combustion for Advanced Liquid Propellant Space Engines." Aerospace 9, no. 10 (October 7, 2022): 581. http://dx.doi.org/10.3390/aerospace9100581.

Full text
Abstract:
Rotating (also termed continuous spin) detonation technology is gaining interest in the global research and development community due to the potential for increased performance. Potential performance benefits, thrust chamber design, and thrust chamber cooling loads are analyzed for propellant applications using liquid oxygen or high-concentration hydrogen peroxide oxidizers with kerosene, hydrogen, and methane fuels. Performance results based on a lumped parameter treatment show that theoretical specific impulse gains of 3–14% are achievable with the highest benefit coming from hydrogen-fueled systems. Assessment of thrust chamber designs for notional space missions shows that both thrust chamber length and diameter benefits are achievable given the tiny annular chamber volume associated with the rotating detonation combustion. While the passing detonation front drastically increases local heat fluxes, global energy balances can be achieved if operating pressures are limited to be comparable to existing or prior space engines.
APA, Harvard, Vancouver, ISO, and other styles
11

Bykovskii, F. A., S. A. Zhdan, E. F. Vedernikov, and A. N. Samsonov. "Effect of combustor geometry on continuous spin detonation in syngas–air mixtures." Combustion, Explosion, and Shock Waves 51, no. 6 (November 2015): 688–99. http://dx.doi.org/10.1134/s0010508215060106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bykovskii, F. A., and S. A. Zhdan. "Continuous spin detonation of poorly detonable fuel-air mixtures in annular combustors." Journal of Physics: Conference Series 899 (September 2017): 042002. http://dx.doi.org/10.1088/1742-6596/899/4/042002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bykovskii, F. A., S. A. Zhdan, and E. F. Vedernikov. "Continuous spin detonation of a heterogeneous kerosene–air mixture with addition of hydrogen." Combustion, Explosion, and Shock Waves 52, no. 3 (May 2016): 371–73. http://dx.doi.org/10.1134/s0010508216030187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bykovskii, F. A., and E. F. Vedernikov. "Heat fluxes to combustor walls during continuous spin detonation of fuel-air mixtures." Combustion, Explosion, and Shock Waves 45, no. 1 (January 2009): 70–77. http://dx.doi.org/10.1007/s10573-009-0010-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Borovik, I. N., I. R. Farizanov, and L. S. Yanovskii. "Simulation of continuous spin detonation in an annular combustion chamber in two-dimensional statement." Thermophysics and Aeromechanics 29, no. 1 (January 2022): 125–42. http://dx.doi.org/10.1134/s0869864322010103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bykovskii, F. A., E. F. Vedernikov, and S. V. Polozov. "Noise and vibrations in a combustor with continuous spin detonation combustion of the fuel." Combustion, Explosion, and Shock Waves 42, no. 5 (September 2006): 582–93. http://dx.doi.org/10.1007/s10573-006-0090-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bykovskii, F. A., S. A. Zhdan, and E. F. Vedernikov. "Continuous spin detonation of hydrogen-oxygen mixtures. 2. Combustor with an expanding annular channel." Combustion, Explosion, and Shock Waves 44, no. 3 (May 2008): 330–42. http://dx.doi.org/10.1007/s10573-008-0041-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bykovskii, F. A., S. A. Zhdan, and E. F. Vedernikov. "Continuous spin detonation of a syngas-air mixture in a plane-radial vortex combustor." Journal of Physics: Conference Series 899 (September 2017): 042001. http://dx.doi.org/10.1088/1742-6596/899/4/042001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bykovskii, F. A., S. A. Zhdan, E. F. Vedernikov, and Yu A. Zholobov. "Continuous spin detonation of a coal-air mixture in a flow-type plane-radial combustor." Combustion, Explosion, and Shock Waves 49, no. 6 (November 2013): 705–11. http://dx.doi.org/10.1134/s0010508213060105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bykovskii, F. A., S. A. Zhdan, E. F. Vedernikov, A. N. Samsonov, A. I. Sychev, and A. E. Tarnaikin. "Pressure measurement by fast-response piezo-electric sensors during continuous spin detonation in the combustor." Combustion, Explosion, and Shock Waves 53, no. 1 (January 2017): 65–73. http://dx.doi.org/10.1134/s0010508217010105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zhdan, S. A., A. I. ARybnikov, and E. V. Simonov. "Modeling of Continuous Spin Detonation of a Hydrogen–Air Mixture in an Annular Cylindrical Combustor." Combustion, Explosion, and Shock Waves 56, no. 2 (March 2020): 209–19. http://dx.doi.org/10.1134/s0010508220020124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bykovskii, F. A., S. A. Zhdan, and E. F. Vedernikov. "Continuous spin detonation of methane/hydrogen-air mixtures with additional injection of air to combustion products." Journal of Physics: Conference Series 1128 (November 2018): 012062. http://dx.doi.org/10.1088/1742-6596/1128/1/012062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Simonov, E. V., and S. A. Zhdan. "Calculation of continuous spin detonation of a hydrogen-oxygen mixture in an annular combustor with oxygen ejection." Journal of Physics: Conference Series 1404 (November 2019): 012069. http://dx.doi.org/10.1088/1742-6596/1404/1/012069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Rybnikov, A. I., E. V. Simonov, A. M. Gurin, A. V. Trilis, and A. N. Samsonov. "Three-dimensional numerical simulation of continuous spin detonation in hydrogen-oxygen and hydrogen-air mixtures using OpenFOAM package." Journal of Physics: Conference Series 1404 (November 2019): 012065. http://dx.doi.org/10.1088/1742-6596/1404/1/012065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bykovskii, F. A., S. A. Zhdan, and E. F. Vedernikov. "Continuous Spin Detonation of the Kerosene-Air Mixture in a Flow-Type Radial Vortex Combustor 500 mm in Diameter." Физика горения и взрыва 58, no. 1 (2022): 40–52. http://dx.doi.org/10.15372/fgv20220104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bykovskii, F. A., S. A. Zhdan, and E. F. Vedernikov. "Continuous Spin Detonation of the Kerosene–Air Mixture in a Flow-Type Radial Vortex Combustor 500 mm in Diameter." Combustion, Explosion, and Shock Waves 58, no. 1 (February 2022): 34–45. http://dx.doi.org/10.1134/s001050822201004x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Bykovskii, F. A., S. A. Zhdan, and E. F. Vedernikov. "Continuous spin detonation of a hydrogen-air mixture with addition of air into the products and the mixing region." Combustion, Explosion, and Shock Waves 46, no. 1 (January 2010): 52–59. http://dx.doi.org/10.1007/s10573-010-0009-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bykovskii, F. A., and E. F. Vedernikov. "Continuous spin detonation of hydrogen-oxygen mixtures. 3. Methods of measuring flow parameters and flow structure in combustors of different geometries." Combustion, Explosion, and Shock Waves 44, no. 4 (July 2008): 451–60. http://dx.doi.org/10.1007/s10573-008-0072-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bykovskii, F. A., S. A. Zhdan, and E. F. Vedernikov. "Realization and modeling of continuous spin detonation of a hydrogen-oxygen mixture in flow-type combustors. 1. Combustors of cylindrical annular geometry." Combustion, Explosion, and Shock Waves 45, no. 5 (September 2009): 606–17. http://dx.doi.org/10.1007/s10573-009-0073-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bykovskii, F. A., S. A. Zhdan, and E. F. Vedernikov. "Realization and modeling of continuous spin detonation of a hydrogen-oxygen mixture in flow-type combustors. 2. Combustors with expansion of the annular channel." Combustion, Explosion, and Shock Waves 45, no. 6 (November 2009): 716–28. http://dx.doi.org/10.1007/s10573-009-0089-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

"Scaling Factor in Continuous Spin Detonation of Syngas-Air Mixtures." Физика горения и взрыва, no. 2 (2017). http://dx.doi.org/10.15372/fgv20170209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

"Effect of Combustor Geometry on Continuous Spin Detonation in Syngas—Air Mixtures." Физика горения и взрыва 51, no. 6 (2015). http://dx.doi.org/10.15372/fgv20150610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

"Continuous Spin Detonation of a Heterogeneous Kerosene-Air Mixture with Addition of Hydrogen." Физика горения и взрыва, no. 3 (2016). http://dx.doi.org/10.15372/fgv20160318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

"Pressure measurement by Fast-Response Piezo-Sensors during Continuous Spin Detonation in the Combustor." Физика горения и взрыва, no. 1 (2017). http://dx.doi.org/10.15372/fgv20170110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

"Modeling of Continuous Spin Detonation of a Hydrogen-Air Mixture in an Annular Cylindrical Combustor." Физика горения и взрыва, no. 2 (2020). http://dx.doi.org/10.15372/fgv20200212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography