Dissertations / Theses on the topic 'Conjugated Molecules for Sensors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Conjugated Molecules for Sensors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Zucchero, Anthony Joseph. "Cruciform pi-systems: novel two-dimensional cross-conjugated chromophores possessing spatially separated frontier molecular orbitals." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37206.
Full textDavey, Evan Andrew. "Development of advanced cross conjugated systems and applications in ratiometric sensing: altering the electronic properties of cruciforms and poly(para-phenyleneethynylene)s to elicit differing reactivity and response." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/49008.
Full textO'Connor, M. P. "Electronic properties of conjugated molecules." Thesis, Lancaster University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379188.
Full textSamori, Paolo. "Self-assembly of conjugated (macro)molecules." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2000. http://dx.doi.org/10.18452/14604.
Full textIn this thesis the self-assembly of pi-conjugated (macro)molecular architectures, either through chemisorption or via physisorption, into highly ordered supramolecular nanoscopic and microscopic structures has been studied. On solid substrates structure and dynamics has been investigated on the molecular scale making use primarily of Scanning Probe Microscopies, in particular Scanning Tunneling Microscopy and Scanning Force Microscopy. This allowed to characterize a variety of phenomena occurring both at the solid-liquid interface, such as the dynamics of the single molecular nanorods (known as Ostwald ripening), the fractionation of a solution of rigid-rod polymers upon physisorption on graphite; and in dry films, i.e. the self-assembly of rigid-rod polymers into nanoribbons with molecular cross sections which can be epitaxially oriented at surfaces and the formation ordered layered architectures of disc-like molecules. In addition the electronic properties of the investigated moieties have been studied by means of Photoelectron Spectroscopies. The nanostructures that have been developed are not only of interest for nanoconstructions on solid surfaces, but also exhibit properties that render them candidates for applications in the field of molecular electronics, in particular for building molecular nanowire devices.
Winfield, Jessica Mary. "Spectroscopy of conjugated polymers and small molecules." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611577.
Full textWildman, Jack. "Molecular dynamics simulations of conjugated semiconducting molecules." Thesis, Heriot-Watt University, 2017. http://hdl.handle.net/10399/3261.
Full textJäckel, Frank. "Self-Assembly and Electronic Properties of Conjugated Molecules." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2005. http://dx.doi.org/10.18452/15267.
Full textThe use of single molecules as active components in electronic devices is presently considered a potential alternative to semiconductor-based nano-scale electronics since it directly provides precisely-defined nano-scale components for electronic devices which eventually allows for simple processing and devicefabrication. In this thesis the self-assembly and electron transport properties of conjugated molecules are investigated by means of scanning tunneling microscopy (STM) and spectroscopy (STS) at solid-liquid interfaces and under ultrahigh vacuum conditions and low temperatures. The use of the molecules in hybrid-molecular electronic devices and potential approaches to a mono-molecular electronics are explored. In particular, electron-donor-acceptor-multiads are shown to exhibit a nano-phase-segregation at the solid-liquid interface which allows for the integration of different electronic functions at the nano-scale. Furthermore, the dependence of the electronic coupling of stacked disk-like molecules on the lateral off-set in the stack is demonstrated experimentally which offers new possibilities for the control of the electronic properties of these three-dimensional architectures. In addition the first STM/STS experiments on charge transfer in single organic donor-acceptor complexes are presented. Finally, charge transfer complexes are combined with the approach of nano-phase-segregation to realize the first single-molecule transistor with integrated nanometer-sized gates. In this prototypical device the current through a hybrid-molecular diode made from a hexa-peri-hexabenzocoronene (HBC) in the junction of the STM is modified by charge transfer complexes covalently attached to the HBC in the gap. Since the donor which complexes the covalently attached acceptor comes from the ambient fluid the set-up represents a single-molecule chemical field-effect transistor with nanometer-sized gates. This is considered a major step towards mono-molecular electronics.
Vogel, Jörn-Oliver. "Co-deposited films of rod-like conjugated molecules." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2009. http://dx.doi.org/10.18452/15978.
Full textThis thesis is centered on studies of phase separation and mixing in co-deposited thin films of rod-like conjugated molecules. The main focus is to determine which molecular properties lead to phase separation and/or mixing of two materials. To address this question I used five materials, of importance in the context of “organic electronics”: pentacene (PEN), quaterthiophene (4T), sexithiophene (6T), p-sexiphenylene (6P), alpha,omega-dihexylsexithiophene (DH6T). With these it was possible to form material pairs which differ in the parameters: energy levels, length of the conjugated core, and alkyl-end-chain-substitution. All films were deposited by organic molecular beam deposition onto the chemically inert substrates silicon oxide and Mylar, a polyethylene terephthalate (PET) foil. The material pairs were deposited simultaneously from two thermal sublima-tion sources. The mixing ratio was controlled by the individual deposition rates, which were measured online by a microbalance. The total deposition rate was 0.5 nm/min, and the film thicknesses ranged from 4 nm to 40 nm. Phase separation is observed for material pairs with dissimilar conjugated core sizes, i.e. [4T/6T]. Noteworthy, the co-deposition of material pairs with similarly sized conju-gated cores [4T/PEN] and [6T/6P] lead to well ordered layered structures. The mole-cules show mixing within layers on a molecular scale and the long molecular axis is ori-ented almost perpendicular to the substrate surface. Material pairs with similarly sized conjugated core and alkyl-end-chain-substitution [6T/DH6T] and [6P/DH6T] show also growth in mixed layered structures. An especially appealing fact is that the interlayer distance increases proportional to the DH6T content in the film. This can be explained with a phase separation into an aromatic and an alkyl domain vertically to the substrate surface. A decrease of the DH6T content in the film leads to a less dense packing in the alkyl domain. This leads, due to the flexibility of the alkyl chains, to a decrease of the overall interlayer distance. The low surface corrugation and the interconnected islands render the material pair [6T/DH6T] well suitable for the use as active layer in organic field effect transistors. It is shown that it is possible to tune the charge carrier density in the channel by changing the ratio between 6T and DH6T. This effect enables switching the transistor from en-hancement to depletion mode, while maintaining a high charge carrier mobility. This is comparable to p-type doping of inorganic semiconductors.
Samorí, Paolo. "Self-assembly of conjugated (macro)molecules nanostructures for molecular electronics /." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=962281530.
Full textWright, Helen. "Fused ring conjugated polymers and small molecules for organic-semiconductors." Thesis, University of Manchester, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.542784.
Full textStrawbridge, Sharon Mary. "Redox-active sensors for molecules of biological interest." Thesis, University of Exeter, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414263.
Full textWiebeler, Christian [Verfasser]. "Photophysics and photochemistry of conjugated systems and photochromic molecules / Christian Wiebeler." Paderborn : Universitätsbibliothek, 2015. http://d-nb.info/1073201570/34.
Full textAtherton, Kathryn Jane. "Coherent Raman studies of optical nonlinearities in conjugated molecules and polymers." Thesis, Imperial College London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298790.
Full textClark, Jenny. "Intermolecular interactions in π-conjugated molecules : optical probes of chain conformation." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597713.
Full textO'Keefe, Guy Edward. "Ultrafast optical spectroscopy of the excited-states of conjugated organic molecules." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627580.
Full textTakeda, Yohei. "Studies on Synthesis and Properties of CF3-Substituted π-Conjugated Molecules." 京都大学 (Kyoto University), 2010. http://hdl.handle.net/2433/120820.
Full textLange, Philipp. "Optical and structural properties of systems of conjugated molecules and graphenes." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/16938.
Full textSystems of conjugated molecules and graphenes bear high application potential. The investigation of their interaction mechanisms is important for design of new applications and the focus of this thesis: Optical microscopy, spectroscopy and scanning force microscopy are complementarily used to explore the optical and structural properties of such systems. In particular (i) the permeation barrier properties of graphene are quantified in-situ on a semiconducting polymer film. Furthermore (ii) the fluorescence and (iii) Raman emission of conjugated molecules in proximity to graphene are investigated and the respective coupling mechanisms are discussed. (i) Graphenes are found to efficiently protect the sensitive polymer [poly(3-hexylthiophene)] from degradation by oxygen and water from the ambient atmosphere. This suggests that graphenes can not only serve as transparent electrode, but simultaneously as a barrier layer in future optoelectronic devices. (ii) It is shown that the known optical properties of graphene imply the existence of strongly localized graphene plasmons in the visible. Using nanoscale emitters [rhodamine 6G (R6G)] that provide the high wave vectors necessary to efficiently excite graphene plasmons at optical frequencies, graphene plasmon induced (GPI) fluorescence excitation enhancement by nearly 3 orders of magnitude is demonstrated. Graphene is thus interesting for plasmonic devices in the visible. (iii) In addition GPI enhancement of the Raman cross section of R6G by 1 order of magnitude is demonstrated. The future design of antennas for additional direct farfield excitation of graphene plasmons makes graphene promising for powerful surface enhanced Raman spectroscopy. In summary new and application relevant insights were gained into the studied systems.
Liao, Jessica Huien 1979. "Particle sensors based on amplified quenching of conjugated polymers for biosensing applications." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/39482.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Vita.
Includes bibliographical references.
Conjugated polymers (CP)s display unique material properties that allow for implementation as sensors. For sensors to operate in complex biological environments, it is important to address the issues of sensitivity and specificity. To develop these attributes in a biosensor design, CPbased core-shell particles have been investigated as potential material platforms to detect protease activity. CP-based particles have greater sensitivity versus CPs in solution due to interchain and intrachain interactions afforded in the solid state. The CP core of the particle can be made using layer-by-layer assembly, a versatile technique that forms uniform polymeric films through non-covalent interactions. To measure the response of CP core particles in aqueous environments, a quantitative ratiometric approach was developed to account for system fluctuations encountered with particle dispersions. This method can help assess the molecular design of polymers and quenchers in a systematic approach. CP core particles, because of their electrostatic charge, suffer from nonspecific interactions with other charged species, and thus encapsulating CP particles with a hydrogel shell should create sensor materials with higher specificity.
(cont.) To illustrate this concept, CP-particle containing hydrogel films were created to permit selective interactions with designed quenchers. The encapsulation of the individual CPcore particles was accomplished through atom transfer radical polymerization (ATRP) of functional monomers from the surface, and the choice of reactive group on the monomer allows for bioconjugation on the particle shell. Future core-shell materials can also be developed with ATRP, and give prospects to new schemes for CP-based biosensing.
by Jessica Huien Liao.
Ph.D.
Ji, Eunkyung. "Conjugated polyelectrolytes synthesis, photophysical studies and applications to sensors and biocidal activity /." [Gainesville, Fla.] : University of Florida, 2009. http://purl.fcla.edu/fcla/etd/UFE0024832.
Full textJäckel, Frank. "Self assembly and electronic properties of conjugated molecules: towards mono molecular electronics." [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975579010.
Full textPaiboonvorachat, Nattapong. "Density matrix renormalisation group calculations of the electronic structure of conjugated molecules." Thesis, University of Oxford, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.606304.
Full textRepiscak, Peter. "Computational chemistry for complex systems : open-shell molecules to conjugated organic materials." Thesis, Heriot-Watt University, 2017. http://hdl.handle.net/10399/3348.
Full textEsipenko, Nina A. "Design, Synthesis, and Application of Sensors for Biologically Relevant Molecules." Bowling Green State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1395589938.
Full textWang, Xinyang. "Conjugated polymers for the elaboration of optical and ohmic sensors for water monitoring." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX078/document.
Full textDifferent pollutants can be found in water, inorganic material (chloride, chlorine, heavy metal ions…) and organic material (trace of medicament…). Among them, heavy metal ions are of among the most toxic for human and the environment. Analysis of water contaminants that are toxic for human being and aquatic life is of primary importance. Especially, the measurements of the quality of drinking water delivered in private dwelling is a significant public health concern. A family of undesired contaminants is heavy metals. An elevated concentration of metal ions in water is mostly due to an intensive human activity (industry, farming, and housing). In small quantities, certain heavy metals (e.g., iron, copper, manganese, and zinc) are nutritionally essential for a healthy life. However, heavy metals show a great trend to form complexes, especially with ligands of biological matter containing nitrogen, sulfur, and oxygen. As a result, changes in the molecular structure of proteins, breaking of hydrogen bonds, or inhibition of enzymes can occur[1]. These interactions, among others, may explain the toxicological and carcinogenic effects of heavy metals. These ions can cause damages to many organs and are responsible of diseases, including Parkinson’s and Alzheimer’s diseases[2-6]{Liu, 2015 #101;Liu, 2015 #101;Kim, 2012 #102;Kim, 2012 #102;Liu, 2015 #101;Kim, 2012 #102;Liu, 2015 #101;Kim, 2012 #102;Liu, 2015 #101}. Respiratory and cardiac problems can be caused by nickel ingestion[7], and accumulation of the Ni2+ ion in the body leads to oxidative stress[8]; Ni2+ and Cu2+ are also noxious to teeth and bones. These negative effects result from the formation of coordination complexes between the metal ions and biological matter.Heavy metals are not biodegradable and therefore they remain in ecological systems and in the food chain indefinitely, exposing top-level predators to very high levels of pollution.Different methods are used to determine their quantity concentration in aqueous phase such as anodic stripping voltammetry (ASV) [4, 6], solid phase extraction combined with inductively coupled plasma optical emission spectrometry ICP-OES[4, 6] and cold-vapor atomic absorption spectroscopy (AAS) method[9]. These methods are well established, but are costly, time consuming, lack portability, and rely on trained personnel because of their complexity[10].Therefore, cheap, portable and real-time response real-time sensors for the determination of heavy metals in aqueous solutions are needed, particularly in sensitive environments, such as drinking water and industrial wastewater effluents. Here we design and elaborate The aim of the project is to develop these kinds of sensors to satisfy the current need. Two kinds of sensors have been elaborated in the project: the first one is optical sensors based on functionalized conjugated polymers (CPs). The second one is a communicating resistive sensors based on conjugated polymers (CPs)/carbon nanotubes (CNTs) nanohybride for the quick detection of pollutants in aqueous water. To our knowledge, no this kind of resistive of sensors has been developed yet. The start of the project focuses onWe start the project for the detection of metal ions, however, it can later be extended to other kinds of pollutants (such as nitrate, chloride, even drugs) using different polymers with the same working mechanism
Bangcuyo, Carlito Ganayo. "Synthesis of Heterocyclic Poly(aryleneetheynylene)s." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14011.
Full textAydemir, Murat. "Investigation of delayed fluorescence phenomena in conjugated molecules using time-resolved laser spectroscopy." Thesis, Durham University, 2016. http://etheses.dur.ac.uk/11712/.
Full textSobczyk, Sandra [Verfasser]. "STM transport theory for pi-conjugated molecules on thin insulating films / Sandra Sobczyk." München : Verlag Dr. Hut, 2012. http://d-nb.info/1028784856/34.
Full textChen, Xufang. "Synthesis and Characterization of Molecules and π-Conjugated Materials Containing Low-Coordinate Phosphorus." Case Western Reserve University School of Graduate Studies / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=case1102137178.
Full textYang, Kun. "CONJUGATED POLYMERS AND SMALL MOLECULES WITH LATENT HYDROGEN-BONDING FOR ORGANIC ELECTRONIC APPLICATIONS." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron149083508357808.
Full textMao, Yifan. "SYNTHESIS AND CHARACTERIZATION OF NOVEL p-CONJUGATED MOLECULES FOR ORGANIC REDOX-FLOW BATTERIES." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1522333087480595.
Full textChen, Xufang. "Synthesis and characterization of molecules and [pi]-conjugated materials containing low-coordinate phosphorus." online version, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=case1102137178.
Full textDavoudzadeh, Gholami Mahnaz. "Highly sensitive materials and sensors for the detection of bioactive molecules." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/227476/1/Mahnaz_Davoudzadeh%20Gholami_Thesis.pdf.
Full textWild, Kirstie Yvette. "Redox-active host molecules for the electrochemical recognition of charged and neutral species." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358700.
Full textDahlstrand, Christian. "Ground and Excited State Aromaticity : Design Tools for π-Conjugated Functional Molecules and Materials." Doctoral thesis, Uppsala universitet, Fysikalisk-organisk kemi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-173115.
Full textMagnan, François. "Sulphur- & Nitrogen-Containing π-Conjugated Organic Molecules as Potential Semiconductors for Optoelectronic Devices." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36754.
Full textBARRETO, ARTHUR RODRIGUES JARDIM. "DEVELOPMENT AND CHARACTERIZATION OF ORGANIC LIGHT-EMITTING TRANSISTORS (OLETS) BASED ON CONJUGATED SMALL MOLECULES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=35241@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
PROGRAMA DE EXCELENCIA ACADEMICA
Este trabalho teve como objetivo fabricar e caracterizar Transistores Orgânicos Emissores de Luz (OLETs, Organic light-Emitting Transistors). Os OLETs combinam em um único dispositivo a funcionalidade elétrica de um transistor de efeito de campo orgânico e a capacidade de geração de luz, representando uma nova classe de dispositivos orgânicos com alto potencial de inovação em aplicações, como sistemas ópticos de comunicação, tecnologia de displays avançada, lasers orgânicos, fontes de luz em nanoescala e optoeletrônica orgânica integrada. Portanto, esta tese possui um caráter pioneiro, tanto para grupo de pesquisa quanto para o país, uma vez que ocorre a junção dos conhecimentos e domínio adquiridos sobre OFETs e OLEDs. Efetivamente, este trabalho de doutorado consistiu na fabricação e caracterização sistemática de diversos dispositivos OLET utilizando variadas arquiteturas e diversos materiais, comerciais e não comerciais, como o NT4N, o P13 e uma bicamada de C8-BTBT com TcTa:Ir(ppy)3. Os dispositivos foram caracterizados através de medidas elétricas e óticas, obtendo-se as curvas características. Também foram determinados seus parâmetros e propriedades de funcionamento, com destaque para as mobilidades de carga e para as eficiências obtidas. Houve também o entendimento e a implementação de um tratamento térmico na camada dielétrica, sendo parte fundamental da fabricação dos dispositivos. Os dispositivos fabricados apresentaram diferentes graus de desempenho, com destaque para a arquitetura bicamada, por apresentar a maior potência luminosa (4 microwatt) e a maior eficiência (0,5 por cento), sendo suficientes para inserir os dispositivos fabricados na categoria de dispositivos orgânicos altamente eficientes. Tal fato demonstra que o domínio da fabricação e da caracterização desta nova classe de dispositivos foi alcançado.
The aim of this work was to achieve the knowledge of the fabrication and the characterization of Organic Light Emitting Transistors, OLETs, considered as one of the innovative technologies nowadays. The OLETs combine in a single device the electrical functionality of an organic field-effect transistor (OFET) and the light-generating capability. They represent a promising new class of organic devices with high potential for innovation in applications such as communication systems, advanced display technology, organic lasers, nanoscale light sources and integrated organic optoelectronics. In some way, this thesis has a pioneer character, both for our research group and for the country, since it combines different knowledge and skills about OFETs and OLEDs to achieve a new device. Actually, this work involved the systematic manufacture and characterization of several OLETs using different architectures employing commercial and noncommercial materials, such NT4N, P13 and a bilayer of C8-BTBT with TcTa:Ir(ppy)3. The devices were then characterized by electrical and optical measurements. The working parameters and properties were determined as well, highlighting the charge carrier mobilities and efficiencies obtained. The understanding and the implementation of a specific heat treatment in the dielectric layer was a fundamental part of this work for the manufacture of the devices which have different degrees of performance. With emphasis on the bilayer architecture, that presented the highest luminous power (4 microwatt) and efficiency (0,5 percent), inserting the devices manufactured in the category of highly efficient organic devices. Such fact shows that the fabrication and characterization of this new class of devices has been achieved.
Shibano, Yuki. "Energy and Electron Transfer in Novel Conjugated Molecules and Their Application to Photoelectrochemical Devices." 京都大学 (Kyoto University), 2007. http://hdl.handle.net/2433/49146.
Full textKyoto University (京都大学)
0048
新制・課程博士
博士(工学)
甲第13396号
工博第2867号
新制||工||1421(附属図書館)
25552
UT51-2007-Q797
京都大学大学院工学研究科分子工学専攻
(主査)教授 今堀 博, 教授 川﨑 昌博, 教授 榊 茂好
学位規則第4条第1項該当
Bhatta, Ram S. "Dynamics of Coupled Large Amplitude Motions from Small Non-Rigid Molecules to Conjugated Polymers." University of Akron / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=akron1353339449.
Full textPietilä, Lars-Olof. "Molecular mechanics and force field studies of weakly coupled conjugated molecules and molecular crystals." Hki : Finnish Society of Sciences and Letters : Academic Bookstore [distr.], 1988. http://catalog.hathitrust.org/api/volumes/oclc/57854229.html.
Full textJiang, Yue. "Structure-properties relationships in small pi-conjugated molecules : electrochromism, photovoltaic conversion and mechano-fluorochromism." Thesis, Angers, 2015. http://www.theses.fr/2015ANGE0026/document.
Full textThis work deals with the design, synthesis and evaluation of molecular pi-conjugated systems as active materials for (opto)electronics devices. A short first chapter describes three X-shaped oligothiophenes, thecharacterization of their structure and properties and a first evaluation of their performances in electrochromic devices. The second chapter describes the synthesis of molecular acceptors based on a benzodithiophene and the analysis of their potentialities when combined with molecular donors in organic solar cells.The major part of the work is focused on the analysis of structure-properties relationships of a series of smallpush-pull molecules involving di- or tri-arylamine donorblocks linked to an acceptor group by a thienyl bridge. In a first step, a phenyl ring of triphenylamine (TPA) is replaced by p-fluorophenyl, anthryl and naphtyl groups.Optical and electrochemical results show that substitution has little effect at the molecular level but can markedly affect solid-state properties with in particular an improvement of charge-transport and short-circuit current density of solar cells based on these donor materials.In a second step, a phenyl ring of TPA is replaced by alkyl, perfluoroalkyl and oligo(oxyethylene) chains. Results of X-ray diffraction, absorption and photoluminescence spectroscopies, second harmonic generation, and electrochemistry demonstrate that some of these molecules under go aggregation controlled photoluminescence emission wave length while the corresponding materials spontaneous lyre organize in the solid-state to form either H or Jaggregates with enhanced charge mobility, photovoltaic conversion efficiency and mechanically-induced chromism, fluorochromism and NLO-chromism
Liang, Pingping. "Gold Nanoparticle-Based Colorimetric Sensors for Detection of DNA and Small Molecules." FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2595.
Full textMukherjee, Jhindan. "Electrocatalytic Enzyme Sensors for Selective and Sensitive Detection of Biologically Important Molecules." Connect to full text in OhioLINK ETD Center, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1225164344.
Full textTypescript. "Submitted as partial fulfillment of the requirements for the Doctor of Philosophy degree in Chemistry." Includes bibliographical references (leaves 32-37, 74-75, 112-114, 155-157, 187-188, 193).
Mirra, Silvia. "Fluorescence-based sensors for the detection of biologically and environmentally relevant molecules." Doctoral thesis, Universita degli studi di Salerno, 2016. http://hdl.handle.net/10556/2204.
Full textHydrogen sulfide (H2S) has been known for long time as a toxic molecule in biological systems. More recent studies have shown that mammals can produce H2S in a controlled fashion, suggesting that it’s important in maintaining normal physiology. In particular, recent efforts are mostly devoted to implement sensitive and selective detection techniques to monitor the distribution and function of this molecule in complicated biological systems. Depending on the mechanism by which the recognition event occurs there are three main approaches in the literature. 1) Azide-to-amine reduction, 2) Nucleophilic addition and 3) Copper displacement. The idea behind this doctoral thesis project is based on a different approach: a coordinative mechanism. In this way one may, in principle, be able to remove H2S from the metal center of the sensor and ensure a reversible H2S binding process. This would be advantageous for practical sensing applications allowing reusability of the sensing device... [edited by author]
XIV n.s.
Starovoytov, A. A., E. N. Kaliteevskaya, V. P. Krutyakova, and T. K. Razumova. "Influence of Substituent in Conjugated Chain of Molecules on Nanocomponents Composition of Polymethine Dye Films." Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/34890.
Full textRen, He. "Crystal Engineering of Giant Molecules Based on Perylene Diimide Conjugated Polyhedral Oligomeric Silsesquioxane Nano-Atom." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1461014185.
Full textNiederhausen, Jens. "Electronic and structural properties of conjugated molecules at molecular hetero-interfaces and on metal surfaces." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17218.
Full textIn this thesis, the electronic and structural properties of thin films of conjugated organic molecules (COMs) vacuum-deposited on metal surfaces are studied. These properties are essential for realization and optimization of device functionalities in the field of organic electronics. Part 1 discusses two approaches for engineering the energy-level alignment (ELA), and, thereby, optimizing hole injection barriers (HIBs), at organic/metal interfaces via (over)compensation of the detrimental "push-back": - Exploiting the peculiar ELA at chalcogen-metal bonds, shown here (with X-ray and ultraviolet photoelectron spectroscopy, UPS/XPS) for a seleno-functionalized COM - inserting electron-accepting COMs prior to deposition of active layers. UPS shows that both approaches realize HIBs into the active COM as low as 0.3 eV. Part 2 studies selected organic/organic heterostructures on metal surfaces. These studies allow to propose that metal to overlayer charge transfer (MOCT), is responsible for achieving electronic equilibrium when such systems are Fermi-level pinned. Detailed investigations allowed identifying integer charge transfer to a fraction of the molecules in the first overlayer and the influence of the dipole-repulsion on the overlayer. In Part 3, metal surfaces are used as support for supramolecular architecture with polar building blocks. Scanning tunneling microscopy (STM) of a series of rod-like COMs with and without partial fluorination and with different dipole moments help disentangling the delicate balance dipole-dipole and competing interactions for sub-monolayer films physisorbed on Ag(111). For another, highly-polar COM at ca. monolayer coverage on Au(111), STM identifies six phases. All phases are found to exhibit anti-ferroelectric unit cells. UPS evidences a preferential alignment of multilayer molecules.
Ben, Aziza Zeineb. "Graphene based gas sensors : Fabrication, characterization, and study of gas molecules detection mechanism." Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0102.
Full textIn this research, we report on a study of graphene based gas and humidity sensors. This study could be useful not only to improve the performance of graphene based sensors but also to better understand the interaction between graphene and gas molecules. This seems necessary to promote the applications of graphene as a promising material for gas sensing. Significant advances have been made to design and fabricate these sensors: the different electrical characterizations as well as other techniques used to analyze the mechanism controlling the detection of gas/vapor molecules. These tools have been set up to design and manufacture various sensor structures using different underlying substrates for graphene on one hand and chemical modification of graphene properties on the other hand. The characterization of these sensors under different environments was used to compare the different responses of the sensors and draw several conclusions about gas sensing mechanism. Indeed, Mica, a smooth and transparent substrate, was used as a supporting substrate for graphene. Doping induced to graphene by mica and its impact on graphene sensitivity to ammonia gas were studied. This has made it possible to highlight the fact that the substrate plays an important role for the detection of ammonia. In addition, these sensors made on mica and SiO2 were tested under a variety of temperatures and oxygen. In another approach, a polymer was used to dope graphene. A detailed study was realized about the behavior of water molecules on functionalized graphene. The obtained experimental results, reported for the first time, represent a good support for several theoretical studies already made and could be used to optimize the design of graphene based gas sensors
Ramos-Ortiz, Gabriel. "Frequency conversion in conjugated organic molecules and its applications to ultra-fast pulse diagnostic and imaging." Diss., The University of Arizona, 2003. http://hdl.handle.net/10150/289952.
Full textSandoval-Salinas, María Eugenia. "Conjugated organic radicals and polyradicals: electronic structure and photophysics." Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/670990.
Full textEl principal objetivo de esta tesis es poner al descubierto las propiedades químicas que permiten que procesos fotofísicos complejos tomen lugar en moléculas orgánicas, y que les permite tener aplicaciones en materiales optoelectrónicos. Puntualmente, los objetivos que se han cumplido son i) la caracterización de di y poliradicales orgánicos y sus propiedades electrónicas, magnéticas y espectroscópicas; ii) la descripción detallada del mecanismo de fisión de singuletes, así como proponer un sistema que teóricamente es capaz de realizarlo eficientemente; y iii) la utilización de métodos de la mecánica cuántica (específicamente RAS-SF) y herramientas computacionales que permiten la descripción apropiada de la estructura electrónica del estado fundamental de sistemas en los que la correlación no-dinámica representa un papel importante. En primer lugar, se estudiaron compuestos orgánicos cuyas propiedades ópticas y magnéticas los hacen interesantes en el campo de materiales optoelectrónicos. Se encontró la dependencia del carácter radical en la topología de nanoestructuras de grafeno (acenos) lineales y cíclicos, y pequeñas laminas de estructura triangular. Mientras el carácter diradical y tetraradical crece con el tamaño de los compuestos lineales y cíclicos, las estructuras triangulares (TGNF, siglas en inglés de Triangulene Graphene Nano Fragments) son compuestos de capa abierta. Además, se propone una forma de modular la multiplicidad de espín en el estado basal de los TGNF mediante el dopaje con heteroátomos. El incremento del tamaño del sistema permite obtener molecular con alto carácter poliradical. En esta tesis se presenta la racionalización de la estructura electrónica de macrociclos orgánicos con carácter triradical hasta decaradicaloide (10 centros radicalarios). Las propiedades que se derivan de estas características son tan variadas como sorprendentes, por ejemplo, se han caracterizado sistemas AWA (anulenos-dentro de-anulenos) cuya aromaticidad global responde a la suma de la aromaticidad en cada uno de los anulenos y esta regida por las reglas de aromaticidad de Hückel y Baird simultaneamente. El proceso de fisión de singuletes (SF) fue expandido del modelo clásico, que involucra cinco estados electrónicos, a un modelo que incluye excitaciones dobles (estados D), modelo de siete estados. Usando un modelo sencillo se estima que los estados D pueden jugar un papel activo en SF, así como las condiciones necesarias para maximizar su participación como estado inicial o intermediario en el proceso. Se expone la factibilidad de que los sistemas spiro lleven a cabo SF.
Sumranjit, Jitapa. "Conjugated organic molecules as models for potential sensors." 2007. https://scholarworks.umass.edu/dissertations/AAI3254940.
Full text