Academic literature on the topic 'Conjugate Residual method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Conjugate Residual method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Conjugate Residual method"
Dahito, Marie-Ange, and Dominique Orban. "The Conjugate Residual Method in Linesearch and Trust-Region Methods." SIAM Journal on Optimization 29, no. 3 (January 2019): 1988–2025. http://dx.doi.org/10.1137/18m1204255.
Full textAxelsson, Owe, and M. Makarov. "On a generalized conjugate gradient orthogonal residual method." Numerical Linear Algebra with Applications 2, no. 5 (September 1995): 467–79. http://dx.doi.org/10.1002/nla.1680020507.
Full textOgino, Masao, Shin-ichiro Sugimoto, Seigo Terada, Yanqing Bao, and Hiroshi Kanayama. "A Large-Scale Magnetostatic Analysis Using an Iterative Domain Decomposition Method Based on the Minimal Residual Method." Journal of Advanced Computational Intelligence and Intelligent Informatics 16, no. 4 (June 20, 2012): 496–502. http://dx.doi.org/10.20965/jaciii.2012.p0496.
Full textLi, Tao, Qing-Wen Wang, and Xin-Fang Zhang. "A Modified Conjugate Residual Method and Nearest Kronecker Product Preconditioner for the Generalized Coupled Sylvester Tensor Equations." Mathematics 10, no. 10 (May 18, 2022): 1730. http://dx.doi.org/10.3390/math10101730.
Full textWashizawa, Teruyoshi. "On the Behavior of the Residual in Conjugate Gradient Method." Applied Mathematics 01, no. 03 (2010): 211–14. http://dx.doi.org/10.4236/am.2010.13025.
Full textGurieva, Y. L. "Semi-conjugate residual method for iterative solving the Navier-Stokes problem." Optoelectronics, Instrumentation and Data Processing 43, no. 2 (April 2007): 177–81. http://dx.doi.org/10.3103/s8756699007020100.
Full textEGUCHI, Yuzuru, Laszlo FUCHS, and Genki YAGAWA. "A finite element analysis of unsteady flows utilizing conjugate residual method." Transactions of the Japan Society of Mechanical Engineers Series A 53, no. 485 (1987): 111–15. http://dx.doi.org/10.1299/kikaia.53.111.
Full textSogabe, T., M. Sugihara, and S. L. Zhang. "An extension of the conjugate residual method to nonsymmetric linear systems." Journal of Computational and Applied Mathematics 226, no. 1 (April 2009): 103–13. http://dx.doi.org/10.1016/j.cam.2008.05.018.
Full textToh, Kim-Chuan, and Masakazu Kojima. "Solving Some Large Scale Semidefinite Programs via the Conjugate Residual Method." SIAM Journal on Optimization 12, no. 3 (January 2002): 669–91. http://dx.doi.org/10.1137/s1052623400376378.
Full textZhong, Hong-Xiu, Xian-Ming Gu, and Shao-Liang Zhang. "A Breakdown-Free Block COCG Method for Complex Symmetric Linear Systems with Multiple Right-Hand Sides." Symmetry 11, no. 10 (October 16, 2019): 1302. http://dx.doi.org/10.3390/sym11101302.
Full textDissertations / Theses on the topic "Conjugate Residual method"
Odland, Tove. "On Methods for Solving Symmetric Systems of Linear Equations Arising in Optimization." Doctoral thesis, KTH, Optimeringslära och systemteori, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-166675.
Full textI denna avhandling betraktar vi matematiska egenskaper hos metoder för att lösa symmetriska linjära ekvationssystem som uppkommer i formuleringar och metoder för en mängd olika optimeringsproblem. I första och tredje artikeln (Paper A och Paper C), undersöks kopplingen mellan konjugerade gradientmetoden och kvasi-Newtonmetoder när dessa appliceras på strikt konvexa kvadratiska optimeringsproblem utan bivillkor eller ekvivalent på ett symmet- risk linjärt ekvationssystem med en positivt definit symmetrisk matris. Vi ställer upp villkor på kvasi-Newtonmatrisen och uppdateringsmatrisen så att sökriktningen som fås från motsvarande kvasi-Newtonmetod blir parallell med den sökriktning som fås från konjugerade gradientmetoden. I den första artikeln (Paper A), härleds villkor på uppdateringsmatrisen baserade på ett tillräckligt villkor för att få ömsesidigt konjugerade sökriktningar. Dessa villkor på kvasi-Newtonmetoden visas vara ekvivalenta med att uppdateringsstrategin tillhör Broydens enparameterfamilj. Vi tar också fram en ett-till-ett överensstämmelse mellan Broydenparametern och skalningen mellan sökriktningarna från konjugerade gradient- metoden och en kvasi-Newtonmetod som använder någon väldefinierad uppdaterings- strategi från Broydens enparameterfamilj. I den tredje artikeln (Paper C), ger vi tillräckliga och nödvändiga villkor på en kvasi-Newtonmetod så att nämnda ekvivalens med konjugerade gradientmetoden er- hålls. Mängden kvasi-Newtonstrategier som uppfyller dessa villkor är strikt större än Broydens enparameterfamilj. Vi visar också att denna mängd kvasi-Newtonstrategier innehåller ett oändligt antal uppdateringsstrategier där uppdateringsmatrisen är en sym- metrisk matris av rang ett. I den andra artikeln (Paper B), används ett ramverk för icke-normaliserade Krylov- underrumsmetoder för att lösa symmetriska linjära ekvationssystem. Dessa ekvations- system kan sakna lösning och matrisen kan vara indefinit/singulär. Denna typ av sym- metriska linjära ekvationssystem uppkommer i en mängd formuleringar och metoder för optimeringsproblem med bivillkor. I fallet då det symmetriska linjära ekvations- systemet saknar lösning ger vi ett certifikat för detta baserat på en projektion på noll- rummet för den symmetriska matrisen och karaktäriserar en minimum-residuallösning. Vi härleder även en minimum-residualmetod i detta ramverk samt ger explicita rekur- sionsformler för denna metod. I fallet då det symmetriska linjära ekvationssystemet saknar lösning så karaktäriserar vi en minimum-residuallösning av minsta euklidiska norm.
QC 20150519
Liao, PaoKuan, and 廖堡寬. "On the Generalized Conjugate Gradient Orthogonal Residual Method." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/51320456719946701524.
Full text輔仁大學
數學系研究所
91
In this thesis, we study the generalized conjugate gradient orthogonal residual method (GORES method). It differs from some generalized conjugate gradient methods (GCG methods) on that it uses all the previous search directions at each step, and the method has some advantages over the others. First, it requires storage of only one set of linearly growing number of vectors. Second, at each step, there is only one vector, the residual vector, which must be updated using all the vecors in this set. And third, it is similar to the generalized minimum residual method (GMRES method), but it can stop at any stage when the norm of the residual is sufficiently small and no extra computation is needed to compute this norm. A number of numerical experiments were performed which showed the GORES algorithm performs better than GMRES method in several cases.
Tiwari, Manasi. "Communication Overlapping Krylov Subspace Methods for Distributed Memory Systems." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5990.
Full textMEZA, JUAN CAMILO. "CONJUGATE RESIDUAL METHODS FOR ALMOST SYMMETRIC LINEAR SYSTEMS." Thesis, 1986. http://hdl.handle.net/1911/15998.
Full textBook chapters on the topic "Conjugate Residual method"
Verfürth, R. "A Preconditioned Conjugate Residual Algorithm for the Stokes Problem." In Advances in Multi-Grid Methods, 112–18. Wiesbaden: Vieweg+Teubner Verlag, 1985. http://dx.doi.org/10.1007/978-3-663-14245-4_11.
Full textLevonyak, Markus, Christina Pacher, and Wilfried N. Gansterer. "Scalable Resilience Against Node Failures for Communication-Hiding Preconditioned Conjugate Gradient and Conjugate Residual Methods." In Proceedings of the 2020 SIAM Conference on Parallel Processing for Scientific Computing, 81–92. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2020. http://dx.doi.org/10.1137/1.9781611976137.8.
Full textHanke, Martin. "A Minimal Residual Method for Indefinite Problems." In Conjugate Gradient Type Methods for Ill-Posed Problems, 91–126. Routledge, 2017. http://dx.doi.org/10.1201/9781315140193-5.
Full textRoyo, Miriam, and George Barany. "Preparation and handling of peptides containing methionine and cysteine." In Fmoc Solid Phase Peptide Synthesis. Oxford University Press, 1999. http://dx.doi.org/10.1093/oso/9780199637256.003.0008.
Full textTaber, Douglass F. "The Tanino Synthesis of (-)-Glycinoeclepin A." In Organic Synthesis. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199965724.003.0095.
Full textConference papers on the topic "Conjugate Residual method"
Liao, Hanlin, Hao Deng, and Christian Coddet. "Conjugated Gradient Method for Estimating Inversely the Flux Distribution of Cooling Jets." In ITSC2003, edited by Basil R. Marple and Christian Moreau. ASM International, 2003. http://dx.doi.org/10.31399/asm.cp.itsc2003p0981.
Full textBlomquist, Matthew, and Abhijit Mukherjee. "Performance Improvements of Krylov Subspace Methods in Numerical Heat Transfer and Fluid Flow Simulations." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-12174.
Full textCretu, Spiridon S., Marcelin I. Benchea, and Ovidiu S. Cretu. "Compressive Residual Stresses Effect on Fatigue Life of Rolling Bearings." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43561.
Full textWang, Chenglong, Suizheng Qiu, Wenxi Tian, Yingwei Wu, and Guanghui Su. "Transient Study on Sodium Heat Pipe in Passive Heat Removal System of Molten Salt Reactor." In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-15029.
Full textWallis, J. R., R. P. Kendall, and T. E. Little. "Constrained Residual Acceleration of Conjugate Residual Methods." In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 1985. http://dx.doi.org/10.2118/13536-ms.
Full textWang, Zhenfeng, Peigang Yan, Hongyan Huang, and Wanjin Han. "Coupled BEM and FDM Conjugate Analysis of a Three-Dimensional Air-Cooled Turbine Vane." In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59030.
Full textAbboudi, S., E. A. Artioukhine, and H. Riad. "Estimation of Transient Boundary Conditions in a Multimaterial: Computational and Experimental Analysis." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0735.
Full textKumar, Ravi Ranjan, J. M. McDonough, M. P. Mengu¨c¸, and Illayathambi Kunadian. "Performance Comparison of Numerical Procedures for Efficiently Solving a Microscale Heat Transport Equation During Femtosecond Laser Heating of Nanoscale Metal Films." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79542.
Full textKumar, Rajeev, and Brian H. Dennis. "The Least-Squares Galerkin Split Finite Element Method for Buoyancy-Driven Flow." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-29157.
Full textKumar, Rajeev, and Brian H. Dennis. "A Least-Squares/Galerkin Finite Element Method for Incompressible Navier-Stokes Equations." In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49654.
Full text