Academic literature on the topic 'Consensus Based Applications'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Consensus Based Applications.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Consensus Based Applications"
MOSTEFAOUI, A., and M. RAYNAL. "LEADER-BASED CONSENSUS." Parallel Processing Letters 11, no. 01 (March 2001): 95–107. http://dx.doi.org/10.1142/s0129626401000452.
Full textLi, Wenjun, and Huaiyu Dai. "Cluster-based distributed consensus." IEEE Transactions on Wireless Communications 8, no. 1 (January 2009): 28–31. http://dx.doi.org/10.1109/t-wc.2009.071146.
Full textUddin, Moin, Muhammad Muzammal, Muhammad Khurram Hameed, Ibrahim Tariq Javed, Bandar Alamri, and Noel Crespi. "CBCIoT: A Consensus Algorithm for Blockchain-Based IoT Applications." Applied Sciences 11, no. 22 (November 20, 2021): 11011. http://dx.doi.org/10.3390/app112211011.
Full textYang, Tao, Di Wu, Yannan Sun, and Jianming Lian. "Minimum-Time Consensus-Based Approach for Power System Applications." IEEE Transactions on Industrial Electronics 63, no. 2 (February 2016): 1318–28. http://dx.doi.org/10.1109/tie.2015.2504050.
Full textStankovic, Srdjan S., Milos S. Stankovic, and Dusan M. Stipanovic. "Consensus Based Overlapping Decentralized Estimator." IEEE Transactions on Automatic Control 54, no. 2 (February 2009): 410–15. http://dx.doi.org/10.1109/tac.2008.2009583.
Full textPan, Shin-Hung, and Shu-Ching Wang. "Optimal Consensus with Dual Abnormality Mode of Cellular IoT Based on Edge Computing." Sensors 21, no. 2 (January 19, 2021): 671. http://dx.doi.org/10.3390/s21020671.
Full textGe, Lina, Jie Wang, and Guifen Zhang. "Survey of Consensus Algorithms for Proof of Stake in Blockchain." Security and Communication Networks 2022 (May 29, 2022): 1–13. http://dx.doi.org/10.1155/2022/2812526.
Full textSebbak, Faouzi, and Farid Benhammadi. "Majority-consensus fusion approach for elderly IoT-based healthcare applications." Annals of Telecommunications 72, no. 3-4 (November 4, 2016): 157–71. http://dx.doi.org/10.1007/s12243-016-0550-7.
Full textGeng, Tieming, Laurent Njilla, and Chin-Tser Huang. "Delegated Proof of Secret Sharing: A Privacy-Preserving Consensus Protocol Based on Secure Multiparty Computation for IoT Environment." Network 2, no. 1 (January 25, 2022): 66–80. http://dx.doi.org/10.3390/network2010005.
Full textOnan, Aytuğ. "Consensus Clustering-Based Undersampling Approach to Imbalanced Learning." Scientific Programming 2019 (March 3, 2019): 1–14. http://dx.doi.org/10.1155/2019/5901087.
Full textDissertations / Theses on the topic "Consensus Based Applications"
Genta, L. "CONSENSUS-BASED CROWDSOURCING: TECHNIQUES AND APPLICATIONS." Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/263749.
Full textDel, Favero Simone. "Analysis and Development of Consensus-based Estimation Schemes." Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3427027.
Full textGli ultimi decenni sono stati segnati dallo straordinario sviluppo di Internet e dalla pervasiva diffusione della tecnologia wireless, consentendo ad un numero sempre maggiore di dispositivi di scambiare tra loro informazioni. Questo fatto, assieme alla crescente disponibilità, a prezzi modici, di nodi equipaggiati con un'ampia varietà di dispositivi di misura, rende tecnologicamente concretizzabile l'idea di sviluppare grandi piattaforme di sensing, incaricate di monitorare qualsivoglia grandezza fisica. Tuttavia, queste grandi reti di dispositivi estremamente semplici hanno stringenti vincoli sul consumo energetico e sulla banda di comunicazione, che rendono criticamente necessario lo sviluppo di tecniche efficienti per la stima e la data-fusion, così da evitare carichi computazionali e di comunicazione insostenibili ai colli di bottiglia della rete. Questa tesi si propone di contribuire proprio in questo settore, presentando alcuni algoritmi per la soluzione distribuita di specifici problemi di stima ed analizzando le prestazioni di algoritmi recentemente proposti. Strumento chiave nella decentralizzazione della stima è la teoria del consensus, che propone algoritmi in grado di portare l'intera rete a concordare su una specifica quantità. L'utilizzo di algoritmi di consensus come elemento base nella costruzione di algoritmi di stima ci consente di sfruttare la solida comprensione di questo problema, affinata dai molti risultati recentemente proposti in letteratura, e di sfruttare degli strumenti di analisi ben consolidati. Nella tesi, motivati dal problema della localizzazione e del tracking di un oggetto, proponiamo un algoritmo per la compensazione degli offset ed un algoritmo per la stima ai minimi quadrati dei parametri caratterizzanti il canale wireless. Inoltre presentiamo un nuovo risultato di algebra lineare, utile nell'analisi di algoritmi randomizzati. Questo risultato giocherà un ruolo centrale nell'analisi qui proposta di un algoritmo distribuito per la stima alla Kalman. Infine, consideriamo l'interessante caso di una rete di sensori incaricata di stimare quantità diverse ma tra loro correlate e proponiamo un algoritmo per l'inferenza di un semplice campo di Gauss-Markov.
Saravi, Sara. "Use of Coherent Point Drift in computer vision applications." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/12548.
Full textHuang, Fengqiong, James A. Macklin, Hong Cui, Heather A. Cole, and Lorena Endara. "OTO: ontology term organizer." BioMed Central, 2015. http://hdl.handle.net/10150/610269.
Full textOuattara, Mory. "Développement et mise en place d'une méthode de classification multi-blocs : application aux données de l'OQAI." Phd thesis, Conservatoire national des arts et metiers - CNAM, 2014. http://tel.archives-ouvertes.fr/tel-01062782.
Full textKyrgyzov, Ivan. "Recherche dans les bases de donnees satellitaires des paysages et application au milieu urbain: clustering, consensus et categorisation." Phd thesis, Télécom ParisTech, 2008. http://pastel.archives-ouvertes.fr/pastel-00004084.
Full textKyrgyzov, Ivan. "Recherche dans les bases de données satellitaires des paysages et application au milieu urbain : clustering, consensus et catégorisation." Paris, ENST, 2008. http://www.theses.fr/2008ENST0011.
Full textRemote sensed satellite images have found a wide application for analysing and managing natural resources and human activities. Satellite images of high resolution, e. G. , SPOT5, have large sizes and are very numerous. This gives a large interest to develop new theoretical aspects and practical tools for satellite image mining. The objective of the thesis is unsupervised satellite image mining and includes three main parts. In the first part of the thesiswe demonstrate content of high resolution optical satellite images. We describe image zones by texture and geometrical features. Unsupervised clustering algorithms are presented in the second part of the thesis. A review of validity criteria and information measures is given in order to estimate the quality of clustering solutions. A new criterion based on Minimum Description Length (MDL) is proposed for estimating the optimal number of clusters. In addition, we propose a new kernel hierarchical clustering algorithm based on kernel MDL criterion. A new method of ”clustering combination” is presented in the thesis in order to benefit from several clusterings issued from different algorithms. We develop a hierarchical algorithm to optimise the objective function based on a co-association matrix. A second method is proposed which converges to a global solution. We prove that the global minimum may be found using the gradient density function estimation by the mean shift procedure. Advantages of this method are a fast convergence and a linear complexity. In the third part of the thesis a complete protocol of unsupervised satellite images mining is proposed. Different clustering results are represented via semantic relations between concepts
Huang, Chang-Min, and 黃昶閔. "A Circuit Implementation of Random Sample Consensus Algorithm for Feature-based Image Registration Applications." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/31620421641171434252.
Full text國立交通大學
電機工程學系
101
With the camera calibration and image processing development in recent years, image registration has become more important in the image processing increasingly. The application of the image registration is also increasingly widespread. This thesis proposes a circuit implementation of RANdom SAmple Consensus (RANSAC)for feature-based image registration applications. In order to achieve the effect of random sampling, the interleaving and the group shuffling method are adopted to disorder the stored matching feature point coordinates. This thesis uses the systolic array architecture to implement the forward elimination step in the Gaussian elimination. The computational complexity in the forward elimination is reduced by sharing the coefficient matrix. As a result, the area of the hardware cost is reduced by more than 50%.The using of the look-up table for the divider circuit implementation make the calculation can be done in a single clock cycle without any iteration. The proposed architecture is realized by using verilog and achieves real-time calculation on 30fps 1024 * 1024 video stream on 100 MHz clock.
Venugopalakrishna, Y. R. "Data Fusion Based Physical Layer Protocols for Cognitive Radio Applications." Thesis, 2016. http://etd.iisc.ernet.in/handle/2005/2683.
Full textBonadio, Alessio. "Mobile Computing and Networking Architectures for the Internet of Vehicles." Doctoral thesis, 2021. http://hdl.handle.net/2158/1259056.
Full textBooks on the topic "Consensus Based Applications"
Mitchener, Donald K. U.S. Naval Gunfire Support in the Pacific War. University Press of Kentucky, 2021. http://dx.doi.org/10.5810/kentucky/9781949668124.001.0001.
Full textBolfing, Andreas. Cryptographic Primitives in Blockchain Technology. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198862840.001.0001.
Full textWolfson, Todd, ed. Governance: Democracy All the Way Down. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252038846.003.0006.
Full textGeddes, John R., Nancy C. Andreasen, and Guy M. Goodwin, eds. New Oxford Textbook of Psychiatry. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198713005.001.0001.
Full textBook chapters on the topic "Consensus Based Applications"
Caicedo-Núñez, Carlos H., and Miloš Žefran. "Counting and Rendezvous: Two Applications of Distributed Consensus in Robotics." In Wireless Networking Based Control, 175–201. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7393-1_8.
Full textNguyen, Ngoc Thanh, and Hai Bang Truong. "A Consensus-Based Method for Fuzzy Ontology Integration." In Computational Collective Intelligence. Technologies and Applications, 480–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16732-4_51.
Full textFornasier, Massimo, Timo Klock, and Konstantin Riedl. "Convergence of Anisotropic Consensus-Based Optimization in Mean-Field Law." In Applications of Evolutionary Computation, 738–54. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-02462-7_46.
Full textMudumbai, Raghuraman, Soura Dasgupta, and M. Muhammad Mahboob Ur Rahman. "Analysis of a Distributed Consensus Based Economic Dispatch Algorithm." In Systems & Control: Foundations & Applications, 481–500. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04630-9_14.
Full textSobecki, Janusz, and Ngoc Thanh Nguyen. "Consensus-Based Adaptive Interface Construction for Multiplatform Web Applications." In Intelligent Data Engineering and Automated Learning, 457–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45080-1_62.
Full textWang, Dong, Chenguang Jin, Han Li, and Marek Perkowski. "Proof of Activity Consensus Algorithm Based on Credit Reward Mechanism." In Web Information Systems and Applications, 618–28. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60029-7_55.
Full textQu, Yaohong, Xu Zhu, and Youmin M. Zhang. "Cooperative Control for UAV Formation Flight Based on Decentralized Consensus Algorithm." In Intelligent Robotics and Applications, 357–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33509-9_35.
Full textJiao, Zilong, and Jae Oh. "Consensus-Based Protocol for Distributed Exploration and Mapping." In Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices, 533–44. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55789-8_46.
Full textJung, Jason J., and Geun-Sik Jo. "Consensus-Based Evaluation Framework for Cooperative Information Retrieval Systems." In Agent and Multi-Agent Systems: Technologies and Applications, 169–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72830-6_18.
Full textLiu, Xiyu, Yuzhen Zhao, and Wenxing Sun. "K-Medoids-Based Consensus Clustering Based on Cell-Like P Systems with Promoters and Inhibitors." In Bio-inspired Computing – Theories and Applications, 95–108. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-3611-8_11.
Full textConference papers on the topic "Consensus Based Applications"
Caicedo-Nunez, Carlos H., and Milos Zefran. "Consensus-based rendezvous." In 2008 IEEE International Conference on Control Applications (CCA) part of the IEEE Multi-Conference on Systems and Control. IEEE, 2008. http://dx.doi.org/10.1109/cca.2008.4629611.
Full textGong, Bei, Zhenhu Ning, Wenjing Li, and Shanshan Tu. "Consensus Algorithm Based on Subject Credit." In ICSCA 2022: 2022 11th International Conference on Software and Computer Applications. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3524304.3524321.
Full textGong, Bei, Zhenhu Ning, Wenjing Li, and Shanshan Tu. "Consensus Algorithm Based on Subject Credit." In ICSCA 2022: 2022 11th International Conference on Software and Computer Applications. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3524304.3524321.
Full textLizzio, Fausto Francesco, Elisa Capello, and Giorgio Guglieri. "A Review of Consensus-based Multi-agent UAV Applications." In 2021 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2021. http://dx.doi.org/10.1109/icuas51884.2021.9476858.
Full textMallik, Galib R., Sangeeta Daingade, and Arpita Sinha. "Consensus based deviated cyclic pursuit for target tracking applications." In 2015 European Control Conference (ECC). IEEE, 2015. http://dx.doi.org/10.1109/ecc.2015.7330785.
Full textSaunois, Geoffrey, Frederique Robin, Emmanuelle Anceaume, and Bruno Sericola. "Permissionless Consensus based on Proof-of-Eligibility." In 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA). IEEE, 2020. http://dx.doi.org/10.1109/nca51143.2020.9306715.
Full textMata, Francisco, Pedro Sanchez, Ivan Palomares, J. Quesada Francisco, and Luis Martinez. "COMAS: A consensus multi-agent based system." In 2010 10th International Conference on Intelligent Systems Design and Applications (ISDA). IEEE, 2010. http://dx.doi.org/10.1109/isda.2010.5687223.
Full textIlic, Nemanja, Milos S. Stankovic, and Srdjan S. Stankovic. "Adaptive sensor networks for consensus based distributed estimation." In 2012 IEEE International Conference on Control Applications (CCA). IEEE, 2012. http://dx.doi.org/10.1109/cca.2012.6402382.
Full textLa, Hung Manh, and Weihua Sheng. "Cooperative sensing in mobile sensor networks based on distributed consensus." In SPIE Optical Engineering + Applications, edited by Oliver E. Drummond. SPIE, 2011. http://dx.doi.org/10.1117/12.895519.
Full textZhang, Xueji, Kristian Hengster-Movric, Michael Sebek, Wim Desmet, and Cassio Faria. "Consensus-based distributed sensor fusion over a network." In 2017 IEEE Conference on Control Technology and Applications (CCTA). IEEE, 2017. http://dx.doi.org/10.1109/ccta.2017.8062540.
Full textReports on the topic "Consensus Based Applications"
Allende López, Marcos, Diego López, Sergio Cerón, Antonio Leal, Adrián Pareja, Marcelo Da Silva, Alejandro Pardo, et al. Quantum-Resistance in Blockchain Networks. Inter-American Development Bank, June 2021. http://dx.doi.org/10.18235/0003313.
Full textButler, John M. Bitemark Analysis. Gaithersburg, MD: National Institute of Standards and Technology, 2022. http://dx.doi.org/10.6028/nist.ir.8352-draft.
Full textAnderson, Gerald L., and Kalman Peleg. Precision Cropping by Remotely Sensed Prorotype Plots and Calibration in the Complex Domain. United States Department of Agriculture, December 2002. http://dx.doi.org/10.32747/2002.7585193.bard.
Full textDaudelin, Francois, Lina Taing, Lucy Chen, Claudia Abreu Lopes, Adeniyi Francis Fagbamigbe, and Hamid Mehmood. Mapping WASH-related disease risk: A review of risk concepts and methods. United Nations University Institute for Water, Environment and Health, December 2021. http://dx.doi.org/10.53328/uxuo4751.
Full text