Academic literature on the topic 'Connection graph'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Connection graph.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Connection graph"
Ismail, Sumarno, Isran K. Hasan, Tesya Sigar, and Salmun K. Nasib. "RAINBOW CONNECTION NUMBER AND TOTAL RAINBOW CONNECTION NUMBER OF AMALGAMATION RESULTS DIAMOND GRAPH(〖Br〗_4) AND FAN GRAPH(F_3)." BAREKENG: Jurnal Ilmu Matematika dan Terapan 16, no. 1 (March 21, 2022): 023–30. http://dx.doi.org/10.30598/barekengvol16iss1pp023-030.
Full textBustan, A. W., A. N. M. Salman, and P. E. Putri. "On the locating rainbow connection number of amalgamation of complete graphs." Journal of Physics: Conference Series 2543, no. 1 (July 1, 2023): 012004. http://dx.doi.org/10.1088/1742-6596/2543/1/012004.
Full textAlrowaili, Dalal Awadh, Faiz Farid, and Muhammad Javaid. "Gutman Connection Index of Graphs under Operations." Symmetry 15, no. 1 (December 22, 2022): 21. http://dx.doi.org/10.3390/sym15010021.
Full textZHANG, YINGYING, and XIAOYU ZHU. "Proper Vertex Connection and Graph Operations." Journal of Interconnection Networks 19, no. 02 (June 2019): 1950001. http://dx.doi.org/10.1142/s0219265919500014.
Full textFarid, Faiz, Muhammad Javaid, and Ebenezer Bonyah. "Computing Connection Distance Index of Derived Graphs." Mathematical Problems in Engineering 2022 (July 18, 2022): 1–15. http://dx.doi.org/10.1155/2022/1439177.
Full textJavaid, Muhammad, Muhammad Khubab Siddique, and Ebenezer Bonyah. "Computing Gutman Connection Index of Thorn Graphs." Journal of Mathematics 2021 (November 15, 2021): 1–13. http://dx.doi.org/10.1155/2021/2289514.
Full textLihawa, Indrawati, Sumarno Ismail, Isran K. Hasan, Lailany Yahya, Salmun K. Nasib, and Nisky Imansyah Yahya. "Bilangan Terhubung Titik Pelangi pada Graf Hasil Operasi Korona Graf Prisma (P_(m,2)) dan Graf Lintasan (P_3)." Jambura Journal of Mathematics 4, no. 1 (January 1, 2022): 145–51. http://dx.doi.org/10.34312/jjom.v4i1.11826.
Full textYahya, Nisky Imansyah, Ainun Fatmawati, Nurwan Nurwan, and Salmun K. Nasib. "RAINBOW VERTEX-CONNECTION NUMBER ON COMB PRODUCT OPERATION OF CYCLE GRAPH (C_4) AND COMPLETE BIPARTITE GRAPH (K_(3,N))." BAREKENG: Jurnal Ilmu Matematika dan Terapan 17, no. 2 (June 11, 2023): 0673–84. http://dx.doi.org/10.30598/barekengvol17iss2pp0673-0684.
Full textAsif, Muhammad, Bartłomiej Kizielewicz, Atiq ur Rehman, Muhammad Hussain, and Wojciech Sałabun. "Study of θϕ Networks via Zagreb Connection Indices." Symmetry 13, no. 11 (October 21, 2021): 1991. http://dx.doi.org/10.3390/sym13111991.
Full textMa, Yingbin, and Kairui Nie. "Rainbow Vertex Connection Numbers and Total Rainbow Connection Numbers of Middle and Total Graphs." Ars Combinatoria 157 (December 31, 2023): 45–52. http://dx.doi.org/10.61091/ars157-04.
Full textDissertations / Theses on the topic "Connection graph"
Sato, Cristiane Maria. "Homomorfismos de grafos." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-07082008-105246/.
Full textGraph homomorphisms are functions from the vertex set of a graph to the vertex set of another graph that preserve adjacencies. The study of graph homomorphisms is very broad, and there are several lines of research about this topic. In this dissertation, we present results about graph homomorphisms related to convergence of graph sequences and connection matrices of graph parameters. This line of research has been proved to be very rich, not only for its results, but also for the proof techniques. In particular, we highlight the diversity of mathematical tools used, including classical results from Algebra, Probability and Analysis.
Berg, Deborah. "Connections Between Voting Theory and Graph Theory." Scholarship @ Claremont, 2005. https://scholarship.claremont.edu/hmc_theses/178.
Full textZini, Roger. "Placement, routage conjoints et hierarchiques de reseaux prediffuses." Paris 6, 1987. http://www.theses.fr/1987PA066116.
Full textMirza, Batul J. "Jumping Connections: A Graph-Theoretic Model for Recommender Systems." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/31370.
Full textMaster of Science
Chaudhuri, Sanjay. "Using the structure of d-connecting paths as a qualitative measure of the strength of dependence /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/8948.
Full textCandel, Gaëlle. "Connecting graphs to machine learning." Electronic Thesis or Diss., Université Paris sciences et lettres, 2022. http://www.theses.fr/2022UPSLE018.
Full textThis thesis proposes new approaches to process graph using machine learning algorithms designed for tabular data. A graph is a data structure made of nodes linked to each others by edges. This structure can be represented under a matrix form where the connection between two nodes is represented by a non-zero value, simplifying the manipulation of the data. Nonetheless, the transposition of an algorithm adapted to tabular data to graphs would not give the expected results because of the structural differences. Two characteristics make the transposition difficult: the low nodes’ connectivity and the power-law distribution of nodes’ degree. These two characteristics both lead to sparse matrices with low information content while requiring a large memory. In this work, we propose several methods that consider these two graph’s specificities. In the first part, we focus on citation graphs which belong to the directed acyclic graph category and can be exploited for technical watch, while the second part is dedicated to bipartite graphs mainly use by recommender systems. These adaptations permit the achievement of usual machine learning tasks, such as clustering and data visualization. Specific co-clustering algorithms were designed to segment jointly each side of a bipartite graph and identify groups of similar nodes. The third part approaches graphs from a different perspective. The developed approach exploits the k nearest neighbours graph built from the tabular data to help correcting classification errors. These different methods use diverse methods to embed more information in a vector compared to the usual binary encoding, allowing to process graphs with usual machine learning algorithm
Marshall, Oliver. "Search Engine Optimization and the connection with Knowledge Graphs." Thesis, Högskolan i Gävle, Företagsekonomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-35165.
Full textMoens, Theodore Warren Bernelot. "Approaches to procedural adequacy in logic programming using connection graphs." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26499.
Full textScience, Faculty of
Computer Science, Department of
Graduate
Hennayake, Kamal P. "Generalized edge connectivity in graphs." Morgantown, W. Va. : [West Virginia University Libraries], 1998. http://etd.wvu.edu/templates/showETD.cfm?recnum=383.
Full textTitle from document title page. Document formatted into pages; contains v, 87 p. : ill. Includes abstract. Includes bibliographical references (p. 64-72).
Camby, Eglantine. "Connecting hitting sets and hitting paths in graphs." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209048.
Full textTout d’abord, nous considérons les deux problèmes suivants :le problème de vertex cover et celui de dominating set, deux cas particuliers du problème de hitting set. Un vertex cover est un ensemble de sommets qui rencontrent toutes les arêtes alors qu’un dominating set est un ensemble X de sommets tel que chaque sommet n’appartenant pas à X est adjacent à un sommet de X. La version connexe de ces problèmes demande que les sommets choisis forment un sous-graphe connexe. Pour les deux problèmes précédents, nous examinons le prix de la connexité, défini comme étant le rapport entre la taille minimum d’un ensemble répondant à la version connexe du problème et celle d’un ensemble du problème originel. Nous prouvons la difficulté du calcul du prix de la connexité d’un graphe. Cependant, lorsqu’on exige que le prix de la connexité d’un graphe ainsi que de tous ses sous-graphes induits soit borné par une constante fixée, la situation change complètement. En effet, pour les problèmes de vertex cover et de dominating set, nous avons pu caractériser ces classes de graphes pour de petites constantes.
Ensuite, nous caractérisons en termes de dominating sets connexes les graphes Pk- free, graphes n’ayant pas de sous-graphes induits isomorphes à un chemin sur k sommets. Beaucoup de problèmes sur les graphes sont étudiés lorsqu’ils sont restreints à cette classe de graphes. De plus, nous appliquons cette caractérisation à la 2-coloration dans les hypergraphes. Pour certains hypergraphes, nous prouvons que ce problème peut être résolu en temps polynomial.
Finalement, nous travaillons sur le problème de Pk-hitting set. Un Pk-hitting set est un ensemble de sommets qui rencontrent tous les chemins sur k sommets. Nous développons un algorithme d’approximation avec un facteur de performance de 3. Notre algorithme, basé sur la méthode primal-dual, fournit un Pk-hitting set dont la taille est au plus 3 fois la taille minimum d’un Pk-hitting set.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Books on the topic "Connection graph"
Li, Xueliang, and Yuefang Sun. Rainbow Connections of Graphs. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-3119-0.
Full textLi, Xueliang. Rainbow Connections of Graphs. Boston, MA: Springer US, 2012.
Find full textW, Beineke Lowell, and Wilson Robin J, eds. Graph connections: Relationships between graph theory and other areas of mathematics. Oxford: Clarendon Press, 1997.
Find full textConference on Graph Connections (1998 Cochin, India). Proceedings of the Conference on Graph Connections, January 28-31, 1998, Cochin. Edited by Balakrishnan R, Mulder H. M, and Vijayakumar A. New Delhi: Allied Publishers, 1999.
Find full textW, Hayden Robert, Santoro Karen, and Sloyer Clifford W, eds. Math connections: Algebra 1 : data analysis, functions, and graphs. 2nd ed. Armonk, NY: It's About Time, 2009.
Find full textAlberto, Corso, and Polini Claudia 1966-, eds. Commutative algebra and its connections to geometry: Pan-American Advanced Studies Institute, August 3--14, 2009, Universidade Federal de Pernambuco, Olinda, Brazil. Providence, R.I: American Mathematical Society, 2011.
Find full textJarvis, Jennifer. Social Connection Physical Distancing: Graph Paper Notebook, 1 Cm. Graph, Paper Dimension 6 X 9 Inches, Soft Matte Cover. Independently Published, 2020.
Find full textCoolen, A. C. C., A. Annibale, and E. S. Roberts. Introduction. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198709893.003.0001.
Full textJarvis, Jennifer. Social Connection Physical Distancing: Graph Paper Notebook, Journal, Diary, 4 X 4 per Sq. in. Graph, Dimension 6 X 9 Inches, Soft Matte Cover. Independently Published, 2020.
Find full textLi, Xueliang, and Yuefang Sun. Rainbow Connections of Graphs. Springer, 2012.
Find full textBook chapters on the topic "Connection graph"
Li, Xueliang, Yongtang Shi, and Ivan Gutman. "The Chemical Connection." In Graph Energy, 11–17. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4220-2_2.
Full textHähnle, Reiner, Neil V. Murray, and Erik Rosenthal. "Ordered Resolution vs. Connection Graph resolution." In Automated Reasoning, 182–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45744-5_14.
Full textChung, Fan, and Wenbo Zhao. "Ranking and Sparsifying a Connection Graph." In Lecture Notes in Computer Science, 66–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30541-2_6.
Full textLi, Xueliang, and Yuefang Sun. "Rainbow Connection Numbers of Graph Products." In SpringerBriefs in Mathematics, 73–76. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-3119-0_6.
Full textEven, S., and G. Granot. "Grid layouts of block diagrams — bounding the number of bends in each connection (extended abstract)." In Graph Drawing, 64–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/3-540-58950-3_357.
Full textJusko, Jan, and Martin Rehak. "Revealing Cooperating Hosts by Connection Graph Analysis." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 241–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36883-7_15.
Full textLi, Xueliang, and Yuefang Sun. "Rainbow Connection Numbers of Some Graph Classes." In SpringerBriefs in Mathematics, 65–72. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-3119-0_5.
Full textDall’Aglio, Marco, Vito Fragnelli, and Stefano Moretti. "Orders of Criticality in Graph Connection Games." In Lecture Notes in Computer Science, 35–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-60555-4_3.
Full textParmar, Dharamvirsinh, and Bharat Suthar. "Rainbow Vertex Connection Number of a Class of Triangular Snake Graph." In Recent Advancements in Graph Theory, 329–38. Boca Raton : CRC Press, 2020. | Series: Mathematical engineering, manufacturing, and management sciences: CRC Press, 2020. http://dx.doi.org/10.1201/9781003038436-27.
Full textBao, Siqi, Pei Wang, and Albert C. S. Chung. "3D Randomized Connection Network with Graph-Based Inference." In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 47–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67558-9_6.
Full textConference papers on the topic "Connection graph"
Melo, Alexsander A. de, Celina M. H. de Figueiredo, Uéverton S. Souza, and Ana Silva. "On (in)tractability of connection and cut problems." In Concurso de Teses e Dissertações. Sociedade Brasileira de Computação - SBC, 2023. http://dx.doi.org/10.5753/ctd.2023.229754.
Full textLubis, H., N. M. Surbakti, R. I. Kasih, D. R. Silaban, and K. A. Sugeng. "Rainbow connection and strong rainbow connection of the crystal graph and neurons graph." In PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES (ISCPMS2018). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5132480.
Full textAnadiotis, Angelos Christos, Ioana Manolescu, and Madhulika Mohanty. "Integrating Connection Search in Graph Queries." In 2023 IEEE 39th International Conference on Data Engineering (ICDE). IEEE, 2023. http://dx.doi.org/10.1109/icde55515.2023.00200.
Full textRocha, Aleffer, Sheila M. Almeida, and Leandro M. Zatesko. "The Rainbow Connection Number of Triangular Snake Graphs." In Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/etc.2020.11091.
Full textNiu, Lingfeng, Jianmin Wu, and Yong Shi. "Entity Resolution with Attribute and Connection Graph." In 2011 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2011. http://dx.doi.org/10.1109/icdmw.2011.75.
Full textZhao, Wenting, Yuan Fang, Zhen Cui, Tong Zhang, and Jian Yang. "Graph Deformer Network." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/227.
Full textOnur, Şeyma, and Gökşen Bacak Turan. "Geodetic Domination Integrity of Transformation Graphs." In 6th International Students Science Congress. Izmir International Guest Student Association, 2022. http://dx.doi.org/10.52460/issc.2022.030.
Full textSurbakti, N. M., D. R. Silaban, and K. A. Sugeng. "The rainbow connection number of graph resulting for operation of sun graph and path graph." In PROCEEDINGS OF THE 5TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES (ISCPMS2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0007807.
Full textZhao, Yan, Shasha Li, and Sujuan Liu. "(Strong) Rainbow Connection Number of Line, Middle and Total Graph of Sunlet Graph." In 2018 IEEE International Conference on Progress in Informatics and Computing (PIC). IEEE, 2018. http://dx.doi.org/10.1109/pic.2018.8706299.
Full textZhang, Zaixi, Qi Liu, Zhenya Huang, Hao Wang, Chengqiang Lu, Chuanren Liu, and Enhong Chen. "GraphMI: Extracting Private Graph Data from Graph Neural Networks." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/516.
Full textReports on the topic "Connection graph"
Hrebeniuk, Bohdan V. Modification of the analytical gamma-algorithm for the flat layout of the graph. [б. в.], December 2018. http://dx.doi.org/10.31812/123456789/2882.
Full textRatwani, Raj M., J. G. Trafton, and Deborah A. Boehm-Davis. Thinking Graphically: Connecting Vision and Cognition during Graph Comprehension. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada479715.
Full textSondheim, M., and C. Hodgson. Common hydrology features (CHyF) logical model. Natural Resources Canada/CMSS/Information Management, 2024. http://dx.doi.org/10.4095/328952.
Full text