Academic literature on the topic 'Constitutive Model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Constitutive Model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Constitutive Model"
Desai, Chandrakant S., and Mohammad R. Salami. "Constitutive Model for Rocks." Journal of Geotechnical Engineering 113, no. 5 (May 1987): 407–23. http://dx.doi.org/10.1061/(asce)0733-9410(1987)113:5(407).
Full textKhoo, H. A., and T. M. Hrudey. "Constitutive Model for Ice." Journal of Engineering Mechanics 118, no. 2 (February 1992): 259–79. http://dx.doi.org/10.1061/(asce)0733-9399(1992)118:2(259).
Full textRus, Guillermo, Juan Melchor, Marie Muller, and Akhtar A. Khan. "Biomechanical Constitutive Model Identification." Mathematical Problems in Engineering 2019 (July 14, 2019): 1–2. http://dx.doi.org/10.1155/2019/3607015.
Full textYang, Wei Wu, Hai Feng Liu, and Jian Guo Ning. "Dynamic Constitutive Model of Concrete." Advanced Materials Research 450-451 (January 2012): 379–82. http://dx.doi.org/10.4028/scientific5/amr.450-451.379.
Full textYang, Wei Wu, Hai Feng Liu, and Jian Guo Ning. "Dynamic Constitutive Model of Concrete." Advanced Materials Research 450-451 (January 2012): 379–82. http://dx.doi.org/10.4028/www.scientific.net/amr.450-451.379.
Full textMa, Wen Xu, and Ying Guang Fang. "Gradient of Soil Constitutive Model." Advanced Materials Research 168-170 (December 2010): 1126–29. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.1126.
Full textYao, Yang-Ping, Haruyuki Yamamoto, and Nai-Dong Wang. "Constitutive Model Considering Sand Crushing." Soils and Foundations 48, no. 4 (August 2008): 603–8. http://dx.doi.org/10.3208/sandf.48.603.
Full textOrd, A., B. E. Hobbs, and K. Regenauer-Lieb. "A smeared seismicity constitutive model." Earth, Planets and Space 56, no. 12 (December 2004): 1121–33. http://dx.doi.org/10.1186/bf03353331.
Full textMróz, Z., N. Boukpeti, and A. Drescher. "Constitutive Model for Static Liquefaction." International Journal of Geomechanics 3, no. 2 (December 2003): 133–44. http://dx.doi.org/10.1061/(asce)1532-3641(2003)3:2(133).
Full textFrantziskonis, G., C. S. Desai, and S. Somasundaram. "Constitutive Model for Nonassociative Behavior." Journal of Engineering Mechanics 112, no. 9 (September 1986): 932–46. http://dx.doi.org/10.1061/(asce)0733-9399(1986)112:9(932).
Full textDissertations / Theses on the topic "Constitutive Model"
Adi, Riyono Winarputro. "CJS-RE : a hierarchical constitutive model for rammed earth." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEC036/document.
Full textRammed earth is a vernacular building technique consisting in compacting successively layers of moist earth within formworks. This technique is present worldwide and in particular in the region Auvergne-Rhône-Alpes in France. As no regulation exists for rammed earth structures in France, the owners of such structures are helpless at the time when repairing damages appearing in any aging heritage structures. Moreover, this lack of regulation tends to slow down the development of such a constructive solution in new projects though this technique answers many of the issues raised by the sustainable development. The work presented herein is part of the national research project PRIMATERRE devoted to the study of construction building involving earth. Herein, an elasto-plastic constitutive law is developed for modeling the behavior of rammed earth. It is based on a hierarchical approach of the modeling in relation to the information available to identify the set of model parameters and the refinement of phenomena to be modelled. This model was adapted from a pre-existing CJS model used in advanced foundation engineering for the modelling of granular soils. The necessary adaptation of some mechanisms of the model in the context of rammed earth material which holds the characteristics of a quasi-brittle material is highlighted. Two levels for the model denoted CJS-RE which can be used in the context of monotonous loadings are presented herein. The first level is a simple elastic perfectly plastic model (CJS-RE1) and the second model is an elasto-plastic model with an isotropic hardening (CJS-RE2). Two mechanisms of plastic deformation are involved, one related to purely deviatoric phenomena and one related to tensile phenomena. The validation of the model was performed based on different sets of actual tests including diagonal compression tests and pushover tests on wallets. The simple elasto-plastic model CJS-RE1 was able to capture some basic features for these two tests and may be used for a first estimate of the system resistance. The more sophisticated model CJS-RE2 was found better to retrieve the nonlinear behavior of rammed earth over a larger range of deformations throughout both a diagonal compression test and a pushover test. Finally, the modelling of interfaces between layers of earth seems oversized when the resistance of the system is investigated. However, since they may influence the simulated ductility of the system, they may be used to model the behavior of rammed earth system more precisely
Kelln, Curtis Gerald. "An elastic-viscoplastic constitutive model for soil." Thesis, Queen's University Belfast, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491999.
Full textSIMOES, LEONARDO CRAVEIRO. "A CONSTITUTIVE MODEL FOR FIBER REINFORCED CONCRETE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1998. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=1511@1.
Full textNos últimos 40 anos, tem-se observado um crescente interesse por compósitos formados pela adição de fibras a matrizes de concreto, os chamados concretos reforçados com fibras. Esse interesse é justificado, sobretudo, pelo significativo ganho em tenacidade que as fibras proporcionam, atenuando as características frágeis do concreto. De fato, em virtude do mecanismo de reforço promovido pelas fibras, o concreto com fibras é capaz de absorver muito mais energia de deformação até a ruptura, apresentando, no regime pós-fissuração, um comportamento muito mais suave que o concreto simples. Esse comportamento é acompanhado por um processo de fissuração mais uniforme, no qual observam-se fissuras mais finas e menos espaçadas. Além disso, registram-se aumentos nos valores de resistência do material e nos níveis de deformação que ele atinge até seu completo esgotamento. Tendo em vista os benefícios que as fibras aportam ao desempenho do concreto, seu emprego seria recomendável a estruturas em que a ductilidade é um dos parâmetros principais de projeto, ou naquelas feitas com concretos de alta resistência, uma vez que estes apresentam um comportamento ainda mais frágil que os concretos de resistência normal. Além disso, a utilização de fibras no combate aos esforços de cisalhamento mostra-se extremamente vantajosa e promissora. Neste trabalho, apresenta-se um modelo constitutivo para concreto reforçado com fibras baseado na formulação hipoelástica de ELWI E MURRAY (1979), originalmente proposta para concreto simples. As especificidades do comportamento do concreto com fibras frente às mais diversas solicitações, tais como, tração, compressão e cisalhamento, são incorporadas ao modelo através de relações tensão-deformação adequadas a esse material. Tais relações provêm de estudos analíticos e experimentais sobre o assunto, publicados na literatura técnica especializada. O modelo assim obtido é implementado no programa FEPARCS (ELWI E MURRAY, 1980), capaz de realizar análises númericas não-lineares através do método dos elementos finitos. Por fim, utiliza-se esse program para simular a resposta de uma estrutura de concreto com fibras, cujo ensaio experimental aparece minuciosamente descrito em (CRAIG, 1987). Os resultados numéricos obtidos são comparados com os experimentais correspondentes, em termos da curva carga versus deslocamento, desenvolvimento e distribuição de fissuras, progressão do escoamento da armadura longitudinal (convencional) e modo de ruptura. Avalia-se, então, a eficiência da implementação realizada na descrição do comportamento de estruturas de concreto com fibras.
Along the past forty years, an increasing interest on composite materials formed by the addition of discrete fibers to a concrete matrix is being observed. These composites are known as fiber reinforced concretes. The interest on the use of fibers as reinforcement is justified by their significative contribution to concrete thoughness, as they reduce the brittle characteristics of that material. In fact, due to fiber reinforcement mechanism, fiber reinforced concrete can absorb much more strain energy until failure, in comparison to ordinary concrete. The cracking process seems to be more uniform, as the distance between cracks are reduced. Besides that, the material strength and the deformation levels at cracking and rupture are greater, on the case of fiber reinforced concrete. The benefits that fibers bring to concrete behavior indicate that they could be used as complementary reinforcent for concrete structures when ductility is a major design concern, or when high strength concrete is employed, as this class of material tends to be much more brittle then normal strength concrete. Fibers are also effective as shear reinforcement, and they could even replace stirrups in this function. In this work, a constituive model for fiber reinforced concrete is presented. This model is based on the formulation originally proposed by ELWI AND MURRAY (1979) for the case of ordinary concrete. The behavior characteristcs of fiber reinforced concrete are incorporated as adaquated uniaxial stress-strain relations in tension and compression. The behavior under shear stress is also considered. The model is then implemented in the finite element program FEPARCS (ELWI AND MURRAY, 1980). A numerical analysis on the response of a fiber reinforced concrete structure is conducted. Results reported in technical literature (CRAIG, 1987) are compared to those obtained by the finite element analysis. The efficiency of the model is then verified.
En los últimos 40 anos, se ha observado un creciente interés por compuestos formados por la adición de fibras a matrizes de concreto, los llamados concretos reforzados con fibras. Ese interés se debe a la significativa ganancia en tenacidad que las fibras proporcionan, atenuando las características frágiles del concreto. De hecho, en virtud del mecanismo de refuerzo promovido por las fibras, el concreto con fibras es capaz de absorver mucha más energía de deformación hasta la ruptura, presentando, en el régimen posfisuración, un comportamiento mucho más suave que el concreto simple. Este comportamiento se ve acompañado por un proceso de fisuración más uniforme, en el cual se observan fisuras más finas y menos espaciadas. Además, se registran aumentos en los valores de resistencia del material y en los niveles de deformación que alcanza hasta su completa destrucción. Teniedo en cuenta los beneficios que las fibras aportan al desempeño del concreto, sería recomendable su empleo en extructuras donde la ductilidad es uno de los parámetros principales de proyecto, o en aquellas hechas con concreto de alta resistencia, ya que éstos presentan un comportamiento más frágil que los concretos de resistencia normal. En este trabajo, se presenta un modelo constitutivo para concreto reforzado con fibras que tiene como base la formulación hipoelástica de ELWI Y MURRAY (1979), originalmente propuesta para concreto simple. Las especificidades del comportamiento del concreto con fibras frente a las más diversas solicitudes, tales como, tracción, compresión y cisallamiento, se incorporan al modelo a través de relaciones tensión-deformación adecuadas a ese material. Tales relaciones provienen de estudios analíticos y experimentales sobre el asunto, publicados en la literatura técnica especializada. La implementación del modelo obtenido fue realizada a través del programa FEPARCS (ELWI Y MURRAY, 1980), capaz de realizar análisis númerico no lineal a través del método de los elementos finitos. Por fin, se utiliza ese programa para simular la respuesta de una extructura de concreto con fibras, cuyo ensayo experimental aparece minuciosamente descrito en (CRAIG, 1987). Los resultados numéricos obtenidos se comparan con los experimentales correspondientes, considerando la curva carga versus deslocamiento, desarrollo y distribuición de fisuras, progresión del deslizamiento de la armadura longitudinal (convencional) y modo de ruptura. Se evalúa entonces, la eficiencia de la implementación en la descrición del comportamiento de extructuras de concreto con fibras.
Kim, Se-Hyung. "Cyclic Uniaxial Constitutive Model For Steel Reinforcement." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/51241.
Full textMaster of Science
Babbepalli, Venkata Venu Sai Phani Ram. "Implementation of moisturedependent constitutive model for paperboard." Thesis, KTH, Hållfasthetslära, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284356.
Full textAnvändningen av pappersprodukter har ökat avsevärt på grund av dess hållbarhet i produktcykeln. Många miljö- och processvariabler kan påverka papperets egenskaper från tillverkning till färdig produkt. Av dessa variabler är fukt särskilt viktig och fukt påverkar kraftigt både tillverkning, konvertering och slutanvändning av pappersprodukter. En experimentell undersökning vid olika fuktighetsnivåer visar att normaliserade konstitutiva parametrar, såsom elastiska styvheter och tangentmodulen i papperets plan i både MD och CD, uppvisar ett linjärt samband som funktion av normaliserad fuktkvot. Detta samband har visat sig vara en god approximation för ett stort antal kommersiella kartonger. En ny materialmodell baserad på ortotrop elasticitet och anisotropt hårdnande föreslås med hänsyn till detta. En associativ flytlag för plastisk deformation föreslås. Den föreslagna flytlagen är sådan att alla spänningar bidrar till den plastiska deformationen snarare än effektivspänningen. En enklare version baserad på linjärt anisotropt hårdnande har modellerats. De mekaniska egenskaperna såsom styvhet och hårdnandemodul anses vara funktioner av fuktkvoten och följa de linjära sambanden. En implicit variant av materialmodellen är implementerad i LS-DYNA®. Simuleringar med den föreslagna materialmodellen vid olika fuktkvoter följer de experimentella resultaten väl vid enaxlig belastning medan vissa avvikelser uppträder vid tvåaxlig belastning. I den föreslagna modellen antas fukten antas vara konstant eftersom de bakomliggande experimenten genomfördes i en fuktkontrollerad miljö.
Chen, Cheng-Wei. "A constitutive model for fiber-reinforced soils." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4768.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Typescript. Vita. Title from title screen of research.pdf file (viewed on March 6, 2009) Includes bibliographical references.
Mei, Zhu. "Structural hybrid simulation with model updating of material constitutive model." Doctoral thesis, Università degli studi di Trento, 2018. https://hdl.handle.net/11572/368550.
Full textMei, Zhu. "Structural hybrid simulation with model updating of material constitutive model." Doctoral thesis, University of Trento, 2018. http://eprints-phd.biblio.unitn.it/2959/1/TESI_ZHU_MEI.pdf.
Full textJunior, Wanderley Camargo Russo. "Desenvolvimento de um modelo hipoplástico que represente efeitos do sobreadensamento." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/3/3145/tde-19092006-170548/.
Full textModifications in a hypoplastic model are proposed intending to represent the mechanical behavior of overconsolidated clays. The overconsolidation ratio, the cohesion intercept and indices that represent overconsolidation characteristics are introduced in the model, resulting in parameters with a clear physical meaning and of easy to determine. The constitutive equation is then calibrated with parameters of overconsolidated soils and the capacity of the models of representing the behavior of two soils in particular is checked, confronting the theoretical predictions with experimental results in several loading situations and in a wide overconsolidation ratio range. It is verified that the modifications introduced into hypoplastic model contemplates significant advances in the representation of the effects of overconsolidation, like the curvature of the strength envelope in the overconsolidation region, the increase of the deformability modulus with the overconsolitadion ratio, different stiffness in loading and reloading, the increase of the deviator stress at failure in overconsolidated soils, presenting peak deviator stress, a decrease of the tendency to volumetric contraction with the increase of the overconsolidation ratio, including to the volumetric expansion, and, in undrained tests, negative pore pressure when the soil is heavily overconsolidated.
Pisoni, Attilio C. (Attilio Carlo). "A constitutive model for friction in metal-working." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/12620.
Full textBooks on the topic "Constitutive Model"
Timmermans, P. Evaluation of a constitutive model for solid polymeric materials. Eindhoven: Eindhoven University of Technology, 1997.
Find full textZhang, Sherong, Xiaohua Wang, and Chao Wang. Dynamic Mechanical Behaviors and Constitutive Model of Roller Compacted Concrete. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8987-2.
Full textHamilton, Colin James. A plane strain constitutive model for sands under non monotonic loading. Birmingham: University of Birmingham, 1997.
Find full text1928-, Sun C. T., and Langley Research Center, eds. A constitutive model for AS4/PEEK thermoplastic composites under cyclic loading. West Lafayette, IN: Purdue University, School of Aeronautics and Astronautics, 1990.
Find full textUnited States. National Aeronautics and Space Administration., ed. A GENERAL REVERSIBLE HEREDITY CONSTITUTIVE MODEL... NASA-TM-107494... APR. 7, 1998. [S.l: s.n., 1999.
Find full textMolenkamp, F. Numerical simulation of cyclic triaxal tests by means of the constitutive model ALTERNAT. Manchester: University of Manchester, 1989.
Find full textH, Allen David, Harris Charles E. 1950-, and Langley Research Center, eds. A procedure for utilization of a damage-dependent constitutive model for laminated composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.
Find full textUnited States. National Aeronautics and Space Administration., ed. On the finite element implementation of the generalized method of cells micromechanics constitutive model. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Find full textChan, Gabrielle Ka-Po. Finite element analysis of an embankment dam using the Monot double-hardening constitutive soil model. Manchester: University of Manchester, 1996.
Find full textBeris, Antony N. Spectral calculations of viscoelastic flows: Evaluation of the Giesekus constitutive equation in model flow problems. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1992.
Find full textBook chapters on the topic "Constitutive Model"
Hashiguchi, Koichi. "Viscoplastic Constitutive Equations." In Foundations of Elastoplasticity: Subloading Surface Model, 415–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48821-9_13.
Full textHashiguchi, Koichi. "Elastic Constitutive Equations." In Foundations of Elastoplasticity: Subloading Surface Model, 153–64. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48821-9_5.
Full textHashiguchi, Koichi. "Elastic Constitutive Equations." In Foundations of Elastoplasticity: Subloading Surface Model, 189–210. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-93138-4_7.
Full textHashiguchi, Koichi. "Elastoplastic Constitutive Equations." In Foundations of Elastoplasticity: Subloading Surface Model, 211–42. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-93138-4_8.
Full textHashiguchi, Koichi. "Constitutive Equations of Metals." In Foundations of Elastoplasticity: Subloading Surface Model, 275–315. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48821-9_10.
Full textHashiguchi, Koichi. "Constitutive Equations of Soils." In Foundations of Elastoplasticity: Subloading Surface Model, 317–94. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48821-9_11.
Full textHashiguchi, Koichi. "Constitutive Equations of Metals." In Foundations of Elastoplasticity: Subloading Surface Model, 319–64. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-93138-4_12.
Full textHashiguchi, Koichi. "Constitutive Equations of Soils." In Foundations of Elastoplasticity: Subloading Surface Model, 365–431. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-93138-4_13.
Full textJhun, Choon-Sik, Jonathan F. Wenk, Kay Sun, and Julius M. Guccione. "Constitutive Equations and Model Validation." In Computational Cardiovascular Mechanics, 41–54. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0730-1_3.
Full textIndraratna, Buddhima, and Trung Ngo. "UOW – constitutive model for ballast." In Ballast Railroad Design: SMART-UOW Approach, 94–102. First edition. | Boca Raton : CRC Press/Balkema, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429504242-8.
Full textConference papers on the topic "Constitutive Model"
Chieslar, J. D. "A Comprehensive Constitutive Model Solver." In 56th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2022. http://dx.doi.org/10.56952/arma-2022-0865.
Full textHom, Craig L., and Natarajan Shankar. "Constitutive model for relaxor ferroelectrics." In 1999 Symposium on Smart Structures and Materials, edited by Vasundara V. Varadan. SPIE, 1999. http://dx.doi.org/10.1117/12.350068.
Full textReedlunn, Benjamin. "New Salt Constitutive Model Status." In Proposed for presentation at the DOE-EPA Technical Exchange held October 27-27, 2022 in Albuquerque, New Mexico United States. US DOE, 2022. http://dx.doi.org/10.2172/2005737.
Full textHicher, P. Y., and C. S. Chang. "A Constitutive Model for Lunar Soil." In 11th Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40988(323)16.
Full textDeng, W., and I. B. Morozov. "Lagrangian Constitutive Model for Bitumen Sands." In 76th EAGE Conference and Exhibition 2014. Netherlands: EAGE Publications BV, 2014. http://dx.doi.org/10.3997/2214-4609.20141406.
Full textVinogradov, Aleksandra M. "Constitutive model of piezoelectric polymer PVDF." In 1999 Symposium on Smart Structures and Materials, edited by Vasundara V. Varadan. SPIE, 1999. http://dx.doi.org/10.1117/12.350121.
Full textMolenaar, M. M., J. M. Huyghe, and P. A. J. van den Bogert. "A Constitutive Model For Swelling Shales." In SPE/ISRM Rock Mechanics in Petroleum Engineering. Society of Petroleum Engineers, 1998. http://dx.doi.org/10.2118/47332-ms.
Full textNeilsen, Mike, Wei-Yang Lu, Bill Olsson, and Terry Hinnerichs. "A Viscoplastic Constitutive Model for Polyurethane Foams." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14551.
Full textKerali, Anthony G. "Constitutive model for predicting deterioration in concrete." In 2nd International RILEM Symposium on Advances in Concrete through Science and Engineering. RILEM Publications, 2006. http://dx.doi.org/10.1617/2351580028.030.
Full textLi, Keyu. "Experimental evaluation of a viscoplastic constitutive model." In 36th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-1427.
Full textReports on the topic "Constitutive Model"
Callahan, G. D. Crushed Salt Constitutive Model. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/4127.
Full textCallahan, G. D., M. C. Loken, K. D. Mellegard, and F. D. Hansen. Crushed-salt constitutive model update. Office of Scientific and Technical Information (OSTI), January 1998. http://dx.doi.org/10.2172/568994.
Full textRaboin, P. J. A solidification constitutive model for NIKE2D and NIKE3D. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/71390.
Full textBilyk, Stephan R. Dynamic Experiments and Constitutive Model Performance for Polycarbonate. Fort Belvoir, VA: Defense Technical Information Center, July 2014. http://dx.doi.org/10.21236/ada608135.
Full textMessner, M., and T. Sham. Initial High Temperature Inelastic Constitutive Model for Alloy 617. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1644689.
Full textNeilsen, M. K., H. S. Morgan, and R. D. Krieg. A phenomenological constitutive model for low density polyurethane foams. Office of Scientific and Technical Information (OSTI), April 1987. http://dx.doi.org/10.2172/6633017.
Full textDass, William C., and Douglas H. Merkle. Computational Aspects of the ARA Three Invariant Constitutive Model. Fort Belvoir, VA: Defense Technical Information Center, May 1986. http://dx.doi.org/10.21236/ada170072.
Full textDong, Wen. Linear and Nonlinear Constitutive Model for Piezoelectricity in ALEGRA-FE. Office of Scientific and Technical Information (OSTI), October 2017. http://dx.doi.org/10.2172/1596206.
Full textRouiller, Vincent, and Gregory B. McKenna. A viscoelastic constitutive model for creep response of polyurethane rubber. Gaithersburg, MD: National Institute of Standards and Technology, 1998. http://dx.doi.org/10.6028/nist.ir.6177.
Full textYoung, Steven. MIT-S1 Constitutive Model Calibration for a Portland-area Soil. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.7518.
Full text