Dissertations / Theses on the topic 'Consensus distribué'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 26 dissertations / theses for your research on the topic 'Consensus distribué.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Mansouri, Imen. "Contrôle distribué pour les systèmes multi-cœurs auto-adaptatifs." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20087.
Full textRegular architectures embedding several processing elements are increasingly used in embedded systems. They require careful design to avoid high power consumption and to improve their flexibility. This thesis work deals with optimization mechanisms of large scale architectures; to meet variability issues, optimization is processed at run-time. The target design implements in-situ features to collect physical information about its yield and to monitor application workload and generated consumption. As for workload monitoring, we use activity counters connected at architecture level to a set of critical signals. We developed an automated method to optimally place these features with a minimal area overhead. The collected information are used further jointly with a power model to estimate the dissipated power and then driven appropriate optimization process. Optimal frequency for each core is set by means of a distributed controller based on consensus theory. The resulting settings aim to reduce the whole system power while fulfilling application constraints. The scheme needs to be fully distributed to garantee the control scalability, and so feasibility, as the number of cores scales
Tran-The, Hung. "Problème du Consensus dans le Modèle Homonyme." Phd thesis, Université Paris-Diderot - Paris VII, 2013. http://tel.archives-ouvertes.fr/tel-00925941.
Full textTravers, Corentin. "Derrière le consensus : coordination faiblement contrainte dans les systèmes distribués asynchrones." Phd thesis, Université Rennes 1, 2007. http://tel.archives-ouvertes.fr/tel-00485704.
Full textHu, Wei. "Identification de paramètre basée sur l'optimisation de l'intelligence artificielle et le contrôle de suivi distribué des systèmes multi-agents d'ordre fractionnaire." Thesis, Ecole centrale de Lille, 2019. http://www.theses.fr/2019ECLI0008/document.
Full textThis thesis deals with the parameter identification from the viewpoint of optimization and distributed tracking control of fractional-order multi-agent systems (FOMASs) considering time delays, external disturbances, inherent nonlinearity, parameters uncertainties, and heterogeneity under fixed undirected/directed communication topology. Several efficient controllers are designed to achieve the distributed tracking control of FOMASs successfully under different conditions. Several kinds of artificial intelligence optimization algorithms andtheir modified versions are applied to identify the unknown parameters of the FOMASs with high accuracy, fast convergence and strong robustness. It should be noted that this thesis provides a promising link between the artificial intelligence technique and distributed control
Hanna, Fouad. "Etude et développement du nouvel algorithme distribué de consensus FLC permfettant de maintenir la cohérence des données partagées et tolérant aux fautess." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2051.
Full textNowadays, collaborative work took a very important place in many fields and particularly in the medicaltelediagnosis field. The consistency of shared data is a key issue in this type of applications. Moreover, itis essential to use a consensus algorithm to ensure data consistency in collaborative platforms. We presenthere our new consensus algorithm FLC that helps to ensure data consistency in asynchronous collaborativedistributed systems. Our algorithm is fault tolerant and aims to improve the performance of consensus ingeneral and particularly in the case of process crashes. The new algorithm uses the leader oracle tocircumvent the impossibility result of the FLP theorem. It is decentralized and considers the crash-stop failuremodel. The FLC algorithm is based on two main ideas. The first is to perform, at the beginning of eachround, a simple election phase guaranteeing the existence of only one leader per round. The second is totake advantage of system stability and more particularly of the fact that the leader does not crash betweentwo consecutive consensus runs. The performance of our algorithm was analyzed and compared to the mostknown algorithms in the domain. The results obtained by simulation, using the Neko platform, demonstratedthat our algorithm gave the best performance when using a multicast network in the best case scenario and insituations where the algorithm undergoes one or more crashes of coordinators/leaders processes
Nguyen, Le-Duy-Lai. "Contrôle distribué multi-couche des systèmes complexes avec contraintes de communication : application aux systèmes d'irrigation." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAT108/document.
Full textThis thesis presents control problems of irrigation network with communication constraints and a multi-layer approach to solve these problems in a distributed manner. Detailed discussions of each layer with analytical and simulation results are described throughout several chapters. They emphasize the potential interest of the multi-layer approach, more precisely its efficiency and reliability for supervision, multi-objective optimization and distributed cooperative control of complex water transport systems. Conventionally, the first layer to be considered is the hydraulic network composed of free-surface channels, hydraulic structures and mesh subnetwork of pressurized pipes. By coupling the Saint-Venant equations for describing the physics of free-surface fluid and the Lattice Boltzmann method for the fluid simulation, a discrete-time nonlinear model is obtained for channel reaches. The hydraulic structures are usually treated as internal boundaries of reaches and modeled by algebraic relationships between the flow and pressure variables. To enable the exchange of information among the control system’s components, a communication network is considered in the second layer. Solving challenging problems of heterogeneous devices and communication issues (e.g., network delay, packet loss, energy consumption) is investigated in this thesis by introducing a hybrid network architecture and a dynamic routing design based on Quality of Service (QoS) requirements of control applications. For network routing, a weighted composition of some standard metrics is proposed so that the routing protocol using the composite metric achieves convergence, loop-freeness and path-optimality properties. Through extensive simulation scenarios, different network performance criteria are evaluated. The comparison of simulation results can validate the interest of this composition approach for dynamic routing. Finally, the third layer introduces an optimal reactive control system developed for the regulatory control of large-scale irrigation network under a Distributed Cooperative Model Predictive Control (DCMPC) framework. This part discusses the implementation of different control strategies (e.g., centralized, decentralized, and distributed strategies) and how the cooperative communication among local MPC controllers can be included to improve the performance of the overall system. Managing divergent (or outdated) information exchange among controllers is considered in this thesis as a consensus problem and solved by an asynchronous consensus protocol. This approach based on the multi-agent system paradigm to distributed control requires each controller to agree with its neighbors on some data values needed during action computation. For simulations, a particular benchmark of an irrigation channel is considered. The comparison of simulation results validate the benefits of the distributed cooperative control approach over other control strategies
Auvolat, Alex. "Probabilistic methods for collaboration systems in large-scale trustless networks." Thesis, Rennes 1, 2021. http://www.theses.fr/2021REN1S125.
Full textThe Internet is a formidable tool for education, communication and collaboration, however it is currently being monopolized by large corporations (GAFAM), which has consequences for many social issues such as respect of human rights and individual freedoms. This thesis focuses on ways to build decentralized applications: Internet applications that provide levels of functionality similar to those provided by the GAFAM, but that function in a decentralized manner, empowering the users to democratically decide of their functioning and their uses. We focus on epidemic algorithms, which are particularly suited to the context of very large open networks. We make contributions on causal broadcast in presence of Byzantine nodes, epidemic causal broadcast using an event store synchronized with an anti-entropy algorithm, random peer sampling in presence of Byzantine nodes and Sybil attacks, as well as a new epidemic total order broadcast which is tolerant to malicious nodes and provides high throughput message delivery
Bellachehab, Anass. "Pairwise gossip in CAT(k) metric spaces." Thesis, Evry, Institut national des télécommunications, 2017. http://www.theses.fr/2017TELE0017/document.
Full textThis thesis deals with the problem of consensus on networks. Networks under study consists of identical agents that can communicate with each other, have memory and computational capacity. The network has no central node. Each agent stores a value that, initially, is not known by other agents. The goal is to achieve consensus, i.e. all agents having the same value, in a fully distributed way. Hence, only neighboring agents can have direct communication. This problem has a long and fruitful history. If all values belong to some vector space, several protocols are known to solve this problem. A well-known solution is the pairwise gossip protocol that achieves consensus asymptotically. It is an iterative protocol that consists in choosing two adjacent nodes at each iteration and average them. The specificity of this Ph.D. thesis lies in the fact that the data stored by the agents does not necessarily belong to a vector space, but some metric space. For instance, each agent stores a direction (the metric space is the projective space) or position on a sphere (the metric space is a sphere) or even a position on a metric graph (the metric space is the underlying graph). Then the mentioned pairwise gossip protocols makes no sense since averaging implies additions and multiplications that are not available in metric spaces: what is the average of two directions, for instance? However, in metric spaces midpoints sometimes make sense and when they do, they can advantageously replace averages. In this work, we realized that, if one wants midpoints to converge, curvature matters. We focused on the case where the data space belongs to some special class of metric spaces called CAT(k) spaces. And we were able to show that, provided initial data is "close enough" is some precise meaning, midpoints-based gossip algorithm – that we refer to as Random Pairwise Midpoints - does converge to consensus asymptotically. Our generalization allows to treat new cases of data spaces such as positive definite matrices, the rotations group and metamorphic systems
Lavault, Christian. "Algorithmique et complexité distribuées : applications à quelques problèmes fondamentaux de complexité, protocoles distribués à consensus, information globale, problèmes distribués d'élection et de routage." Paris 11, 1987. http://www.theses.fr/1987PA112392.
Full textWen, Guoguang. "Distributed cooperative control for multi-agent systems." Phd thesis, Ecole Centrale de Lille, 2012. http://tel.archives-ouvertes.fr/tel-00818774.
Full textPeng, Zhaoxia. "Contribution à la Commande d'un Groupe de Robots Mobiles Non-holonomes à Roues." Phd thesis, Ecole Centrale de Lille, 2013. http://tel.archives-ouvertes.fr/tel-00864197.
Full textMallmann-Trenn, Frederik. "Analyse probabiliste de processus distribués axés sur les processus de consensus." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE058/document.
Full textThis thesis is devoted to the study of stochastic decentralized processes. Typical examples in the real world include the dynamics of weather and temperature, of traffic, the way we meet our friends, etc. We take the rich tool set from probability theoryfor the analysis of Markov Chains and employ it to study a wide range of such distributed processes: Forest Fire Model (social networks), Balls-into-Bins with Deleting Bins, and fundamental consensus dynamics and protocols such as the Voter Model, 2-Choices, and 3-Majority
El, Chamie Mahmoud. "Optimisation, contrôle et théorie des jeux dans les protocoles de consensus." Thesis, Nice, 2014. http://www.theses.fr/2014NICE4094/document.
Full textConsensus protocols have gained a lot of interest in the recent years. In this thesis, we study optimization, control, and game theoretical problems arising in consensus protocols. First, we study optimization techniques for weight selection problems to increase the speed of convergence of discrete-time consensus protocols on networks. We propose to select the weights by applying an approximation algorithm: minimizing the Schatten p-norm of the weight matrix. We characterize the approximation error and we show that the proposed algorithm has the advantage that it can be solved in a totally distributed way. Then we propose a game theoretical framework for an adversary that can add noise to the weights used by averaging protocols to drive the system away from consensus. We give the optimal strategies for the game players (the adversary and the network designer) and we show that a saddle-point equilibrium exists in mixed strategies. We also analyze the performance of distributed averaging algorithms where the information exchanged between neighboring agents is subject to deterministic uniform quantization (e.g., when real values sent by nodes to their neighbors are truncated). Consensus algorithms require that nodes exchange messages persistently to reach asymptotically consensus. We propose a distributed algorithm that reduces the communication overhead while still guaranteeing convergence to consensus. Finally, we propose a score metric that evaluates the quality of clusters such that the faster the random walk mixes in the cluster and the slower it escapes, the higher is the score. A local clustering algorithm based on this metric is proposed
Capdevielle, Claire. "Étude de la complexité des implémentations d'objets concurrents, sans attente, abandonnables et/ou solo-rapides." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0194/document.
Full textIn multiprocessor computer, synchronizations between processes are needed for the access to the shared memory. Usually this is done by using locks, but there are some issues as deadlocks or lack of fault-tolerance. We are interested in implementing abstractions (as consensus or universal construction) which ease the programming of wait-free concurrent objects, without using lock but based on atomic Read/Write operations (ARW). Only using the ARW does not permit to implement wait-free consensus. The use of primitives which offer a higher power of synchronization than the ARW is needed. But these primitives are more expensive in computing time. Therefore, we are interested in this thesis in the design of algorithms which restrict the use of these primitives only to the cases where processes are in contention. These algorithms are said solo-fast. Another direction is to allow the object to abort the computation in progress - and to return a special response "abort" - when there is contention. These objects are named abortable. On the one hand we give wait-free, abortable and/or solo-fast concurrent object implementations. Indeed we proposed a universal construction which ensure to the implemented object to be abortable and solo-fast. We have also realized solo-fast consensus algorithms and abortable consensus algorithms. On the other hand, we study the space complexity of these implementations : we prove space lower bound on the implementation of abortable object and consensus
Peng, Zhaoxia. "Contribution à la Commande d’un Groupe de Robots Mobiles Non-holonomes à Roues." Thesis, Ecole centrale de Lille, 2013. http://www.theses.fr/2013ECLI0006.
Full textThis work is based on the multi-agent system / multi-vehicles. This thesis especially focuses on formation control of multiple nonholonomic mobile robots. The objective is to design suitable controllers for each robot according to different control tasks and different constraint conditions, such that a group of mobile robots can form and maintain a desired geomantic pattern and follow a desired trajectory. The leader-follower formation control for multiple nonholonomic mobile robots is investigated under the backstepping technology, and we incorporate a bioinspired neurodynamics scheme in the robot controllers, which can solve the impractical velocity jumps problem. The distributed formation control problem using consensus-based approach is also investigated. Distributed kinematic controllers are developed, which guarantee that the multi-robots can at least exponentially converge to the desired geometric pattern under the assumption of "perfect velocity tracking". However, in practice, "perfect velocity tracking" doesn’t hold and the dynamics of robots should not be ignored. Next, in consideration of the dynamics of robot with unknown parameters, adaptive torque controllers are developed such that the multi-robots can asymptotically converge to the desired geometric pattern under the proposed distributed kinematic controllers. Furthermore, When the partial knowledge of dynamics is available, an asymptotically stable torque controller has been proposed by using robust adaptive control techniques. When the dynamics of robot is unknown, the neural network controllers with the robust adaptive term are proposed to guarantee robust velocity tracking
Lambein, Patrick. "Consensus de moyenne dans les réseaux dynamiques anonymes : Une approche algorithmique." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX103.
Full textCompact and cheap electronic components announce the near-future development of applications in which networked systems of autonomous agents are made to carry over complex tasks. These, in turn, depend on a small number of coordination primitives, which need to be programmatically implemented into potentially low-powered, and computationally limited, agents.Such applications include for example the coordination of the collective motion of mobile and vehicular networks, the distributed aggregation and processing of data measured locally in sensor networks, and the on-line repartition of processing load in the computer farms powering wide-scale services. As they address constraints that are not specific to the digital nature of the network such primitives also serve to model complex behavior of natural systems, such as flocks and neural networks.This monograph focuses on providing distributed algorithms that asymptotically compute the average of initial values, initially present at each agent of a networked system with time-varying communication links and in the absence of centralized control. Additionally, we consider the weaker problem of getting the agents to asymptotically agree on any value within the initial bounds. We focus on locally implementable algorithms, which leverage no information beyond what the agents can acquire by themselves, and which need no bootstrapping mechanism like a global start signal or a leader agent.We provide distributed average consensus algorithms that operate over dynamic networks given different local assumptions. These algorithms are computationally simple and operate in polynomial time in the number of agents.For bidirectional communications, we give a deterministic algorithm which asymptotically computes the average as long as the network never becomes permanently disconnected. For the general case of asymmetric communications, we provide a stabilizing Monte Carlo algorithm that is efficient in bandwidth and memory and operates in linear time, along with an extension by which the algorithm can be made to uniformly terminate over any connected network in which agents may start asynchronously.This contrasts with a plethora of results and techniques in which agents are provided external information – the size of the system, a bound over their degree, – helped with exogenous symmetry breaking – a leader agent, unique identifiers, – or where the network is expected to conform to a specific shape – a ring, a a complete network, a regular graph. Indeed, because very different networks may look alike to the agents, they are limited in what they can learn locally, and many functions are impossible to compute in a fully distributed manner without assuming some structure in the network or additional symmetry-breaking device. Given these stringent constraints, our contribution is to offer algorithms whose validity depends uniquely on local and instantaneous conditions. In the bidirectional model, we show that anonymous deterministic agents can asymptotically compute the average in polynomial time. For the general model of directed interactions, we allow agents to consult random oracles. Under those conditions, full information protocols are capable of solving any problem, and so we focus on the spatial complexity and tolerance to a lack of initial coordination in the agents, while offering stronger termination guarantees than in the bidirectional case. Beyond the fact that locally implementable algorithms are eminently desirable, our study contributes to mapping the limits that local interactions impose on networks
Carvin, Denis. "Mécanismes de supervision distribuée pour les réseaux de communication dynamiques." Thesis, Toulouse, INSA, 2015. http://www.theses.fr/2015ISAT0025/document.
Full textWith the massive rise of wireless technologies, the number of mobile stations is constantly growing. Both their uses and their communication resources are diversified. By integrating our daily life objects, our communication networks become dynamic in terms of physical topology but also in term of resources. Furthermore, they give access to a richer information. As a result, the management task has become complex and requires shorter response time that a human administrator can not respect. It becomes necessary to develop an autonomic management behavior in next generation networks. In any manner, managing a system requires essential steps which are : its measurement and its supervision. Whatever the nature of a system, this stage of information gathering, allows its characterization and its control. The field of networks is not the exception to the rule and objects that compose them will need to acquire information on their environment for a better adaptation. In this thesis, we focus on the efficient sharing of this information, for self-analysis and distributed performance evaluation purposes. After having formalized the problem of the distributed measurement, we address in a first part the fusion and the diffusion of measures in dynamic graphs. We develop a new heuristic for the average consensus problem offering a better contraction rate than the ones of the state of the art. In a second part, we consider more stable topologies where TCP is used to convey measures. We offer a scheduling mechanism for TCP flows that guaranty the same impact on the network congestion, while reducing the average latency. Finally, we show how nodes can supervise various metrics such as the system performance based on their utilities and suggest a method to allow them to analyze the evolution of this performance
Tronel, Frédéric. "Application des problèmes d'accord à la tolérance aux défaillances dans les systèmes distribués asynchrones." Rennes 1, 2003. http://www.theses.fr/2003REN10146.
Full textHanaf, Anas. "Algorithmes distribués de consensus de moyenne et leurs applications dans la détection des trous de couverture dans un réseau de capteurs." Thesis, Reims, 2016. http://www.theses.fr/2016REIMS018/document.
Full textDistributed consensus algorithms are iterative algorithms of low complexity where neighboring sensors interact with each other to reach an agreement without coordinating unit. As the nodes in a wireless sensor network have limited computing power and limited battery, these distributed algorithms must reach a consensus in a short time and with little message exchange. The first part of this thesis is based on the study and comparison of different consensus algorithms synchronously and asynchronously in terms of convergence speed and communication rates. The second part of our work concerns the application of these consensus algorithms to the problem of detecting coverage holes in wireless sensor networks.This coverage problem also provides the context for the continuation of our work. This problem is described as how a region of interest is monitored by sensors. Different geometrical approaches have been proposed but are limited by the need to know exactly the position of the sensors; but this information may not be available if the locating devices such as GPS are not on the sensors. From the mathematical tool called algebraic topology, we have developed a distributed algorithm of coverage hole detection searching a harmonic function of a network, that is to say canceling the operator of the 1-dimensional Laplacian. This harmonic function is connected to the homology group H1 which identifies the coverage holes. Once a harmonic function obtained, detection of the holes is realized by a simple random walk in the network
Obando, Bravo German Dario. "Distributed methods for resource allocation : a passivity based approach." Thesis, Nantes, Ecole des Mines, 2015. http://www.theses.fr/2015EMNA0174/document.
Full textSince the complexity and scale of systems have been growing in the last years, distributed approaches for control and decision making are becoming more prevalent. This dissertation focuses on an important problem involving distributed control and decision making, the dynamic resource allocation in a network. To address this problem, we explore a consensus--based algorithm that does not require any centralized computation, and that is capable to deal with applications modeled either by dynamical systems or by memoryless functions. The main contribution of our research is to prove, by means of graph theoretical tools and passivity analysis, that the proposed controller asymptotically reaches an optimal solution without the need of full information. In order to illustrate the relevance of our main result, we address several engineering applications including: distributed control for energy saving in smart buildings, management of the customers of an aggregating entity in a smart grid environment, and development of an exact distributed optimization method that deals with resource allocation problems subject to lower--bound constraints. Finally, we explore resource allocation techniques based on classic population dynamics models. In order to make them distributed, we introduce the concept of non--well--mixed population dynamics. We show that these dynamics are capable to deal with constrained information structures that are characterized by non--complete graphs. Although the proposed non--well--mixed population dynamics use partial information, they preserve similar properties of their classic counterpart, which uses full information. Specifically, we prove mass conservation and convergence to Nash equilibrium
Dado que la complejidad y la escala de los sistemas sehan ido incrementando en los últimos años, las técnicas centralizadas de control y toma de decisiones están siendo reemplazadas por métodos distribuidos. Esta tesis se centra en un importante problema que involucra control y toma de decisiones distribuidas: la asignación dinámica de recursos en redes. Para abordar este problema, exploramos un algoritmo basado en consenso que no requiere computación centralizada, y que puede ser usado en aplicaciones modeladas ya sea por sistemas dinámicos o funciones sin memoria. La principal contribución de esta tesis es probar, por medio de teoría de grafos y pasividad, que el algoritmo propuesto alcanza asintóticamente una solución óptima sin la necesidad de usar información completa. Para ilustrar la relevancia del resultado principal de esta disertación, abordamos varias aplicaciones en ingeniería,incluyendo: el control distribuido en edificios inteligentes orientado a la eficiencia energética, la gestión de los clientes de un agregador en una red inteligente en la que se aplican estrategias de respuesta de la demanda, y el desarrollo de un método de optimización exacto que permite incluir restricciones de límite inferior. Finalmente, se exploran otras técnicas de asignación derecursos inspiradas en modelos de dinámicas poblacionales. Se introduce el concepto de poblaciones no—bien—mezcladas, y se muestra que las dinámicas asociadas a este tipo de poblaciones cuentan con una estructura de información local, caracterizada por grafos que no son completos. A pesar de que las dinámicas propuestas usan información parcial, ellas preservan características similares a las dinámicas poblacionales clásicas que usan información completa
Jeanneau, Élise. "Failure Detectors in Dynamic Distributed Systems." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS207.
Full textDynamic systems are distributed systems in which (1) processes can join or leave the system during the run, and (2) the communication graph evolves over time. The failure detector abstraction was introduced as a way to circumvent the impossibility of solving consensus in asynchronous systems prone to crash failures. A failure detector is a local oracle that provides processes in the system with unreliable information on process failures. But a failure detector that is sufficient to solve a given problem in a static system is not necessarily sufficient to solve the same problem in a dynamic system. Additionally, some existing failure detectors cannot be implemented in dynamic systems. Therefore, it is necessary to redefine existing failure detectors and provide new algorithms. In this thesis, we provide a new definition of a failure detector for k-set agreement, and prove that it is sufficient to solve k-set agreement in dynamic systems. We also design a dynamic system model and an algorithm that implements this new failure detector. Additionally, we adapt an existing failure detector for mutual exclusion and prove that it is still the weakest failure detector to solve mutual exclusion in dynamic systems, which means that it is weaker than any other failure detector capable of solving mutual exclusion
Marchand, Corine. "Mise au point d'algorithmes répartis dans un environnement fortement variable, et expérimentation dans le contexte des pico-réseaux." Phd thesis, Grenoble INPG, 2004. http://tel.archives-ouvertes.fr/tel-00008039.
Full textBelkadi, Adel. "Conception de commande tolérante aux défauts pour les systèmes multi-agents : application au vol en formation d'une flotte de véhicules autonomes aériens." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0183/document.
Full textIn recent years, the emergence of new technologies such as miniaturization of components, wireless communication devices, increased storage size and computing capabilities have allowed the design of increasingly complex cooperative multi-agent systems. One of the main research axes in this topic concerns the formation control of fleets of autonomous vehicles. Many applications and missions, civilian and military, such as exploration, surveillance, and maintenance, were developed and carried out in various environments. During the execution of these tasks, the vehicles must interact with their environment and among themselves to coordinate. The available communication tools are often limited in scope. The preservation of the connection within the group then becomes one of the objectives to be satisfied in order to carry out the task successfully. One of the possibilities to guarantee this constraint is the training displacement, which makes it possible to preserve the distances and the geometrical structure of the group. However, it is necessary to have tools and methods for analyzing and controlling these types of systems in order to make the most of their potential. This thesis is part of this research direction by presenting a synthesis and analysis of multi-agent dynamical systems and more particularly the formation control of autonomous vehicles. The control laws developed in the literature for formation control allow to carry out a large number of missions with a high level of performance. However, if a fault/failure occurs in the training, these control laws can be very limited, resulting in unstable system behavior. The development of fault tolerant controls becomes paramount to maintaining control performance in the presence of faults. This problem will be dealt with in more detail in this thesis and will concern the development and design of Fault tolerant controls devolved to a fleet of autonomous vehicles according to different configuration/structuring
Amoussou-Guenou, Yackolley. "Gouvernance des biens communs dans les blockchains." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS043.
Full textBlockchains are one of the most appealing technologies over the last years, both for scientists and for the general public. Blockchains are distributed ledgers that aim to offer transparency, integrity and many more advantages over their centralised counterparts. Blockchains were “revealed” and became popular thanks to the creation and rise of the cryptocurrency Bitcoin. Over the years, blockchain technologies become more and more popular with an exceptional peak in 2017. Blockchains are becoming mainstream technologies, as there is an observatory for blockchains established by the European Commission, blockchain forums in many countries, blockchain start-ups are flourishing, scientific conferences are discussing the topic, and even some scientific conferences are now specifically dedicated to the technology, etc. The blockchain technology promises, thanks to its integrity and transparency properties to be useful and interesting in various domains, and not only for financial systems. However, many questions and doubts float around it. Is it environmentally viable? Is the technology even ensuring its promises? Can they be used in real-life settings, etc. In this thesis, using the lens of distributed systems, we study and define the properties of committee-based blockchains and their fairness; that definition allows formalising and helping correct one of the most used blockchain of that class. Furthermore, adding lenses from game theory, we propose a methodology to analyse the rational behaviours of participants in a blockchains system. Using that methodology, we show, under different mechanisms of rewards, the necessary conditions needed to ensure the blockchain properties
Benahmed, Sif Eddine. "Distributed Cooperative Control for DC Microgrids." Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0056.
Full textIn recent years, the power grid has undergone a rapid transformation with the massive penetration of renewable and distributed generation units. The concept of microgrids is a key element of this energy transition. Microgrids are made up of a set of several distributed generation units (DGUs), storage units (SUs) and loads interconnected by power lines. A microgrid can be installed in several locations, for example in houses, hospitals, a neighborhood or village, etc., and operates either in connected mode to the main grid or in isolated (autonomous) mode. Microgrids are facing several challenges related to stability assurance, cyber-security, energy cost optimization, energy management, power quality, etc. In this work, we focus our attention on the control of islanded direct current microgrids. The main contribution is the design of a new distributed control approach to provably achieve current sharing, average voltage regulation and state-of-charge balancing simultaneously with global exponential convergence. The main tools are consensus in multi-agent systems, passivity, Lyapunov stability, linear matrix inequalities, etc. The thesis is divided into three parts. The First part presents the concept of microgrids, a literature review of their control strategies and the mathematical preliminaries required throughout the manuscript. The second part deals with the design of the proposed distributed control approach to achieve the considered objectives. The system is augmented with three distributed consensus-like integral actions, and a distributed-based static state feedback control architecture is proposed. Starting from the assumption that the agents (DGUs or SUs) have the same physical parameters, we provide proof of global exponential convergence. Moreover, the proposed control approach is distributed, i.e., each agent exchange relative information with only its neighbors through sparse communication networks. The proposed controllers do not need any information about the parameters of the power lines neither the topology of the microgrid. The control objectives are reached despite the unknown load variation and constant disturbances. In the third part, the proposed distributed controllers are assessed in different scenarios through Matlab/Simulink simulation and real-time Hardware-in-the-Loop experiment. The results show that the control objectives are successfully achieved, illustrating the effectiveness of the proposed control methodology
Peng, Xhaoxia. "Contribution à la Commande d’un Groupe de Robots Mobiles Non-holonomes à Roues." Thesis, 2013. http://www.theses.fr/2013ECLI0006/document.
Full textThis work is based on the multi-agent system / multi-vehicles. This thesis especially focuses on formation control of multiple nonholonomic mobile robots. The objective is to design suitable controllers for each robot according to different control tasks and different constraint conditions, such that a group of mobile robots can form and maintain a desired geomantic pattern and follow a desired trajectory. The leader-follower formation control for multiple nonholonomic mobile robots is investigated under the backstepping technology, and we incorporate a bioinspired neurodynamics scheme in the robot controllers, which can solve the impractical velocity jumps problem. The distributed formation control problem using consensus-based approach is also investigated. Distributed kinematic controllers are developed, which guarantee that the multi-robots can at least exponentially converge to the desired geometric pattern under the assumption of "perfect velocity tracking". However, in practice, "perfect velocity tracking" doesn’t hold and the dynamics of robots should not be ignored. Next, in consideration of the dynamics of robot with unknown parameters, adaptive torque controllers are developed such that the multi-robots can asymptotically converge to the desired geometric pattern under the proposed distributed kinematic controllers. Furthermore, When the partial knowledge of dynamics is available, an asymptotically stable torque controller has been proposed by using robust adaptive control techniques. When the dynamics of robot is unknown, the neural network controllers with the robust adaptive term are proposed to guarantee robust velocity tracking