Academic literature on the topic 'Construction kits'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Construction kits.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Construction kits"
Resnick, Mitchel. "Behavior construction kits." Communications of the ACM 36, no. 7 (July 1993): 64–71. http://dx.doi.org/10.1145/159544.159593.
Full textFischer, Gerhard, and Andreas C. Lemke. "Construction Kits and Design Environments." ACM SIGCHI Bulletin 20, no. 1 (July 1988): 81. http://dx.doi.org/10.1145/49103.1046496.
Full textHAVELKA, Martin, and Pavlína ČÁSTKOVÁ. "USING THE LEGO CONSTRUCTION KITS IN PRESCHOOL EDUCATION." Trends in Education 8, no. 1 (July 1, 2015): 102–12. http://dx.doi.org/10.5507/tvv.2015.004.
Full textPermyakov, V. B., R. F. Salikhov, G. N. Musagitova, and N. Yu Levin. "Designing optimal structure of road construction machines kits." Journal of Physics: Conference Series 1260 (August 2019): 082004. http://dx.doi.org/10.1088/1742-6596/1260/8/082004.
Full textSERAFÍN, Čestmír. "ELECTRICAL CONSTRUCTION KITS AND THEIR INFLUENCE ON TEACHING." Journal of Technology and Information 4, no. 1 (April 1, 2012): 46–49. http://dx.doi.org/10.5507/jtie.2012.008.
Full textMINARČÍK, Josef, and Martin HAVELKA. "THE CONSTRUCTION KITS II IN GENERAL TECHNICAL EDUCATION." Journal of Technology and Information 4, no. 3 (December 1, 2012): 95–98. http://dx.doi.org/10.5507/jtie.2012.060.
Full textMoon, Byung-Chul, Dong-Soo Kim, and Hee-Wan Kim. "The Audit Method for Efficient Hospital Information System Construction." Journal of the Korea society of IT services 11, no. 2 (June 30, 2012): 197–211. http://dx.doi.org/10.9716/kits.2012.11.2.197.
Full textDittert, Nadine, Eva-Sophie Katterfeldt, and Heidi Schelhowe. "Die EduWear-Umgebung – Wearables konstruierend be-greifen." i-com 11, no. 2 (August 2012): 37–43. http://dx.doi.org/10.1524/icom.2012.0024.
Full textD’Amico, Antonella, and Domenico Guastella. "The Robotic Construction Kit as a Tool for Cognitive Stimulation in Children and Adolescents: The RE4BES Protocol." Robotics 8, no. 1 (January 30, 2019): 8. http://dx.doi.org/10.3390/robotics8010008.
Full textKwon, Hyeog-In, Yun-Bin Na, and Jong-Suk Park. "Platform Based of The Major Attribute Research for The Service Ecosystem Construction." Journal of the Korea society of IT services 12, no. 4 (December 31, 2013): 461–72. http://dx.doi.org/10.9716/kits.2013.12.4.461.
Full textDissertations / Theses on the topic "Construction kits"
Meintjes, Roger [Verfasser], Heidi [Akademischer Betreuer] [Gutachter] Schelhowe, and Bakhtiar [Gutachter] Mikhak. "Co-Construction Kits : the Transformative Potential of Interpersonal Connection for After-School Centres / Roger Meintjes ; Gutachter: Heidi Schelhowe, Bakhtiar Mikhak ; Betreuer: Heidi Schelhowe." Bremen : Staats- und Universitätsbibliothek Bremen, 2017. http://d-nb.info/1141277735/34.
Full textYang, Alice 1978. "GameWeaver : a construction kit for kids to create video games for handheld devices." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/86856.
Full textLeaf [90] incorrectly numbered "2".
Includes bibliographical references (leaves 89-[90]).
by Alice (Yu) Yang.
M.Eng.
Foo, Edwin W. 1979. "BotKit : the robot construction kit." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80531.
Full textVita.
Includes bibliographical references (p. 74-76).
by Edwin W. Foo.
M.Eng.
Travers, Michael D. (Michael David). "Agar--an animal construction kit." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/78088.
Full textAljundi, Liam. "Moving Mathematics : Exploring constructivist tools to enhance mathematics learning." Thesis, Malmö universitet, Institutionen för konst, kultur och kommunikation (K3), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-42981.
Full textSilver, Jay (Jay Saul). "Lens x block : World as construction kit." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/95590.
Full textCataloged from PDF version of thesis. Vita.
Purpose and meaning of the physical world can be re-assigned and re-made by individuals as they go rather than being pre-fixed by people who came before them. But this mindset is more rare than it should be if we want an empowered population full of creative powerful beings. So can we make special tools that by design help people to put into practice the mindset and actionable behavior that: The World is a Construction Kit? We can, and in fact people have already done so with some existing tools which I will present. Then, I will present several new digital construction kits with a focus on two, Drawdio and Makey Makey, that are designed to focus attention on the world as the construction kit. Rather than combining kit-parts that come in a box, participants take pieces of the world they live in and re-purpose and re-combine these everyday objects from their life. I formalize this type of construction kit, explaining how it takes the constructive aspect of a traditional wooden block, and the world-transforming multiplicative aspect of the traditional looking glass lens, to make a block-and-lens-in-one, which I call a Constructive Lens. I consider traditional construction kits like LEGO, or kits that aren't necessarily thought of as "construction kits" per se, like Painting Kits: Brush/Paint/Canvas, and show how to transform these traditional construction kits, which offer their own pre-fixed components, to the realm where the world, that is the everyday objects in one's life, is instead acting as the components of the kit. The ultimate goal of the thesis is to show how we can we make tools and activities, "Constructive Lenses," that, by design, catalyze: re-seeing (lens) the everyday world as something we can re-make (block) The thesis approaches this goal through a rich narrative with thick description of design studies and case studies, intended to experientially model the process of motivating, making, and deploying Constructive Lenses to hundreds of thousands of people.
by Jay Silver.
Ph. D.
Sadi, Sajid H. (Sajid Hassan). "subTextile : a construction kit for computationally enabled textiles." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37402.
Full textIncludes bibliographical references (p. 87-89).
As technology moves forward, electronics have enmeshed with every aspect of daily life. Some pioneers have also embraced electronics as a means of expression and exploration, creating the fields of wearable computing and electronic textiles. While wearable computing and electronic textiles seem superficially connected as fields of investigation, in fact they are currently widely separated. However, as the field of electronic textiles grows and matures, it has become apparent that better tools and techniques are necessary in order for artists and designers interested in using electronic textiles as a means of expression and function to be able to use the full capabilities of the available technology. It remains generally outside the reach of the average designer or artist to create e-textile experiences, thus preventing them from appropriating the technology, and in turn allowing the general public to accept and exploit the technology. There is clearly a need to facilitate this cross-pollination between the technical and design domains both in order to foster greater creativity and depth in the field of electronic textiles, and in order to bring greater social acceptability to wearable computing.
(cont.) This thesis introduces behavioral textiles, the intersection of wearable computing and electronic textiles that brings the interactive capability of wearable electronics to electronic textiles. As a means of harnessing this capability, the thesis also presents subTextile, a powerful and novel visual programming language and development. Design guidelines for hardware that can be used with the development environment to create complete behavioral textile systems are also presented. Using a rich, goal-oriented interface, subTextile makes it possible for novices to explore electronic textiles without concern for technical details. This thesis presents the design considerations and motivations that drove the creation of subTextile. Also presented are the result of a preliminary evaluation of the language, done with a sample chosen to represent users with varying capabilities in both the technical and design domains.
by Sajid H. Sadi.
S.M.
Archibald, Paul. "Construction of, and performance on, the early drum kit." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/29632.
Full textBhargava, Rahul 1978. "Designing a computational construction kit for the blind and visually impaired." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/61124.
Full textIncludes bibliographical references (p. 67-68).
This thesis documents the adaptation and extension of an existing computational construction kit, and its use by a community of learners previously unaddressed - blind and visually impaired children. This community has an intimate relationship with the digital and assistive technologies that they rely on for carrying out their everyday tasks, but have no tools for designing and creating their own devices. Using a computational construction kit, created around the latest Programmable Brick (the Cricket), children can write programs to interact with the world around them using sensors, speech synthesis, and numerous other actuators. The Cricket system was extended with a number of specific modules, and redesigned to better suit touch and sound-based interaction patterns. This thesis documents an initial technology implementation and presents case studies of activities carried out with a small group of visually impaired teenagers. These case studies serve to highlight specific domains of knowledge that were discovered to be especially relevant for this community. Much of this work impacts approaches, technologies, and activities for sighted users of the Programmable Brick.
by Rahul Bhargava.
S.M.
Bruckman, Amy Susan. "MOOSE crossing : construction, community and learning in a networked virtual world for kids." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/33821.
Full textBooks on the topic "Construction kits"
Aldous, Trevor. A guide to using construction kits in schools. Trowbridge: Wiltshire County Council, 1990.
Find full textCory, Bill. Building Martin-style acoustic guitar kits: A complete construction manual. Colorado Springs, CO: Niche Pub. Co., 2008.
Find full textWiley, Jack. Boatbuilding from fiberglass hulls and kits. Lodi, Calif: Solipaz Pub. Co., 1985.
Find full textThe electric vehicle conversion handbook: How to convert cars, trucks, motorcycles, and bicycles : includes EV components, kits, and project vehicles. New York: HPBooks, 2011.
Find full textEngineering the CMOS library: Enhancing digital design kits for competitive silicon. Hoboken, N.J: John Wiley & Sons, 2012.
Find full textThorburn, Neil. Super kites III. 2nd ed. San Jose, Calif. (4738 Elmhurst Dr., San Jose 95129): N. Thorburn, 1991.
Find full textEden, Maxwell. The Magnificent book of kites: Explorations in design, construction, enjoyment & flight. Cologne: Könemann Verlagsgesellschaft, 1999.
Find full textM, MacMurray Jessica, ed. The magnificent book of kites: Explorations in design, construction, enjoyment & flight. New York: Sterling Pub. Co., 2000.
Find full textDixon, Norma. Kites. Toronto: Kids Can Press, 1995.
Find full textDixon, Norma. Kites: Twelve easy-to-make high fliers. New York: Morrow Junior Books, 1996.
Find full textBook chapters on the topic "Construction kits"
Sloman, Aaron. "Construction Kits for Biological Evolution." In The Incomputable, 237–92. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43669-2_14.
Full textBruns, Wilhelm F. "Complex Construction Kits for Coupled Real and Virtual Engineering Workspaces." In Cooperative Buildings. Integrating Information, Organizations, and Architecture, 55–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/10705432_6.
Full textQuade, Michael, David Jentsch, and Egon Mueller. "Outline of a Methodic Realization of Construction Kits for Changeable Production Systems." In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, 192–99. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-662-44733-8_24.
Full textAbend, Pablo. "Editor Games: Digital Construction Kits at the Beginning and End of a Participatory Gaming Culture." In Perspektiven der Game Studies, 55–72. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-28619-4_4.
Full textFreeman, Christopher M. "Kites and Basic Constructions." In Hands-On Geometry, 9–18. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003235477-2.
Full textTroen, Bruce R. "The Gene Construction Kit." In Sequence Data Analysis Guidebook, 257–72. Totowa, NJ: Humana Press, 1997. http://dx.doi.org/10.1385/0-89603-358-9:257.
Full textDunkelman, Orr, and Ariel Weizman. "Efficient Construction of the Kite Generator Revisited." In Lecture Notes in Computer Science, 6–19. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94147-9_2.
Full textFrey, Hannes, and Stefan Rührup. "Paving the Way Towards Reactive Planar Spanner Construction in Wireless Networks." In Kommunikation in Verteilten Systemen (KiVS), 17–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92666-5_2.
Full textBrinkmeier, Michael, Mathias Fischer, Sascha Grau, and Guenter Schaefer. "Towards the Design of Unexploitable Construction Mechanisms for Multiple-Tree Based P2P Streaming Systems." In Kommunikation in Verteilten Systemen (KiVS), 193–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92666-5_16.
Full textAdamietz, Raphael, Tobias Iseringhausen, and Alexander Verl. "Process Module Construction Kit for Modular Micro Assembly Systems." In Lecture Notes in Computer Science, 126–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45586-9_16.
Full textConference papers on the topic "Construction kits"
Resnick, Mitchel, and Brian Silverman. "Some reflections on designing construction kits for kids." In Proceeding of the 2005 conference. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1109540.1109556.
Full textJung, Bernhard, Martin Hoffhenke, and Ipke Wachsmuth. "Virtual Assembly With Construction Kits." In ASME 1998 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/detc97/dfm-4363.
Full textGopsill, James. "EXAMINING THE SOLUTION BIAS OF CONSTRUCTION KITS." In 15th International Design Conference. Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia; The Design Society, Glasgow, UK, 2018. http://dx.doi.org/10.21278/idc.2018.0192.
Full textBock, T. "Robot Oriented Design of Variable Building Kits." In 7th International Symposium on Automation and Robotics in Construction. International Association for Automation and Robotics in Construction (IAARC), 1990. http://dx.doi.org/10.22260/isarc1990/0030.
Full textAish, Robert, James L. Frankel, John H. Frazer, and Anthony T. Patera. "Computational construction kits for geometric modeling and design (Panel Abstract)." In the 2001 symposium. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/364338.364379.
Full textHubalovska, Marie, and Stepan Major. "THE RESEARCH OF USING CONSTRUCTION KITS IN PRIMARY SCHOOL LEARNING." In 13th annual International Conference of Education, Research and Innovation. IATED, 2020. http://dx.doi.org/10.21125/iceri.2020.0705.
Full textPhiletus Weller, Michael, Ellen Yi Luen Do, and Mark D. Gross. "An Optocoupled Poseable Ball and Socket Joint for Computationally Enhanced Construction Kits." In 2nd International ICST Conference on Robot Communication and Coordination. IEEE, 2009. http://dx.doi.org/10.4108/icst.robocomm2009.5824.
Full textYi Su and Xiaoge Tan. "Concepts of SMART Kits: developing a simple, multiple-scale, and rational sustainable assessment toolbox." In 3rd International Conference on Contemporary Problems in Architecture and Construction. IET, 2011. http://dx.doi.org/10.1049/cp.2011.1165.
Full textFilho, Jose Ahirton Batista Lopes, Will Ribamar Mendes Almeida, and Sergio Gomes Martins. "Development of a multitasking mobile robot for the construction of educational robotics kits." In 2011 International Conference on Electronic Devices, Systems and Applications (ICEDSA). IEEE, 2011. http://dx.doi.org/10.1109/icedsa.2011.5959090.
Full textHubalovska, Marie. "THE CONSTRUCTION KITS AS A TOOL FOR DEVELOPMENT OF PUPILS' TECHNICAL LITERACY AND TECHNICAL CREATIVITY – CASE STUDY." In 10th annual International Conference of Education, Research and Innovation. IATED, 2017. http://dx.doi.org/10.21125/iceri.2017.1272.
Full text