To see the other types of publications on this topic, follow the link: CONSOLIDATION BEHAVIOUR.

Dissertations / Theses on the topic 'CONSOLIDATION BEHAVIOUR'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'CONSOLIDATION BEHAVIOUR.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Thomas, Stephen David. "The consolidation behaviour of gassy soil." Thesis, University of Oxford, 1987. http://ora.ox.ac.uk/objects/uuid:f13acb0c-3e1b-4122-b497-341869846561.

Full text
Abstract:
The consolidation behaviour of gassy soil has been studied in a programme of experimental and theoretical research. This research is of particular importance to the offshore geotechnical industry as the presence of gas in the seabed can have a dramatic effect on the material properties of a marine sediment. Initial numerical modelling based on existing unsaturated soil theory combining the gas and the water phase into a compressible fluid in the pores of compressible soil skeleton failed to simulate the soil behaviour previously observed experimentally at Oxford. Therefore, there was scope for further study in this field. Chapters 2 to 4 describe the experimental preparation, consolidation technique and experimental results of the two series of tests on artificially prepared gassy soil samples. The results of these tests indicated that the gas appeared to be affected by the total stress rather than the pore water pressure, with the saturated soil matrix outside the gas voids being controlled by the consolidation stress. Chapter 5 presents the one-dimensional numerical modelling of the experimental results. Poor simulations were again made using compressible fluid theory. Treating the gas as compressible solid inclusions embedded in a saturated soil matrix, however, resulted in excellent simulations of the observed pore water pressures and settlements. Chapter 6 attempts to explain the results of the experimental and numerical modelling in terms of elastic and plastic soil behaviour. This includes the introduction to the double compressibility model in which the deformation behaviour of the saturated matrix is governed by changes in consolidation stress, whereas that of the gas is governed by changes in total stress. Chapter 7 presents the development of the governing gassy soil consolidation equations under both plane strain and axisymmetric conditions. Chapter 8 describes the approximation of the governing consolidation equations using the Galerkin finite element method in terms of nodal displacements and pore water pressures. The resulting finite element approximation is subsequently formulated for rectangular elements under plane strain and axisymmetric conditions in Chapter 9. The remainder of the thesis describes the structure of the finite element model DCFEM2 and the constitutive relationships that are required for such a model. The code is verified with existing analytical solutions and then is used to simulate the observed gassy soil behaviour under laboratory and field conditions.
APA, Harvard, Vancouver, ISO, and other styles
2

Ovando, Shelley Efrain. "Stress-strain behaviour of granular soils tested in the triaxial cell." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/7891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Harb, H. M. "An investigation into the normal consolidation behaviour of viscous clays." Thesis, Bucks New University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jarad, Nidal. "Temperature impact on the consolidation and creep behaviour of compacted clayey soils." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0251/document.

Full text
Abstract:
La consolidation des sols argileux est un enjeu majeur dans le domaine de la géotechnique pour la conception des ouvrages. Ceci est notamment le cas lorsque les sols argileux peuvent être exposés à des cycles thermiques, comme dans le cas des géostructures géothermiques, dépôts de stockage des déchets nucléaires, stockage de chaleur dans les remblais, etc. Ces changements de température pourraient avoir une incidence sur le comportement de consolidation des sols, tant du point de vue de la consolidation primaire que du fluage. Dans ce contexte, cette étude a examiné l'impact de la température sur le comportement de consolidation et du fluage d’argiles compactées saturées. L’impact de la nature du sol et de son histoire mécanique a été considéré. Une cellule œdométrique à température contrôlée a été utilisée pour effectuer des essais à vitesse de déformation constante (CRS) pour différentes vitesses de déformation (0,002% / min à 0,02% / min) dans une gamme de température comprise entre 5 ° C et 70 ° C. Deux argiles compactées, avec différentes histoires de chargement mécanique, ont été utilisés. Les résultats indiquent que les indices de compression et de gonflement pour les deux matériaux ne sont que légèrement modifiés par une augmentation de la température allant de 5 à 70°C. En revanche, la pression de préconsolidation des deux argiles diminue à mesure que la température augmente, cet effet étant cependant fonction de la nature du sol considéré. Le coefficient de consolidation augmente lorsque la température augmente pour les deux matériaux, ainsi que la conductivité hydraulique. La perméabilité intrinsèque reste stable en fonction de la température. L'indice de fluage augmente lorsque la température augmente pour les deux argiles. En outre, l'histoire des chargementsmodifie l’impact de la température sur le comportement mécanique. Ainsi, les résultats montrent une dilatation thermique pour les sols fortement surconsolidées et une contraction thermique des échantillons faibles et normalement consolidés. Cette étude a ainsi permis de mettre en évidence l’impact relatif d’un certain nombre de paramètres sur l’évolution du comportement des argiles compactées avec la température
Consolidation of clay soils is one of the main challenges in engineering design and construction. Clayey soils could be exposed to thermal cycles in some engineering applications such as geothermal piles, nuclear waste storages, heat storage in embankments, etc. These temperature changes could affect the primary consolidation as well as the creep behaviour of the soils. In this context, this study investigated the impact of temperature on consolidation behaviour and creep behaviour of saturated compacted clays. In addition, the impact of stress history and clay nature on the temperature dependent mechanical and hydraulic behaviours was also considered. Temperature controlled oedometric cells were employed to perform constant rate of strain (CRS) consolidation tests for different strain rates (0.002%/min to 0.02%/min) within a temperature range of 5° C to 70o C. Two different compacted saturated clays with different stress histories were used in these CRS tests (clay A: PI=31%, clay B: PI=23.8%). The results showed that the compression and swelling indices for both materials changed slightly with temperature and strain rate alteration. The preconsolidation pressure of both clays decreased as the temperature increased, but less in the case of clay B, while it decreased as the strain rate decreased for both materials. The hydraulic conductivity increased with temperature while the intrinsic permeability remained unchanged in the investigated range of temperature. The creep index increased as the temperature increased for both clays. In addition, the stress history has an impact on the temperature dependent mechanical and hydraulic behaviour of clay soils. Results showed a thermal dilation for highly overconsolidated soils and a thermal contraction for low and normally consolidated samples. The relative impact of several parameters on the modification of the behaviour of compacted clays with temperature was also assessed
APA, Harvard, Vancouver, ISO, and other styles
5

Ting, Chi Man Roger. "Controlled gradient consolidation of soft soils with reference to the development of K←o." Thesis, University of East London, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.258762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kumar, Garimella Vijaya. "Some aspects of the mechanical behaviour of mixtures of kaolin and coarse sand." Thesis, University of Glasgow, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ahmed, Syed Iftekhar. "A new approach for modeling the non-linear one dimensional consolidation behaviour of tailings." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44810.

Full text
Abstract:
The management of tailings largely depends on its consolidation behaviour. Extensive works on this sector have been performed as it plays a significant role in economic and environmental considerations of a tailings management facility. To resolve these issues, consolidation theories had been developed for one, two or three dimensional condition with numerical solutions for soft soils like tailings which behave differently from natural soils. Eventually, large strain consolidation tests have experienced at its advance level for precise determination of experimental data because non-linear behaviour of compressibility and hydraulic conductivity fits to a wide range of functions. This non-unique behaviour of tailings is believed to be an aftermath of the combination of flocculation, sedimentation, consolidation, segregation, deposition, freeze-thaw and desiccation phenomena. Similarly, a consequence of several factors combined called “apparent over-consolidation” is a mystery to the tailings industry and the reasons for this occurrence are not fully understood. It is believed to be the result of the combination of several contributing factors at low effective stresses. Previously, it was assumed that tailings are normally consolidated or consolidating under the load of mounting deposited materials and numerical modeling had been performed by different researchers based on this assumption. However, the apparent compressibility behaviour of tailings was noticed for different types of tailings at a wide range of solids content and various types of testing procedures. Conducting statistical analysis, a new compressibility function, one of the forms of Weibull distribution, is proposed to fit the void ratio-effective stress relationship considering pre-consolidation behaviour. A fully implicit model was developed by introducing that proposed compressibility equation to predict the tailings long term consolidation behaviour. A case study was performed for different types of tailings to predict the consolidation behaviour followed by the sensitivity analysis of the developed model. Significant effects of apparent consolidation have been observed on void ratio, effective stress, excess pore water pressure and tailings settlement for a period of 50 years. The major outcome of this study is the consideration of apparent over-consolidation behaviour during the early stage of the deposition helps to formulate the model more precisely.
APA, Harvard, Vancouver, ISO, and other styles
8

Khansari, Hossein. "An investigation of one-dimensional compression and consolidation of intact and reconstituted Bothkennar soft soil." Thesis, University of the West of England, Bristol, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Phang, Ignatius Ren Kai. "Investigation of Strength and Consolidation Behaviour of Peat Treated Using Microbial-Induced Calcite Precipitation (MICP)." Thesis, Curtin University, 2021. http://hdl.handle.net/20.500.11937/86928.

Full text
Abstract:
The study of Microbial-induced carbonate precipitation (MICP) on organic soil has remained limited. This PhD study intends to fill the knowledge gap by studying MICP of tropical peat. Based on the finding, it was possible (i) to isolate bacteria strains from acidic tropical peat with high urea hydrolysis activities and capable of bio-cementation; (ii) to induce bio-cementation in acidic peat, which leads to strength gain and reduction of permeability; (iii) to improve consolidation behaviour.
APA, Harvard, Vancouver, ISO, and other styles
10

Bartholomeeusen, Gert. "Compound shock waves and creep behaviour in sediment beds." Thesis, University of Oxford, 2003. http://ora.ox.ac.uk/objects/uuid:f1ba2e5c-60b7-4d18-ae02-69356a289290.

Full text
Abstract:
This research is a theoretical, experimental and numerical study of the one-dimensional deformation of suspensions. The study is focussed on the transition between sedimentation and consolidation, and creep during soil consolidation. In the literature, sedimentation, traditional large strain consolidation and creep are explored independently. The theory of sedimentation has been derived in parallel with the mathematical description of shock waves. The large strain consolidation theory of Gibson et al. (1981) has been adopted, and attention is given to the material properties of compressibility and permeability. Traditionally creep has been studied on thin samples, and a review is given to identify parallels with creep behaviour of the thick samples studied here. The experimental work was carried out in the laboratory using settling column tests. During the sedimentation stage, when the soil particles are fluid supported, shock waves were monitored and tracked by means of an X-ray absorption technique to allow for the calculation of experimental flux functions. Settling column experiments on different natural soils have been performed to study the consolidation behaviour by means of the measurement of pore water pressure and X-ray density measurements. An in-depth study of the development of effective stress has been performed to quantify the creep behaviour of the soils studied in a strain rate surface. The sedimentation equation is classified as a hyperbolic partial differential equation. In this kind of equation, discontinuities can propagate, and standard solution methods, eg finite differences, fail to give adequate results. For this reason codes have been developed using the finite volume method (FVM) to solve the sedimentation equation numerically. A standard numerical code has been developed for the solution of the large strain consolidation equation, while for the unified sedimentation-consolidation model the finite volume method (FVM) has been used. The shock waves monitored in the experiments are successfully predicted by the sedimentation model using experimentally derived flux functions. This study made it possible to formulate a physically and mathematically correct definition of the transition from sedimentation to consolidation. The strengths and weaknesses of the traditional large strain consolidation model have been identified by means of an international Class A prediction seminar. A new unified sedimentation-consolidation model is proposed using a flux function, a permeability relationship and a strain rate surface as material functions. Successful predictions of experiments have been performed, showing the transition from sedimentation to consolidation and the inclusion of creep.
APA, Harvard, Vancouver, ISO, and other styles
11

Chiu, Sing-Lok. "Behaviour of normally consolidated clay at elevated temperature." Thesis, The University of Sydney, 1996. http://hdl.handle.net/2123/18126.

Full text
Abstract:
Not much has research work been done so far on temperature-related behaviour of clays. This theme has not received much attention of research workers in this field for a long time until the late 1960s when Campanella and Mitchell published their paper on "Influence of Temperature Variations on Soil Behaviour" in 1968 (Campanella and Mitchell, 1968). What followed was a special conference on this subject held in Washington in 1969, addressing a variety of research results in this field at that time. However, the interest of most research workers in the following two decades has been in soil models and their numerical implementation. Most research funds have been channelled towards studies concerning basic soil properties and the implementation of the results of research than to other topics in the same time. In recent years, rapid industrialization and implementation of many military technologies into civil industries have taken place in many western countries and a few other countries in Asia. This gave rise to a variety of problems related to the disposal of nuclear waste particularly in the late 1980s. A series of studies regarding disposal problems of nuclear waste were then carried out in Italy and the United States (Hueckel et al, 1990). In Australia, the first project related to this topic was awarded in 1991 to the Centre for Geotechnical Research (CGR) at School of Civil and Mining Engineering, University of Sydney. This thesis contains the results obtained from triaxial tests performed at different elevated temperatures using a new triaxial apparatus called HTTA (High Temperature Triaxial Apparatus) specially designed for and forming part of, the work in this research. The thesis also contains a comparison of the experimental results and the predictions by different Cam-clay models including the revised Camclay model developed in this research. Specimens of a remoulded clay, Kaolin CIC, have been tested at various I temperatures ranging from ambient temperature of 22±2°C to 100±5°C with two triaxial apparatuses. The first apparatus for tests at ambient temperature is a Bishop- Wesley-Type hydraulic triaxial apparatus; the other is a modified triaxial apparatus specially tailored and assembled for performing triaxial tests on the specimens at various elevated temperatures. The triaxial tests on the specimens were conducted at room temperature as well as at two elevated temperatures, namely 50°C and 100°C. Stress-strain response of the specimens at different temperatures was observed. Attempts have been made in different ways to investigate whether soil properties of the selected clay would change with temperature. Further, the attempts made were also to see what have been changed in the stress-strain behaviour of the clay at different elevated temperature. Then, the test results from different elevated temperatures were compared with those obtained from the tests at room temperature; and also compared with the predictions by the Cam-clay models.
APA, Harvard, Vancouver, ISO, and other styles
12

Elder, Donald McGillivray. "Stress strain and strength behaviour of very soft soil sediment." Thesis, University of Oxford, 1985. http://ora.ox.ac.uk/objects/uuid:48050e2f-832d-47f4-9e3b-b922176f451b.

Full text
Abstract:
Introduction: When fine grained natural sediments or artificially produced waste materials are transported and deposited through water, several different phases of behaviour are observed. These have been described variously as suspension, free settling, compression settling, intermediate and consolidating soil phases. Transitions between each are not always distinct in terms of material properties or behaviour and time spent in the early phases before a conventional soil state is attained can be a significant proportion of the total period of engineering interest. The eventual state attained following procession through these stages may be very different to that if the soil had been remoulded at the same final density. Standard engineering models exist which can describe soil behaviour well in separate phases under particular conditions, but these are of limited validity when extended to more general conditions and wider volumetric ranges than those for which they were formulated. The number of factors required to describe the entire range of behaviour is consequently larger than that for any one phase, and many of these factors are more familiar in fields of chemistry, geology or sedimentology than in classical soil mechanics. This thesis discusses, in engineering terms, the engineering behaviour observed in a particular soil during the general sedimentation and self weight consolidation process. In the second chapter existing knowledge about behaviour at zero or low stresses is reviewed and evaluated with respect to common assumptions made, often implicitly, in formulating predictive models. It is shown that while these models have been extensively developed to a stage where they can approximate many aspects of soil behaviour, the lack of fundamental investigations carried out in parallel with their development has often led to inadequate appreciation of the causes of discrepancies between modelled and real behaviour. This has occurred particularly where standard geotechnical testing equipment and methods devised for stiff soils have been used to obtain global average relationships between engineering parameters. Even where modified tests have been developed, instrumentation has sometimes been inadequate and measurements too infrequent, so that data available have necessarily been analysed only in terms of constitutive forms assumed already. In chapter three experimental techniques are proposed which, where possible will allow soil behaviour to be examined under the least restrictive conditions of one dimensional compression so that basic engineering concepts may be analysed. Chapter four describes the testing programme and presents direct results of experiments. Chapter five analyses compression behaviour and establishes some trends which can be observed for particular parameters and relationships, and which exist between experiments under different initial and boundary conditions. Similar analysis of strength behaviour is undertaken in chapter six, where results obtained using different testing methods are compared. In the final chapter the general relevance of these results and their implications for engineering problems are discussed. Some suggestions are made for future work. Areas of application Improved knowledge about cohesive waterborne sediments can result in considerable savings for related industries. In the United Kingdom the annual cost of maintenance dredging is £25m (I.C.E. Costal Engineering Research Panel, 1985). In East Coast ports alone reduction of the distances travelled by each dredger would lead to a saving of £270,000 per annum, per kilometre reduction. Studies at Rotterdam Europort (Kirby, Parker, van Oostrum, 1979) show that although a channel dredged recently may quickly refill with sediment to a depth which echo-sounding techniques might indicate to be unnavigable, the strength may be so low as to allow passage of vessels virtually unimpeded. A density of 1.2 Mg/m3 is now used by the Rijkswaterstaat to define the "Nautical Depth" of a channel, stated to be "a density within the suspension above whose altitude vessels can safely sail." Dredging control using information from gamma ray densimeters has enabled production increases of up to 50% to be obtained in the Europort area. In the United States $30m was spent in a 5 year period on a dredging research programme aimed at improving disposal methods (Haliburton, 1977). Considerable volumes of waste material are also produced by the mining industry. The phosphate industry in Florida produces 40 million tons by dry mass per annum at an initial 3% solids by mass which even after two years retains void ratios around 10, due to the high content of attapulgite, a clay mineral consisting of long fibrous particles with large specific surface. Disposal areas for these clays occupy over 50,000 acres and are surrounded by 300 miles of dams, posing significant environmental and safety problems (Bromwell, Oxford, 1977). Failures of underwater slopes have been well documented. In muds deposited recently in the Mississippi Delta area very low shear strengths combine with apparently high excess pore pressures and presence of gas bubbles to cause instability for slope angles less than 1°. Recent research carried out a Oxford suggests that presence of gas may cause high excess pressures to be deduced where none exist. Duncan and Buchignani (1973) analysed a slope failure in San Francisco Bay which occurred during cutting of a slope from a normally consolidated clayey silt. The importance of accurate determination of an in situ parameters for analysis was shown by the estimated saving of $200,000 through using a slope of 7:8 rather than 1:1, decreasing the supposed safety factor from 1.26 to 1.17. Analysis of error sources showed that an error of only 4% in the soil density could reduce this safety factor by 10%. Similar problems due to changes in loading or boundary conditions occur where natural changes, such as increase in water current, cause erosion of a sediment layer which might, for example, be supporting an underwater cable or pipeline. In all these areas in situ property determination in solid of low density provides major problems. Density is often the only quantity that can be measured both accurately and continuously and then only when a stable platform can be maintained. Recovery of high quality samples from these layers is virtually impossible, so that there is a strong need for correlations between density and other properties such as strength and compressibility.
APA, Harvard, Vancouver, ISO, and other styles
13

Ghahremannejad, Behrooz. "Thermo-Mechanical Behaviour of Two Reconstituted Clays." Thesis, The University of Sydney, 2003. http://hdl.handle.net/2123/492.

Full text
Abstract:
The effect of temperature on soil behaviour has been the subject of many studies in recent years due to an increasing number of projects related to the application of high temperature to soil. One example is the construction of facilities for the disposal of hot high level nuclear waste canisters (150-200C) several hundred meters underground in the clay formations. Despite this, the effects and mechanism by which temperature affects the soil properties and behaviour are not fully known. A limited amount of reliable experimental data, technological difficulties and experimental methods employed by different researchers could have contributed to the uncertainties surrounding the soil behaviour at elevated temperature. Also several thermo-mechanical models have been developed for soil behaviour, but their validity needs to be examined by reliable experimental data. In this research, efforts have been made to improve the experimental techniques. Direct displacement measuring devices have been successfully used for the first time to measure axial and lateral displacements of clay samples during tests at various temperatures. The thermo mechanical behaviour of two reconstituted clays has been investigated by performing triaxial and permeability tests at elevated temperature. Undrained and drained triaxial tests were carried out on normally consolidated and over consolidated samples of M44 clay and Kaolin C1C under different effective stresses, and at temperatures between 22C and 100C. Permeability tests were carried out on samples of M44 clay at temperatures between 22C and 50C. The effects of temperature on permeability, volume change, pore pressure development, shear strength and stiffness, stress strain response and critical state parameters for different consolidation histories have been investigated by comparing the results at various temperatures. The results are also compared with the predictions of two models. It has been found that at elevated temperature the shear strength, friction angle and initial small strain stiffness reduce whereas permeability increases. The slope of the swelling line in the v-p� plane has been found to reduce with temperature. The slope of the isotropic normal consolidation line (INCL) and critical state line (CSL) in the v-p� plane have been observed to be independent of temperature, but both the INCL and the CSL shift downwards to lower locations as temperature increases. The deformations during drained cooling and re heating cycles have been found to be elastic and to simply reflect the expansivity of the soils solid particles. The thermal volume changes during undrained heating have been observed to be direct results of the thermal expansion of water and clay particles. The internal displacement measuring devices have been found to produce reliable data for the variation of strains at elevated temperature.
APA, Harvard, Vancouver, ISO, and other styles
14

Ghahremannejad, Behrooz. "Thermo-Mechanical Behaviour of Two Reconstituted Clays." University of Sydney. Civil Engineering, 2003. http://hdl.handle.net/2123/492.

Full text
Abstract:
The effect of temperature on soil behaviour has been the subject of many studies in recent years due to an increasing number of projects related to the application of high temperature to soil. One example is the construction of facilities for the disposal of hot high level nuclear waste canisters (150-200C) several hundred meters underground in the clay formations. Despite this, the effects and mechanism by which temperature affects the soil properties and behaviour are not fully known. A limited amount of reliable experimental data, technological difficulties and experimental methods employed by different researchers could have contributed to the uncertainties surrounding the soil behaviour at elevated temperature. Also several thermo-mechanical models have been developed for soil behaviour, but their validity needs to be examined by reliable experimental data. In this research, efforts have been made to improve the experimental techniques. Direct displacement measuring devices have been successfully used for the first time to measure axial and lateral displacements of clay samples during tests at various temperatures. The thermo mechanical behaviour of two reconstituted clays has been investigated by performing triaxial and permeability tests at elevated temperature. Undrained and drained triaxial tests were carried out on normally consolidated and over consolidated samples of M44 clay and Kaolin C1C under different effective stresses, and at temperatures between 22C and 100C. Permeability tests were carried out on samples of M44 clay at temperatures between 22C and 50C. The effects of temperature on permeability, volume change, pore pressure development, shear strength and stiffness, stress strain response and critical state parameters for different consolidation histories have been investigated by comparing the results at various temperatures. The results are also compared with the predictions of two models. It has been found that at elevated temperature the shear strength, friction angle and initial small strain stiffness reduce whereas permeability increases. The slope of the swelling line in the v-p� plane has been found to reduce with temperature. The slope of the isotropic normal consolidation line (INCL) and critical state line (CSL) in the v-p� plane have been observed to be independent of temperature, but both the INCL and the CSL shift downwards to lower locations as temperature increases. The deformations during drained cooling and re heating cycles have been found to be elastic and to simply reflect the expansivity of the soils solid particles. The thermal volume changes during undrained heating have been observed to be direct results of the thermal expansion of water and clay particles. The internal displacement measuring devices have been found to produce reliable data for the variation of strains at elevated temperature.
APA, Harvard, Vancouver, ISO, and other styles
15

Høyland, Knut Vilhelm. "Measurements and Simulations of Consolidation in First-Year Sea Ice Ridges, and some Aspects of Mechanical Behaviour." Doctoral thesis, Norwegian University of Science and Technology, Department of Structural Engineering, 2000. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bowden, Robert Kirk. "Compression behaviour and shear strength characteristics of a natural silty clay sedimented in the laboratory." Thesis, University of Oxford, 1988. http://ora.ox.ac.uk/objects/uuid:9c10108d-74a7-4d97-a690-ae13a6e90aca.

Full text
Abstract:
The compression behaviour, shear strength characteristics, and material properties of dense slurries and soft settled beds of natural fine-grained sediments were studied experimentally. Slurries of varying initial density, initial height, and pore fluid salinity were settled one-dimensionally, by self-weight, in the laboratory. Settling behaviour was studied in terms of slurry appearance, particle segregation, height of surface versus time, sediment surface and element settlement rates, and the redistribution of sediment with respect to height and time. Consolidation behaviour was studied in terms of sediment compressibility and pore fluid flow. Shear strength was examined "in situ" and elated to the parameters effective stress and specific volume. Instruments and techniques were developed to facilitate the measurement of low effective stresses, low strengths, and high specific volumes. A small scale sediment sampler was developed and used in an attempt to study the arrangement of particles within soft sensitive beds. The experimental results revealed numerous fundamental reasons why theoretical models of settling and consolidation are unsatisfactory when applied to dense flocculated slurries and beds of high specific volume, respectively. For the sediment studied, well-defined compressibility and shear strength relationships were observed. Pore fluid flow relationships were non-unique at high specific volumes. The compression behaviour of slurries was found to have a rational basis in terms of electrochemical forces and degrees of particle association. The experimental results are relevant to engineering practice. Recommendations are made regarding future research.
APA, Harvard, Vancouver, ISO, and other styles
17

Shi, Xiusong. "Deformation behaviour of multi-porosity soils in landfills." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-205774.

Full text
Abstract:
Two different soils may be generated from open-pit mining: lumpy soils with a granular structure and clay mixtures, depending on the length of the conveyor belt and the strength of the original soils. Lumpy soils may be created for a high strength of the excavated soils. They are dumped as landfills without any compaction, which permits the water and air flows via the inter-lump voids. As a result, a new structure consisting of the lumps and reconstituted soil within the inter-lump voids can be created. However, if the original soil has a low strength or a long transportation takes place, the material may disintegrate into small lumps and thoroughly mix soils from different layers. Landfills consisting of clay mixtures arise in this way. The stability and deformation of landfills are crucial for design of occupied area and landfill slopes. For this reason, three different landfill materials will be investigated in this thesis: (1) the lumpy granular soil from fresh landfills, (2) the lumpy composite soil corresponding to old landfills and (3) clay mixtures. Firstly, an artificial lumpy soil was investigated. It is a transition form between the reconstituted and natural lumpy soils. Compression, permeability and strength of lumpy materials have been evaluated based on oedometer and triaxial tests. The shear strength of the normally consolidated lumpy specimens lies approximately on the Critical State Line of the reconstituted soil. The reconstituted soil, which exists in the inter-lump voids, plays a crucial role in the behaviour of artificial lumpy materials. Similarly to the artificial lumpy soil, inter-lump voids of the natural lumpy soil are mainly closed above a relatively small stress level, which is induced by the rearrangement of the lumps. However, its limit stress state is located above the Critical State Line of the reconstituted soil, which may be caused by the diagenetic soil structure in the natural lumps. The structure transition of the lumpy granular material can be divided into three possible stages related to the stress level. Firstly, the compressibility of a fresh lumpy is relativity high due to the closure of the inter-lump voids within a low stress range. In this stage, the hydraulic conductivity is mainly controlled by the inter-lump skeleton due to the existence of macro drainage paths, while the shear strength is controlled by the reconstituted soil around the lumps. Afterwards, its compressibility decreases with the consolidation stress and the soil behaves similarly to an overconsolidated soil. The clayfill appears to be uniform visually in this stage, but its structure is still highly heterogeneous and the hydraulic conductivity is higher than that of the reconstituted soil with the same overall specific volume. Finally, the loading reaches the preconsolidation stress of the lumps, and the whole soil volume becomes normally consolidated. Isotropically consolidated drained triaxial shear tests were performed on artificially prepared specimens with parallel and series structures. The laboratory tests show that the specimens with the series structure have the same failure mode as the constituent with the lower strength; the specimens with the parallel structure have a failure plane which crosses both constituents. As a result, the shear strength of the series specimens is only slightly higher than that of the constituent with the lower strength and the strength of the parallel specimens lies between those of the constituents. Afterwards, the behaviour of an artificial lumpy material with randomly distributed inclusions is investigated using the Finite Element Method. The computation results show that the stress ratio, defined as the ratio of the volume-average stress between the lumps and the reconstituted soil within the inter-lump voids, is significantly affected by both the volume fraction and the preconsolidation pressure of the lumps under an isotropic compression path, while the volume fraction of the lumps plays a minor role under a triaxial compression path. Based on the simulation results and analysis of the two basic configurations, a homogenization law was proposed utilizing the secant stiffnesses. The compression behavior of the lumpy composite soil was analyzed within the homogenization framework. Firstly, the volume of the composite soil was divided into four individual components. The inter-lump porosity was introduced to account for the evolution of the volume fractions of the constituents, and it was formulated as a function of the overall porosity and those of its constituents. A homogenization law was then proposed based on the analysis of the lumpy structure together with a numerical method, which gives a relationship for tangent stiffnesses of the lumpy soil and its constituents. Finally, a simple compression model was proposed for the composite lumpy material, which incorporates both the influence of the soil structure and the volume fraction change of the reconstituted soil. Furthermore, a general framework for the consolidation behaviour of the lumpy composite soil was proposed based on the double porosity concept and the homogenization theory. To describe the behaviour of lumps with low stress level, a new failure line was proposed with help of the equivalent Hvorslev pressure and critical state concept. The structure effect was incorporated into the nonlinear Hvorslev surface within sensitivity framework and the generalized Cam clay model proposed by McDowell and Hau (2003) was adopted on the wet side of the critical state. A secant stiffness, defined as the ratio between the deviatoric stress and deviatoric strain, was used in the homogenization law. Finally, a simple model for the natural lumpy soil was proposed within the homogenization framework. The physical properties, compression behaviour and remolded undrained shear strength of clay mixtures were investigated by reproducing the soils artificially in the lab. Afterwards, the models for the compression and undrained shear strength of clay mixtures were proposed. The model for the strength of the clay mixture originated from simplifying the structure of a clay mixture, in which the elements of the constituents are randomly distributed in a representative elementary volume. By defining a water content ratio (the ratio of water contents between the constituents), the undrained shear strength of each constituent was estimated separately and then combined together with corresponding volume fractions. A homogenization law was proposed afterwards based on the analysis of the randomly arranged structure. A simple compression model considering $N$ constituents was proposed within the homogenization framework, which was evaluated by a mixture with two constituents
In einem Tagebau können die feinkörnigen Böden in unterschiedlichen Zustandsformen entstehen. Dies sind zum einen klumpige Böden mit einer granular ähnlichen Struktur (Pseudokornstruktur) und einer hohen Konsistenzzahl und zum anderen Mischungen aus mehreren Tonen oder Schluffen mit niedriger Konsistenzzahl. Der Zustand wird dabei massgebend von dem Transport (z.B. Länge des Förderbandes) und dem Ausgangszustand (z.B. der Anfangsscherfestigkeit) beeinflusst. Klumpige Böden entstehen bei der Abbaggerung des natürlichen Materials auf der Abbauseite, welches eine hohe Festigkeit besitzt. Alle Böden werden normalerweise ohne Verdichtung verkippt, so entstehen bei der Verkippung von klumpigen Böden grosse Makro-Porenräume zwischen den Klumpen, welche sehr luft- bzw. wasserdurchlässig sind. Nach einiger Zeit entsteht eine neue Struktur aus den Klumpen und dem Material des sich von aussen auflösenden Klumpens, welches das Füllmaterial bildet. Wenn die Festigkeit des Ausgangsmaterials niedrig ist oder lange Transportwege stattfinden, zerfallen die Klumpen. Zudem werden die Böden von verschiedenen Schichten der Abbauseite unter einander gemischt, wodurch die Tongemische entstehen. Sowohl für die Dimensionierung und Berechnung der aus den Verkippungen entstehenden Tagebaurandböschungen sowie für eine spätere Nutzung des ehemaligen Tagebaugebietes ist die Kenntnisüber das Deformations- und Verformungsverhalten von Kippenböden notwendig. Daher wurden in dieser Arbeit Tagebauböden und ihr zeitlich veränderliches Verhalten untersucht. Dabei werden diese, bezugnehmend auf den Anfangszustand, in drei typische Materialien unterschieden: (1) der frisch verkippte klumpige Boden, (2) eine Mischung aus Klumpen und Füllmaterial, welche höhere Liegezeiten repräsentiert und (3) Mischungen von feinkörnigen Ausgangsböden. Zunächst wurden künstlich hergestellte klumpige Böden untersucht. Sie bilden eine Übergangsform zwischen aufbereiteten und natürlichen klumpigen Böden. Das Kompressions- und Scherverhalten sowie die Durchlässigkeit wurden an Ödometer und Triaxialversuchen bestimmt. Das Füllmaterial, welches die Makroporen zwischen den Klumpen füllt, spielt eine entscheidende Rolle für das Materialverhalten. Ähnlich wie bei den künstlich hergestellten klumpigen Böden schliessen sich auch bei den Böden im Tagebau die Makroporenschen bei niedrigen Spannungen. Dabei werden die Klumpen umgelagert. Allerdings befindet sich die Grenze des Spannungszustandes oberhalb der Critical State Line des Füllmaterials, was möglicherweise mit den unter Diagenese entstandenen Bodenstrukturen erklärt werden kann. Die Strukturänderung der klumpigen Böden kann aufgrund des Spannungsniveaus in drei mögliche Stufen unterteilt werden. Am Anfang ist die Kompressibilität der frischen verkippten Klumpen hoch, da sich die Makroporen bereits bei geringen Spannungen schliessen. Zu diesem Zeitpunkt sind auch die Durchlässigkeiten in erster Linie von den grossen Porenräumen der Makroporen, welche als Entwässerungspfade dienen, beeinflusst. Die Scherfestigkeit hingegen, wird durch die aufgeweichten Böden an den Oberflächen der Klumpen massgebend beeinflusst. Bei höheren Konsolidationspannungen sinkt die Kompressibilität und der Boden verhält sich wie einüberkonsolidierter Boden. Obwohl die Struktur aufgrund der veränderten Klumpenoberflächen zu diesem Zeitpunkt homogener wirkt, ist die Struktur noch heterogen und die Durchlässigkeit ist höher als bei einem aufbereiteten Boden mit gleichem spezifischem Volumen (Porenzahl). Letztendlich erreicht der aktuelle Spannungszustand den derüberkonsolidierten Klumpen und der gesamte Boden verhält sich wie ein normal konsolidierter Boden. Des Weiteren wurden isotrop konsolidierte drainierte Triaxialversuche an künstlich aus zwei Ausgangsmaterialien hergestellten Proben mit parallelen und seriellen Strukturen durchgeführt. Die Laborversuche zeigten, dass die Proben mit seriellem Aufbau dieselben Gleitflächen haben, wie der Ausgangsboden mit der niedrigeren Scherfestigkeit. Die Gleitfläche der Proben mit parallelen Strukturen verlief durch beide Materialien. Es wurde festgestellt, dass die Scherfestigkeit der seriell aufgebauten Proben geringfügig höher, als die des Bodens mit der niedrigeren Scherfestigkeit ist. Die Scherfestigkeit der parallel aufgebauten Proben liegt zwischen den beiden Ausgangsmaterialien. Danach wurde das Verhalten der künstlich erzeugten klumpigen Böden mit zufällig verteiltem Füllmaterial mit Hilfe der Finiten Elemente Methode verglichen. Die Simulationen zeigten, dass unter einer isotropen Kompressionsbelastung das Spannungsverhältnis, definiert aus dem Verhältnis der Spannung des Volumendurchschnitts zwischen den Klumpen und dem Füllmaterial, deutlich durch die Volumenanteile und die Vorkonsoliderungsspannung der Klumpen beeinflusst wird. Während das Volumenverhältnis eine untergeordnete Rolle in den in Triaxialzellen unter Scherung belasteten Proben spielt. Aus den Simulationsergebnissen und den Laborversuchen der beiden Grundkonfigurationen wurde ein Homogenisierungsgesetz abgeleitet, welches die Sekandensteifigkeiten verwendet. Das Kompressionsverhalten der Mischungen aus Klumpen und Füllmaterial wurde mit Blick auf die Homogenisierung analysiert. Zunächst kann das Volumen der Mischungen in 4 individuelle Komponentenanteile zerlegt werden. Die Makroporosität zwischen den Klumpen wurde zur Entwicklung der Volumenanteile des Füllmaterials eingeführt. Sie wurde als eine Funktion der totalen Porosität und der Materialien formuliert. Auf Grundlage einer theoretischen Analyse an klumpigen Böden und unter Zuhilfenahme einer numerischen Methode wird ein Gesetz zur Homogenisierung vorgeschlagen. Dieses enthält eine Beziehung zwischen der Tagentensteifigkeit der Klumpen und seinem Füllmaterial. Abschliessend wird ein einfaches Kompressionsmodel für die Mischung aus Klumpen und Füllmaterial vorgeschlagen, welches den Einfluss der Bodenstruktur und der Änderung des Volumenanteils des Füllmaterials berücksichtigt. Darüber hinaus wurde eine allgemeine Formulierung für das Konsolidationsverhalten der klumpigen Böden mit Füllmaterial vorgeschlagen, welche sich auf das Konzept der doppelten Porosität (Klumpen und Füllmaterial) und eine Homogenisierungstheoerie bezieht. Um das Verhalten der Klumpen bei niedrigen Spannungen zu beschreiben, wird eine neue Grenzbedingung unter Zuhilfenahme der äquivalenten Hvorslev-Spannung und des Criticial State Konzeptes vorgeschlagen. Der Struktureffekt für sensitive Böden wurde in die nichtlineare Hvorslev-Oberfläche eingebaut. Das allgemein gültige Cam-Clay-Model von McDowell und Hau (2003) wurde um die nasse Seite des Critical State Konzeptes erweitert. Eine Sekandensteifigkeit, definiert aus dem Verhältnis zwischen der Deviatorspannung und der Deviatordehnung, wurde für das Homogenisieurungsgesetz ebenfalls verwendet. Abschliessend wird ein Modell für natürliche klumpige Böden vorgestellt, welches auch eine Homogenisierung beinhaltet. Die physikalischen Eigenschaften, das Kompressionsverhalten und die undrainierten Scherfestigkeiten von aufbereiten Tongemischen wurden im Labor unter Herstellung künstlicher Bödengemische untersucht. Anschliessend wurde ein Kompressions- und Schermodell für aufbereitete Tongemische vorgeschlagen. Das Modell der Scherfestigkeit der Tongemische entstand aus der Vereinfachung der Tongemischstruktur, in welcher die Elemente der Ausgangsmaterialien zufällig in dem Einheitsvolumen verteilt sind. Werden Wassergehaltsverhältnisse (das Verhältnis der Wassergehalte der Ausgangsmaterialien) definiert, kann die undrainierte Scherfestigkeit für alle Bestandteile separat geschätzt werden und dannüber die Volumenanteile bestimmt werden. Ein Homogenisierungsgesetz wurde auf Grundlage der theoretischen Analyse von zufällig angeordneten Strukturen entwickelt. Ein einfaches Kompressionsmodell, welches N-Ausgangsmaterielien bzw. Tone und eine Homogenisierung enthält, wird vorgeschlagen, und an einer Mischung aus 2 Bestandteilen im Labor validiert
APA, Harvard, Vancouver, ISO, and other styles
18

Shabani, Behnam. "Wave-Associated Seabed Behaviour near Submarine Buried Pipelines." Thesis, The University of Sydney, 2008. http://hdl.handle.net/2123/3532.

Full text
Abstract:
Soil surrounding a submarine buried pipeline consolidates as ocean waves propagate over the seabed surface. Conventional models for the analysis of soil behaviour near the pipeline assume a two-dimensional interaction problem between waves, the seabed soil, and the structure. In other words, it is often considered that water waves travel normal to the orientation of pipeline. However, the real ocean environment is three-dimensional and waves approach the structure from various directions. It is therefore the key objective of the present research to study the seabed behaviour in the vicinity of marine pipelines from a three-dimensional point of view. A three-dimensional numerical model is developed based on the Finite Element Method to analyse the so-called momentary behaviour of soil under the wave loading. In this model, the pipeline is assumed to be rigid and anchored within a rigid impervious trench. A non-slip condition is considered to exist between the pipe and the surrounding soil. Quasi-static soil consolidation equations are then solved with the aid of the proposed FE model. In this analysis, the seabed behaviour is assumed to be linear elastic with the soil strains remaining small. The influence of wave obliquity on seabed responses, i.e. the pore pressure and soil stresses, are then studied. It is revealed that three-dimensional characteristics systematically affect the distribution of soil response around the circumference of the underwater pipeline. Numerical results suggest that the effect of wave obliquity on soil responses can be explained through the following two mechanisms: (i) geometry-based three-dimensional influences, and (ii) the formation of inversion nodes. Further, a parametric study is carried out to investigate the influence of soil, wave and pipeline properties on wave-associated pore pressure as well as principal effective and shear stresses within the porous bed, with the aid of proposed three-dimensional model. There is strong evidence in the literature that the failure of marine pipelines often stems from the instability of seabed soil close to this structure, rather than from construction deficiencies. The wave-induced seabed instability is either associated with the soil shear failure or the seabed liquefaction. Therefore, the developed three-dimensional FE model is used in this thesis to further investigate the instability of seabed soil in the presence of a pipeline. The widely-accepted criterion, which links the soil liquefaction to the wave-induced excess pressure is used herein to justify the seabed liquefaction. It should be pointed out that although the present analysis is only concerned with the momentary liquefaction of seabed soil, this study forms the basis for the three-dimensional analysis of liquefaction due to the residual mechanisms. The latter can be an important subject for future investigations. At the same time, a new concept is developed in this thesis to apply the dynamic component of soil stress angle to address the phenomenon of wave-associated soil shear failure. At this point, the influence of three-dimensionality on the potentials for seabed liquefaction and shear failure around the pipeline is investigated. Numerical simulations reveal that the wave obliquity may not notably affect the risk of liquefaction near the underwater pipeline. But, it significantly influences the potential for soil shear failure. Finally, the thesis proceeds to a parametric study on effects of wave, soil and pipeline characteristics on excess pore pressure and stress angle in the vicinity of the structure.
APA, Harvard, Vancouver, ISO, and other styles
19

Shabani, Behnam. "Wave-Associated Seabed Behaviour near Submarine Buried Pipelines." University of Sydney, 2008. http://hdl.handle.net/2123/3532.

Full text
Abstract:
Master of Engineering (Research)
Soil surrounding a submarine buried pipeline consolidates as ocean waves propagate over the seabed surface. Conventional models for the analysis of soil behaviour near the pipeline assume a two-dimensional interaction problem between waves, the seabed soil, and the structure. In other words, it is often considered that water waves travel normal to the orientation of pipeline. However, the real ocean environment is three-dimensional and waves approach the structure from various directions. It is therefore the key objective of the present research to study the seabed behaviour in the vicinity of marine pipelines from a three-dimensional point of view. A three-dimensional numerical model is developed based on the Finite Element Method to analyse the so-called momentary behaviour of soil under the wave loading. In this model, the pipeline is assumed to be rigid and anchored within a rigid impervious trench. A non-slip condition is considered to exist between the pipe and the surrounding soil. Quasi-static soil consolidation equations are then solved with the aid of the proposed FE model. In this analysis, the seabed behaviour is assumed to be linear elastic with the soil strains remaining small. The influence of wave obliquity on seabed responses, i.e. the pore pressure and soil stresses, are then studied. It is revealed that three-dimensional characteristics systematically affect the distribution of soil response around the circumference of the underwater pipeline. Numerical results suggest that the effect of wave obliquity on soil responses can be explained through the following two mechanisms: (i) geometry-based three-dimensional influences, and (ii) the formation of inversion nodes. Further, a parametric study is carried out to investigate the influence of soil, wave and pipeline properties on wave-associated pore pressure as well as principal effective and shear stresses within the porous bed, with the aid of proposed three-dimensional model. There is strong evidence in the literature that the failure of marine pipelines often stems from the instability of seabed soil close to this structure, rather than from construction deficiencies. The wave-induced seabed instability is either associated with the soil shear failure or the seabed liquefaction. Therefore, the developed three-dimensional FE model is used in this thesis to further investigate the instability of seabed soil in the presence of a pipeline. The widely-accepted criterion, which links the soil liquefaction to the wave-induced excess pressure is used herein to justify the seabed liquefaction. It should be pointed out that although the present analysis is only concerned with the momentary liquefaction of seabed soil, this study forms the basis for the three-dimensional analysis of liquefaction due to the residual mechanisms. The latter can be an important subject for future investigations. At the same time, a new concept is developed in this thesis to apply the dynamic component of soil stress angle to address the phenomenon of wave-associated soil shear failure. At this point, the influence of three-dimensionality on the potentials for seabed liquefaction and shear failure around the pipeline is investigated. Numerical simulations reveal that the wave obliquity may not notably affect the risk of liquefaction near the underwater pipeline. But, it significantly influences the potential for soil shear failure. Finally, the thesis proceeds to a parametric study on effects of wave, soil and pipeline characteristics on excess pore pressure and stress angle in the vicinity of the structure.
APA, Harvard, Vancouver, ISO, and other styles
20

Müthing, Nina Silvia [Verfasser], Tom [Gutachter] Schanz, and Maria [Gutachter] Datcheva. "On the consolidation behaviour of fine-grained soils under cyclic loading / Nina Silvia Müthing ; Gutachter: Tom Schanz, Maria Datcheva ; Fakultät für Bau- und Umweltingenieurwissenschaften." Bochum : Ruhr-Universität Bochum, 2017. http://d-nb.info/1148752358/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Müthing, Nina Silvia [Verfasser], Tom Gutachter] Schanz, and Maria [Gutachter] [Datcheva. "On the consolidation behaviour of fine-grained soils under cyclic loading / Nina Silvia Müthing ; Gutachter: Tom Schanz, Maria Datcheva ; Fakultät für Bau- und Umweltingenieurwissenschaften." Bochum : Ruhr-Universität Bochum, 2017. http://d-nb.info/1148752358/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Nguyen, Trung Dung. "Experimental and numerical investigation of strain-rate dependent mechanical properties of single living cells." Thesis, Queensland University of Technology, 2015. https://eprints.qut.edu.au/82791/1/Trung%20Dung_Nguyen_Thesis.pdf.

Full text
Abstract:
The objective of this project is to investigate the strain-rate dependent mechanical behaviour of single living cells using both experimental and numerical techniques. The results revealed that living cells behave as porohyperlastic materials and that both solid and fluid phases within the cells play important roles in their mechanical responses. The research reported in this thesis provides a better understanding of the mechanisms underlying the cellular responses to external mechanical loadings and of the process of mechanical signal transduction in living cells. It would help us to enhance knowledge of and insight into the role of mechanical forces in supporting tissue regeneration or degeneration.
APA, Harvard, Vancouver, ISO, and other styles
23

Peng, Sharona. "Achieving successful cross-cultural and management integration the experience of Lenovo and IBM : a thesis submitted to Auckland University of Technology in partial fulfilment of the requirements for the degree of Master of Business (MBus), 2008 /." Click here to access this resource online, 2008. http://hdl.handle.net/10292/486.

Full text
Abstract:
With social structure and technology rapidly changing, business globalisation has been regarded as a worldwide trend. While there have been many cases and literature on management of culture integration for merger and acquisition from a Western perspective, few have discussed cultural integration in an Asian context. This study provides a case study of cultural integration strategies Lenovo has undertaken to manage employees from both teams after the M&A. It adopts a semi-structure face-to-face interview research method, which 5 participants were selected from the culture integration committee for interview. During the interview, each participant answered the questions from their perspective of the job position they are currently in. The method would enhance the quality of the research as it looks into the problems and strategy that Lenovo has encountered and undertaken from various points of view. However, as no employees from IBM PC-D on the committee were available to participate in the research, it might place some limitations on the research simply because IBM team’s opinions were not taken into account. After analysing the results obtained from the participants, the researcher found that there were several motives for Lenovo to acquire IBM PC-D, including: - 1) internationalization, 2) acquiring technology and skills, 3) acquiring a brand, 4) obtaining access to new customers, 5) increase bargaining position to suppliers. Among these five motives, acquiring brand was considered to be the most important motive. As Chinese product has always been marketed at the lower end of the product line with low costs and poor quality, acquiring IBM’s brand would enable Lenovo to boost its product image and to gain access to customers outside the Chinese market. In managing two teams within the organisation, Lenovo has taken very few steps to integrate two teams into one. Instead, a separate management mode was encouraged by Lenovo to allow IBM PC-D to maintain its own management system and procedures. In addition, a culture integration committee was voluntarily set up by employees from various departments to design initiatives to encourage communication between two teams. When problems arise due to the difference between two teams, Lenovo has adopted an accommodation strategy by making adjustments to the work schedule of its employee in the Lenovo team in order to accommodate employees in IBM team. As a result, it has increased the workload for staff in Lenovo team and this may thus lead to stress and work-life imbalance to its employees. Overall, the strategy that Lenovo has adopted to manage two teams seems to have worked well and the culture integration committee appears to have served well in encouraging the communication between two teams. On the other hand, as the participants in the interview were not directly involved with the designing and crafting the strategy of culture integration, that might have some limitation on the result. Therefore, it is suggested that further research can be done to capture the opinion from members that are directly involved in the design of culture integration strategy as well as teams from IBM PC-D in order to ensure a well provided empirical and consistent view.
APA, Harvard, Vancouver, ISO, and other styles
24

Zhang, Rongan Engineering &amp Information Technology Australian Defence Force Academy UNSW. "Finite element study of geosynthetic encased stone columns in sensitive soft clay." Awarded by:University of New South Wales - Australian Defence Force Academy. Engineering & Information Technology, 2009. http://handle.unsw.edu.au/1959.4/44263.

Full text
Abstract:
Some normally consolidated soft soils manifest strength sensitivity, ie these soil manifest strain softening when shear in an undrained mode. These soils, referred to as sensitive soft soils, have the typical features of strain hardening in drained shearing and strain softening in undrained shearing. The consolidation lines of these soils are also curved (concave upwards) in the semi-log space. However, under high consolidation stress or upon large shearing, these soils re-gain the features of re-constituted soil. Ground improvement methods like stone columns were reported as not effective when installed in the sensitive soft clays. But mechanism of the un-effectiveness of the stone columns remains unknown because of lack of a suitable and simple model for simulating the stress-strain behaviours of sensitive soft soils. Although these soils have a meta-stable micro-structure, models that developed for simulating structured firm soils are not suitable for simulating sensitive soft soil features. Thus, a new model was formulated. The new model can degenerate back to a Modified Cam Clay model. The ability of new model in simulating a range of behaviour was verified by using the finite difference (FD) method in solving the partial differential equations of the soil model for a range of tri-axial test conditions. The model was further implemented in coupled analysis formulation and coded into FEM program AFENA. Various cases with different soil parameters were then simulated and compared with the FD solutions for various triaxial tests so as to check the stability of the FEM code. The coupled FEA was then used to simulate the performance of geosynthetic-encased stone columns. A new stone column element and a geo-encasement element were developed and coded into AFENA. The stone column simulations were then done for both non-sensitive soils (represented by Modified Cam Clay model) and sensitive soft soil (represented by the new model). Parametric study was conducted to examine the performance of the geo-encased stone columns in both types of soils. Furthermore, two different installation methods: wished-in installation and full displacement installation were studied numerically. Cross comparison was done to investigate how the sensitive soft soil features interact with the installation method in affecting the performance of the geo-encased stone columns. A range of factors that influence the geosynthetic-encased stone columns performance installed in soft soils were also made clear.
APA, Harvard, Vancouver, ISO, and other styles
25

Kavanaugh, Bryan Palmer Schindler Anton K. "Creep behavior of self-consolidating concrete." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SUMMER/Civil_Engineering/Thesis/Kavanaugh_Bryan_38.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bylander, Thomas C. "Consolidation : a method for reasoning about the behavior of devices /." The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487266691095527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Chan, Chung Yie. "Centrifuge modelling of behaviour of piles in consolidating ground /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202004%20CHAN.

Full text
Abstract:
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2004.
Includes bibliographical references (leaves 180-185). Also available in electronic version. Access restricted to campus users.
APA, Harvard, Vancouver, ISO, and other styles
28

Casey, Brendan (Brendan Anthony). "The consolidation and strength behavior of mechanically compressed fine-grained sediments." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90039.

Full text
Abstract:
Thesis: Ph. D. in Geotechnical and Geoenvironmental Engineering, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 251-259).
This thesis investigates the consolidation and shear strength behavior of saturated fine-grained sediments over the effective stress range of 0.1 to 100 MPa. The research makes use of samples which are resedimented in the laboratory from natural soils. In addition to practical benefits, resedimentation allows for isolation and quantification of individual factors influencing behavior such as composition, consolidation stress and overconsolidation ratio (OCR). Ko-consolidated triaxial compression tests were performed on eight resedimented soils at room temperature. The results demonstrate conclusively that the conventional assumption of these soils exhibiting constant normalized properties is not valid when behavior is evaluated over a significant stress range. The direction and rate at which a soil's strength properties vary depend on its composition, with high plasticity soils showing a much more rapid reduction in both normalized undrained strength and critical state friction angle with increasing stress compared to low plasticity soils. For all soils, increasing consolidation stress results in a more ductile stress-strain response during undrained shearing as strain to failure increases and the amount of post-peak strain softening reduces at each OCR. Variations in strength properties as a function of stress level and soil type are closely linked to Ko, with higher values of Ko associated with both lower friction angles and lower undrained strengths. During virgin compression, high plasticity soils display a rapid increase in Ko and values in excess of 0.80 have been measured at high stresses. The permeability behavior of a large number of resedimented soils has been investigated over a permeability range of 10-¹⁴ m² to 10-²⁰ m² and a porosity range of about 0.75 to 0.20. The permeability-porosity relationship for a soil can be correlated to its liquid limit, which provides a robust indicator of the combined effects of pore size distribution and clay minealogy on behavior. Virgin compression behavior is strongly influenced by composition at low stresses, although at high stresses all fine-grained soils display a similar compression behavior regardless of their composition. The conventional 'Terzaghi' definition of effective stress is shown to be applicable to fine-grained sediments at pore pressures up to at least 10 MPa.
by Brendan Casey.
Ph. D. in Geotechnical and Geoenvironmental Engineering
APA, Harvard, Vancouver, ISO, and other styles
29

Cohen, Michael I. "Structural Behaviour of Self Consolidating Steel Fiber Reinforced Concrete Beams." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23101.

Full text
Abstract:
When subjected to a combination of moment and shear force, a reinforced concrete (RC) beam with either little or no transverse reinforcement can fail in shear before reaching its full flexural strength. This type of failure is sudden in nature and usually disastrous because it does not give sufficient warning prior to collapse. To prevent this type of shear failure, reinforced concrete beams are traditionally reinforced with stirrups. However, the use of stirrups is not always cost effective since it increases labor costs, and can make casting concrete difficult in situations where closely-spaced stirrups are required. The use of steel fiber reinforced concrete (SFRC) could be considered as a potential alternative to the use of traditional shear reinforcement. Concrete is very weak and brittle in tension, SFRC transforms this behaviour and improves the diagonal tension capacity of concrete and thus can result in significant enhancements in shear capacity. However, one of the drawbacks associated with SFRC is that the addition of fibers to a regular concrete mix can cause problems in workability. The use of self-consolidating concrete (SCC) is an innovative solution to this problem and can result in improved workability when fibers are added to the mix. The thesis presents the experimental results from tests on twelve slender self-consolidating fiber reinforced concrete (SCFRC) beams tested under four-point loading. The results demonstrate the combined use of SCC and steel fibers can improve the shear resistance of reinforced concrete beams, enhance crack control and can promote flexural ductility. Despite extensive research, there is a lack of accurate and reliable design guidelines for the use of SFRC in beams. This study presents a rational model which can accurately predict the shear resistance of steel fiber reinforced concrete beams. The thesis also proposes a safe and reliable equation which can be used for the shear design of SFRC beams.
APA, Harvard, Vancouver, ISO, and other styles
30

Hansen, Steven Matthew. "Influence of Consolidation and Interweaving on Compression Behavior of IsoTruss™ Structures." BYU ScholarsArchive, 2004. https://scholarsarchive.byu.edu/etd/15.

Full text
Abstract:
Composite IsoTruss™ structures incorporate intersecting longitudinal and helical members. At the intersections, the fiber tows can be interwoven to achieve mechanical interlocking for increased joint integrity. Interlocking introduces gaps and curvilinear fiber paths similar to the crossovers in filament-wound structures, potentially facilitating local delamination within the members, thus reducing the strength and/or damage tolerance of the structure. Optimizing the interlocking pattern at the joints along with efficient consolidation minimizes these effects. Joint specimens were fabricated using a specially designed machine. Specific tow intersection patterns at the joint were: 1) Completely encapsulating the longitudinal member with the tows of the helical member; and 2) Interweaving the tows of the helical member with the tows of the longitudinal member. Consolidation was accomplished using: 1) a braided sleeve; 2) a coiled sleeve; 3) a sparse spiral Kevlar® wrap; 4) a polyester shrink tape sleeve; 5) twisting the entire bundle of longitudinal fiber tows; and 6) cinching the joints using aramid fiber. Ultimate compression strength and stiffness is directly related to the straightness of the tows in the longitudinal members at the intersections. An encapsulated joint reduces member strength by only 4.6%; whereas, an interwoven joint reduces member strength by 30.5%. The fiber paths of the longitudinal member in encapsulated joints are straighter than in interwoven joints, resulting in an average strength difference of 26.2%. Physical properties, strength, and stiffness show that consolidation quality directly affects performance. Consolidation using sleeves provides high quality consolidation, high strength, and high stiffness. Encapsulated joints consolidated using sleeves have an average ultimate strength and Young's modulus 34% and 21% higher, respectively, than encapsulated joints consolidated using other methods. Interwoven joints consolidated using sleeves have an average ultimate strength and Young's modulus 28% and 19% higher, respectively, than interwoven joints consolidated using other methods. Consolidating specimens using a braided sleeve yields the highest quality based on consistency, strength, and stiffness. Consolidating specimens by twisting the longitudinal member yields the lowest strength and stiffness. These conclusions will be applied to IsoTrussâ„¢ grid structure design and manufacturing technology.
APA, Harvard, Vancouver, ISO, and other styles
31

Nam, Sookie. "Settling and sedimentation behavior of fine-grained materials." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/42677.

Full text
Abstract:
Channeling has already been an observed phenomenon that often occurs during settling and sedimentation processes of finer materials. However, it has been regarded as a minor factor affecting settling process, e.g. settling velocity or consolidation rate. In this study, settling behaviors of talcs, kaolins and attapulgite were reviewed by experiments with small and large settling columns with special focus on channel formation during sedimentation. The large settling column is equipped with twenty eight measuring points, which are connected to pressure transducers for measuring pore pressure changes during settling. Throughout the study, channel formation was observed and related to the experimental conditions affecting it. The excess pore pressure changes were measured during the large column tests. Channels occurred under flocculation in zone settling and also in consolidation zones; pressure drop was observed near channels in some cases. It was apparent that channels work as a facilitator to dissipate the excess pore water pressure. It is summarized that not only initial concentration but also the material properties, such as specific gravity and shape of particles, can affect the channel formation.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
32

Budnik, Aimee Helen. ""IDENTIFYING PREDICTORS FOR PRIMARY PREVENTION ACTIVITIES IN LOCAL HEALTH DEPARTMENTS: UNDERSTANDING THE ROLE OF CONSOLIDATION"." Kent State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=kent1543629941331548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Xu, Dapeng. "Time effects on soil behavior : a particulate-scale study on the mechanisms of secondary consolidation and ageing /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202006%20XU.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Aghniaey, Nima. "Behaviour of Self Consolidating Steel Fiber Reinforced Concrete Beams Under Reversed Cyclic Loading." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23785.

Full text
Abstract:
Concrete is a very weak and brittle material in tension. It has been shown in previous researches that the addition of steel fibers to a concrete matrix can improve this behavior. The ability of fibers to control and redistribute stresses after cracking results in a number of improvements in the structural behaviour of concrete. A review of existing literature shows that the addition of steel fibers enhances concrete’s tensile resistance, crack control properties, ductility and damage tolerance. In beams, fibers can transform brittle shear response into a flexural response and promote ductility, thereby allowing for a full or partial replacement of traditional shear reinforcement. The enhanced shear capacity, ductility and damage tolerance of Steel Fiber Reinforced Concrete (SFRC) can also potentially be used to relax seismic detailing requirements in frames by partially replacing the required transverse reinforcement in the plastic hinge regions of RC beams. One of the drawbacks associated with SFRC is that the addition of steel fibers to a traditional concrete mix at high fiber contents can result in workability problems. The combined use of Self-Consolidating Concrete (SCC) and fibers can solve this problem and facilitate placement for a wider range of structural applications. Although several studies have been conducted on the behaviour of SFRC beams subjected to monotonic loading, there is limited research on the behaviour of SFRC beams under cyclic or reverse-cyclic loading. This thesis presents the results of an experimental and analytical study conducted on nine SFRC beam specimens tested under load reversals. The main objective of this research program was to investigate the effect of fibers on structural behaviour and to examine the ability of steel fibers to replace transverse reinforcement. The experimental and analytical results show that use of fibers results in several improvements in behaviour, including enhanced damage tolerance and post-peak ductility. The results also show that steel fibers can potentially be used to allow for a reduction of transverse reinforcement in beams, however further research is required.
APA, Harvard, Vancouver, ISO, and other styles
35

Levy, Kelly Rebecca. "Bond behavior of prestressed reinforcement in beams constructed with self-consolidating concrete." Auburn, Ala., 2007. http://repo.lib.auburn.edu/2007%20Spring%20Theses/LEVY_KELLY_6.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Karim, Md Rezaul. "Simulation of long-term consolidation behavior of soft sensitive clay using an elasto-viscoplastic constitutive model." 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/136140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lent, David D. "Learning and Memory and Supporting Neural Architecture in the Cockroach, Periplaneta americana." Diss., The University of Arizona, 2006. http://hdl.handle.net/10150/193804.

Full text
Abstract:
The cockroach, with its large brain and physiological resilience, holds many advantages for the development of behavioral paradigms. The work presented here provides a foundation for, and describes the results of, the implementation of studies of neural correlates of learning and memory on restrained animals.Using the antennal projection response (APR) as an indicator of learning and retention, several learning paradigms have been developed. A visual-olfactory associative and a gustatory-olfactory aversive conditioning paradigm demonstrated a plastic behavior that could be driven in an intact and immobilized cockroach. Conditioning the APR to a visual cue paired with an olfactory cue characterized the role of unilateral and bilateral olfactory input in learning and memory. While unilateral olfactory input is sufficient to learn a visual-olfactory association, bilateral olfactory input is necessary for long-term retention of the association. This comparison identified a critical time period in which memory is consolidated. This time period was subsequently used to analyze gene expression during memory consolidation.The split-brain cockroach preparation was developed to investigate what parts of the brain are necessary and sufficient for learning and retention of a visual-olfactory association; this preparation was also used to examine learning-induced changes in test tissue versus control tissue provided by the same animal. Evidence suggests that half of a brain is sufficient for a visual-olfactory association to be established and sufficient for retention of that association between 12 and 24 hours. However, the entire brain is necessary for long-term memory to be established. Using the split-brain cockroach simultaneously as the control and the test subject, learning-induced alterations in the microglomerular synaptic complexes of the calyces were identified in the trained half, but not in the naïve half.Using the APR, spatial learning and memory was examined. Multiple representations of space were revealed in the brain of the cockroach. Cockroaches represent space in terms of an olfactory gradient map, as well as the visuospatial relationship between objects. When both representations of space can be utilized by the cockroach to localize a cue, the positional visual cue is the one that determines the behavioral response.
APA, Harvard, Vancouver, ISO, and other styles
38

Denham, Martha H. "The Use of Laboratory Testing to Understand the Behavior of Collapsible Soil Upon Wetting." PDXScholar, 1992. https://pdxscholar.library.pdx.edu/open_access_etds/4664.

Full text
Abstract:
In developing a constitutive model that could predict the settlement due to the collapse, several goals needed to be met. These were to gain an understanding of the collapse phenomenon, knowing the soil properties at the natural water content and how they change after collapse, and develop and test the new model. It was felt that laboratory testing could be of use. The types of test conducted included use of the Oedometer, Pressuremeter, and Triaxial tests. The material that was used for the testing was a "generic" soil manufactured out of diatomite. In all of the tests the soil was tested dry and saturated in order to establish state limits of the soil. Next, the soil was loaded dry then inundated which initiated the collapse of the soil. The stress and strains were continually recorded. From the testing it was concluded that there is a stress-strain region where after collapse the soil looses considerable strength. With increasing stress and strain the soil eventually becomes stronger. From the triaxial tests, the stress-strain data from this "region of collapse" was used in a constitutive model. Stress paths from the Oedometer and Pressuremeter tests were then successfully applied to the model. The constitutive model used was an elasto plastic model. The elastic and plastic strain components were provided using functions for yielding, hardening, plastic potential, and failure as proposed by Paul Lade in his work on cohesionless, frictional materials. Results from the conventional triaxial shear tests and isotropic compression tests were used to derive the values of the functions for the model. The end result was three dimensional surfaces for failure, yielding, plastic work and plastic potential for the dry and saturated soil in the zone of collapse.
APA, Harvard, Vancouver, ISO, and other styles
39

PEREIRA, ERIC VALLOTTI. "INFLUENCE OF STEEL FIBERS IN THE MECHANICAL BEHAVIOR AND CRACKING MECHANISMS OF SELF-CONSOLIDATING CONCRETES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=31466@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
No presente trabalho foi investigado o comportamento mecânico de um concreto autoadensável reforçado com fibras de aço. Foram utilizadas fibras de aço torcidas e com ganchos, nos comprimentos de 25, 30 e 60 mm e diâmetros de 0,5, 0,62 e 0,75 mm. Para cada uma destas fibras e para cada uma das frações volumétricas investigadas (0,5, 1,0 e 2,0 por cento) foram realizados os ensaios de flexão em quatro pontos em corpos de prova prismáticos e de tração direta em corpos de prova do tipo dog bone shaped. Nos ensaios de flexão, os índices de tenacidade e as cargas residuais foram contabilizados. Alternativamente, determinou-se a energia absorvida nos ensaios de flexão de painéis circulares conforme a ASTM C1550, cuja abertura de fissuras foi medida com o auxílio de transdutores de deslocamento. Os corpos de prova reforçados com fibras de aço submetidos à tração direta se mostraram mais dúcteis com relação à matriz de concreto autoadensável, observando-se grande influência do volume e comprimento ancorado das fibras nas cargas residuais da zona de pós-fissuração. Nos ensaios de flexão, observaram-se grandes incrementos na tenacidade e deformações correspondentes às cargas residuais. Por fim, analisou-se a influência desses concretos no comportamento de vigas armadas sujeitas à flexão. A evolução da abertura de fissuras foi monitorada com sistema de correlação digital de imagens, sendo posteriormente correlacionadas com cargas aplicadas e com os deslocamentos obtidos nos ensaios. Observou-se nestes ensaios, que o reforço fibroso aumentou a capacidade de carga e a rigidez à flexão, atrasando consideravelmente o surgimento de fissuras.
In the present work the mechanical behavior of a self-consolidating concrete reinforced with steel fibers was investigated. Twisted and hooked end steel fibers were used in lengths of 25, 30 and 60 mm and diameters of 0.5, 0.62 e 0.75 mm. For each of these fibers and for each volumetric fractions investigated (0.5, 1.0 and 2.0 percent), the four-point bending tests on prismatic specimens and direct tensile in dog bone shape specimens were performed. In the flexural tests, the toughness and residual strengths were computed. Alternatively, the energy absorption capacity in the round panel tests was determined following the ASTM C1550. During the test the crack opening was measured through displacement transducers. The steel fiber reinforced concrete subject to direct tensile loading was more ductile than the self-consolidating concrete matrix, showing a high influence of the volume and embedded length of the fibers in the residual loads in the post-cracking zone. In the bending tests, a large increase in the toughness and strains corresponding to the residual loads were observed. Finally, the influence of the fiber reinforced concretes on the behavior of reinforced beams subject to bending was investigated. The evolution of the crack openings was monitored with a digital image correlation system and correlated to the applied load and displacements. It was observed in these tests that the fibrous reinforcement considerably increased the load capacity and flexural stiffness, delaying the crack growth.
APA, Harvard, Vancouver, ISO, and other styles
40

Ellmore, Timothy Michael. "The Speed of Associative Learning and Retrieval in Humans and Non-Human Primates." Diss., The University of Arizona, 2006. http://hdl.handle.net/10150/195717.

Full text
Abstract:
The conversion of a memory from an initially fragile state to an enduring representation requires cellular, molecular, and systems-level brain network changes. This reorganization is hypothesized to involve time-dependent neuroanatomical changes that may differentially support some types of remote versus recent memory, and may also influence the latency to decide and complete responses during retrieval. To quantify the timecourse of learning and retrieval after different retention durations, a paradigm is developed to measure in humans and monkeys the retrieval speed of visuomotor associations, which require an intact hippocampus for initial acquisition but not for retrieval after days or weeks. Two components of retrieval speed, a decision time to initiate movement and a velocity-dependent movement completion time to complete a motor response, are shown to change differently relative to a pre-retention baseline. Movement completion times decrease across repetitions within single learning session, and continue to decrease from the level reached at the end of learning following retention. Decision times also decrease within the learning session, but increase on the first post-retention retrieval attempt as a function of retention interval duration. Extensive practice is required for decision times to reach a level below that obtained at the end of learning, and the transition from a long- to short-latency decision depends on the number and spacing of practice trials. The findings are discussed in a framework in which post-retention processing time is influenced by the speed of visual identification, the time to retrieve the associative relationship from long-term memory, and the time to plan and execute a motor response. The creation of sparser, long-lasting visual form representations and strengthened cortico-striatal connections predict behavioral efficiency gains in visual identification and motor responses after learning. Decision times could be fast and automatic following extensive practice when the neural representation may become stored permanently in cortico-cortical and cortico-striatal linkages, or could increase after retention because of several cognitive and neural factors, including interference and frontal inhibition of the hippocampal system to prevent new learning before choice feedback. The experimental results are discussed in the context of the existing literature on memory consolidation.
APA, Harvard, Vancouver, ISO, and other styles
41

Chen, Tao. "The mechanical properties and oxidation behavior of nanocrystalline NiAl synthesized via shock consolidation of mechanically alloyed powders of Ni and Al." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/20029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wilson, Shannae Louise. "Effects on sleep-state organisation of a behavioural intervention for infant sleep disturbance." Thesis, University of Canterbury. Psychology, 2013. http://hdl.handle.net/10092/8044.

Full text
Abstract:
Establishing healthy sleep-wake patterns early in infancy is vitally important as sleep problems can persist. Behavioural sleep interventions such as the parental presence procedure are well established and have been found to improve infant sleep as determined by parent report. The exact nature of this improvement is, however, unclear. Sleep consolidation, sleep-state organisation, and self-soothing are thought likely to change after intervention; however, no known research has comprehensively determined which of these variables change as infant sleep changes in response to intervention. Three participants aged between 7 to 11 months who met the criteria for Infant Sleep Disturbance (ISD) were referred by a Health Centre and the parental presence behavioural sleep intervention was implemented. Parental report and videosomonography (VSG) data were used to measure sleep before and after intervention. While parental report is limited in that parents can only report what they can hear and/or see, VSG offers a tool that can be used to measure sleep-state organisation, state changes, and periods when the infant is awake and quiet. The present research found that infants’ sleep became more consolidated resulting in fewer sleep-wake transitions and night wakings. Infants who had difficulties initiating sleep on their own also demonstrated decrease in Sleep Onset Delay (SOD). Furthermore, infants were found to sleep through a greater number of sleep-state transitions and sleep for a greater duration of time before waking. Collectively this research provides some evidence that changing parental behaviours to those that promote self-initiation through self-soothing and consistency, can change sleep-state organisation and improve self-soothing.
APA, Harvard, Vancouver, ISO, and other styles
43

MEHRA, BIJENDRA SINGH. "CONSOLIDATION BEHAVIOUR OF MIX CLAY USING LAURENT TRANSFORM." Thesis, 2016. http://dspace.dtu.ac.in:8080/jspui/handle/repository/14582.

Full text
Abstract:
Consolidation behaviour of fine grained soil is evaluated commonly by Terzaghi’s one dimensional linear elastic consolidation theory. It is based on several simplified assumptions. Out of these assumptions most important assumption is constant value of coefficient of consolidation Cv during the consolidation process. But it leads serious problems to the consolidation of soft clay like bentonite and bentonite –sand mixture. Since Terzaghi’s one dimensional consolidation theory gives good results for small strain problems. Hence in this study Terzaghi’s one dimensional consolidation theory is used for evaluating consolidation of pure bentonite and bentonite –sand mixture assuming constant value of coefficient of consolidation Cv for small range of effective stress. Variation of coefficient of consolidation with effective stress for different percentage of bentonite in sand is shown. Moreover variation of other consolidation properties like coefficient of compressibility av, coefficient of volume compressibility mv, compression index Cc with effective stress is determined and comparison of these properties for different clay content are made. Based on consolidation property permeability of clay is calculated indirectly for different percentage of clay. It is observed that permeability of clay increases with decrease in clay content.Based on consolidation properties graphs between average degree of consolidation and time factor is plotted and comparison is made for different percentage of clay. Rate of consolidation is compared here using the two transforms Fourier as well as Laurent and it is clear from the experiments that rate of consolidation is faster using Laurent transform.
APA, Harvard, Vancouver, ISO, and other styles
44

Estabragh, A. R., Akbar A. Javadi, and John C. Boot. "Effect of compaction pressure on consolidation behaviour of unsaturated silty soil." 2004. http://hdl.handle.net/10454/465.

Full text
Abstract:
The effect of compaction pressure on subsequent soil behaviour during isotropic consolidation has been investigated by conducting controlled-suction triaxial tests on samples of an unsaturated compacted silty soil. A comprehensive set of laboratory experiments was carried out in a double-walled triaxial apparatus on samples of unsaturated soil that were prepared using two different compaction pressures. The axis translation technique was used for creating the desired suctions in the samples. In the experiments, the soil samples were subjected to isotropic consolidation under constant suctions. The results show that different compaction pressures produce different fabrics in a soil and therefore affect the behaviour of the soil. The results also show that the value of yield stress and the location of the loading¿collapse (LC) yield curve are functions of soil fabric. Furthermore, it is shown that the slopes of normal consolidation lines for densely and loosely compacted samples differ in unsaturated conditions but are the same in saturated soils. A comparison is made between the behaviour of the dense and loose samples, and the difference in the behaviour is explained.
APA, Harvard, Vancouver, ISO, and other styles
45

Jaditager, Mohamed. "Sedimentation and consolidation behaviour of fly ash-based geopolymer stabilised dredged mud." Thesis, 2018. https://researchonline.jcu.edu.au/58933/1/JCU_58933-jaditager-2018-thesis.pdf.

Full text
Abstract:
Ports conduct maintenance and capital dredging campaigns to maintain channel depths, improve navigational safety of vessels, and to cater for larger ships with deeper draughts. Most of the soft dredged material derived from these dredging campaigns is beneficially used as a fill material for land reclamation purposes. Port authorities undertake land reclamation works to address land scarcity and environmental constraints that are associated with dredged material placement alternatives. Land reclaimed with soft dredged mud has geotechnical challenges of slow self-weight consolidation, high compressibility and low bearing capacity. To overcome these geotechnical challenges and to alleviate risk of structures settlement, dredged material stabilisation techniques such as chemical admixtures, electrokinetic, stone columns, prefabricated vertical drains (PVDs), and surcharging are implemented. For these existing dredged material stabilisation methods to be applicable, the land reclamation fill material must have settled, consolidated and gained sufficient strength and stiffness to be traversed by ground improvement plant and workforce. By then, the reclaimed (the man-made) ground becomes similar to a naturally formed soft ground that civil and geotechnical engineers have no control on its soft soil formation processes. On dredging and land reclamation with soft dredged mud slurry project site, dredge cutters and drag heads rip and disintegrate marine sediment turning it into high water content dredged mud slurry. Then, the dredged mud slurry is pumped into land reclamation containment ponds to settle and self-weight consolidate to form soft land reclamation fill material. The dredged mud slurry takes several hours from the moment it is placed into containment ponds to the commencement of the land reclamation fill material formation. This time slot is sufficient for an early geotechnical intervention to stabilise the dredged mud while it is still in its slurry stage, prior to the formation of the soft land reclamation fill material. Stabilising the soft dredged mud slurry provides an opportunity to manipulate its sedimentation behaviour that controls microstructure, consolidation and compressibility characteristics of the resulting land reclamation fill material. This research study has investigated feasibility of stabilising 400% water content dredged mud slurry that is derived from Port of Townsville, Queensland Australia, using fly ash-based geopolymer binder at 6%, 12% and 18% by weight. The fly ash-based geopolymer binder is chosen for its tolerance to high water content nature of the dredged mud slurry, binding attributes, cost effectiveness, and environmental benefits. The study examined the influence of the fly ash-based geopolymer stabilisation on the sedimentation and consolidation behaviours, mineralogy and microstructure of the fly ash-based geopolymer stabilised dredged mud. Settling column tests were conducted to investigate the sedimentation behaviour of untreated and fly ash-based geopolymer stabilised dredged mud slurries. Standard one-dimensional consolidation (Oedometer) tests were used to evaluate the compressibility and consolidation characteristics of the untreated and the fly ash-based geopolymer stabilised dredged mud sediments. X-ray diffractometer (XRD) and scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS) techniques were deployed to analyse the mineralogy and microstructure of the untreated and the fly ash-based geopolymer stabilised dredged mud. The study found it is feasible to stabilise high water content dredged mud slurry with fly ash-based geopolymer binder. Fly ash-based geopolymer gel coating dredged mud particles in the slurry was found to be the main stabilisation mechanism. It is noted the geopolymer gel coating dredged mud particles in the slurry has exacerbated flocculation of the stabilised dredged mud slurry, extended its flocculation duration, reduced settling time and shorten overall sedimentation duration. The SEM with EDS analysis showed the fly ash-based geopolymer stabilisation has altered the microstructure of stabilised dredged mud, changed its particles arrangement and reduced its desiccation shrinkage cracks. Subsequently, the fly ash-based geopolymer stabilisation has improved the compressibility and consolidation properties of the stabilised dredged mud by reducing its coefficient of volume compressibility (mᵥ) and increasing its coefficient of consolidation (cᵥ) and permeability coefficient (k). However, the XRD analysis found no correlation between the fly ash-based geopolymer stabilisation and the mineralogy of the fly ash-based geopolymer stabilised dredged mud.
APA, Harvard, Vancouver, ISO, and other styles
46

Lai, Yan Xu, and 賴彥旭. "A Study on the Secondary Consolidation Behaviour of Silty Clay of Taipei Basin." Thesis, 1995. http://ndltd.ncl.edu.tw/handle/36416444341622956545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Jamali-Firouz-Abadi, Maryam. "Effect of Binder Content and Load History on the One-dimensional Compression of Williams Mine Cemented Paste Backfill." Thesis, 2012. http://hdl.handle.net/1807/35326.

Full text
Abstract:
Large voids created by underground mining are backfilled to provide regional ground support. This thesis examines using conventional oedometer techniques and electromagnetic (EM) techniques to characterize consolidation and binder hydration in mine backfill so that EM monitoring can be used in the field to provide real-time feedback to operators to optimize the backfilling process. New techniques are given for interpreting the full range of deformation (initial compression, primary and secondary consolidation). Deformation due to initial compression is non-trivial and may have to be accounted for in numerical back-analyses of field case studies. EM parameters are sensitive to binder content, progress of hydration and loss of water caused by consolidation and binder hydration. The integrated interpretation of consolidation and EM behaviours has significant potential impact on real-time monitoring of mine backfill operations, and recommendations are made to advance the technique for this purpose.
APA, Harvard, Vancouver, ISO, and other styles
48

Huang, Chou-Hui, and 黃綢輝. "Consolidation Behavior under Time Dependent Loading." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/25892148722576680863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chen, Chia-Hao, and 陳家豪. "K0 Consolidation Behavior of UnsaturatedLateritic Soil." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/t62qwm.

Full text
Abstract:
碩士
國立臺北科技大學
土木與防災研究所
97
Terzaghi’s one-dimensional consolidation theory that relates pore water pressure to settlement has been successfully applied to saturated soil. However, the use of this theory to unsaturated soil has rarely even been discussed. In this study, unsaturated K0 consolidation experiments that involved constant water content test, consolidation testand increase of matric suction test have been used to investigate the changes in water and soil volumes change of unsaturated lateritic soil. The experiments were conducted in an oedometer-type ring placed in an advanced triaxial apparatus for unsaturated soils. The one-dimensional consolidation theory was then used to compare and contrast the experimental resutl. Good agreement has been obtained between the two sets of result.
APA, Harvard, Vancouver, ISO, and other styles
50

Fu, Chih-Ho, and 傅志和. "Research of Consolidation Behavior of Composite Soils." Thesis, 1998. http://ndltd.ncl.edu.tw/handle/82085720797688611413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography