To see the other types of publications on this topic, follow the link: Conical refraction; Optics.

Journal articles on the topic 'Conical refraction; Optics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Conical refraction; Optics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Indik, R. A., and A. C. Newell. "Conical refraction and nonlinearity." Optics Express 14, no. 22 (2006): 10614. http://dx.doi.org/10.1364/oe.14.010614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Abdolvand, Amin, Keith G. Wilcox, Todor K. Kalkandjiev, and Edik U. Rafailov. "Conical refraction Nd:KGd(WO_4)_2 laser." Optics Express 18, no. 3 (January 26, 2010): 2753. http://dx.doi.org/10.1364/oe.18.002753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kroupa, J. "Second-harmonic conical refraction in GUHP." Journal of Optics 12, no. 4 (April 1, 2010): 045706. http://dx.doi.org/10.1088/2040-8978/12/4/045706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Loiko, Yu V., A. Turpin, G. S. Sokolovskii, and E. U. Rafailov. "Conical refraction mode of an optical resonator." Optics Letters 45, no. 6 (March 3, 2020): 1317. http://dx.doi.org/10.1364/ol.387182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Turpin, Alex, Yurii V. Loiko, Todor K. Kalkandjiev, and Jordi Mompart. "Multiple rings formation in cascaded conical refraction." Optics Letters 38, no. 9 (April 25, 2013): 1455. http://dx.doi.org/10.1364/ol.38.001455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mylnikov, V. Yu, S. N. Losev, V. V. Dudelev, K. A. Fedorova, E. U. Rafailov, and G. S. Sokolovskii. "Conical refraction with low-coherence light sources." Optics Express 27, no. 18 (August 22, 2019): 25428. http://dx.doi.org/10.1364/oe.27.025428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Berry, Michael. "Nature’s Optics and Our Understanding of Light." مجلة جامعة فلسطين التقنية خضوري للأبحاث 6, no. 2 (November 20, 2018): 23–67. http://dx.doi.org/10.53671/ptukrj.v6i2.64.

Full text
Abstract:
Optical phenomena visible to everyone abundantly illustrate important ideas in science and mathematics. The phenomena considered include rainbows, sparkling reflections on water, green flashes, earthlight on the moon, glories, daylight, crystals, and the squint moon. The concepts include refraction, wave interference, numerical experiments, asymptotics, Regge poles, polarisation singularities, conical intersections, and visual illusions
APA, Harvard, Vancouver, ISO, and other styles
8

Berry, Michael. "Nature’s Optics and Our Understanding of Light." مجلة جامعة فلسطين التقنية للأبحاث 6, no. 2 (November 20, 2018): 23–67. http://dx.doi.org/10.53671/pturj.v6i2.64.

Full text
Abstract:
Optical phenomena visible to everyone abundantly illustrate important ideas in science and mathematics. The phenomena considered include rainbows, sparkling reflections on water, green flashes, earthlight on the moon, glories, daylight, crystals, and the squint moon. The concepts include refraction, wave interference, numerical experiments, asymptotics, Regge poles, polarisation singularities, conical intersections, and visual illusions
APA, Harvard, Vancouver, ISO, and other styles
9

Kuznetsov, E. V., and A. M. Merzlikin. "Conical refraction in a magneto-optical biaxial crystal." Journal of Optics 19, no. 5 (April 5, 2017): 055610. http://dx.doi.org/10.1088/2040-8986/aa663e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Turpin, A., Yu V. Loiko, T. K. Kalkandjiev, H. Tomizawa, and J. Mompart. "Wave-vector and polarization dependence of conical refraction." Optics Express 21, no. 4 (February 13, 2013): 4503. http://dx.doi.org/10.1364/oe.21.004503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ma, Jingui, Peng Yuan, Jing Wang, Guoqiang Xie, Heyuan Zhu, and Liejia Qian. "Sum-frequency generation with femtosecond conical refraction pulses." Optics Letters 43, no. 15 (July 25, 2018): 3670. http://dx.doi.org/10.1364/ol.43.003670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Peet, V. "Conical refraction in a degenerated two-crystal cascade." Journal of Optics 18, no. 1 (December 15, 2015): 015607. http://dx.doi.org/10.1088/2040-8978/18/1/015607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Mylnikov, V. Yu, E. U. Rafailov, and G. S. Sokolovskii. "Close relationship between Bessel–Gaussian and conical refraction beams." Optics Express 28, no. 23 (October 26, 2020): 33900. http://dx.doi.org/10.1364/oe.404283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sokolovskii, G. S., D. J. Carnegie, T. K. Kalkandjiev, and E. U. Rafailov. "Conical Refraction: New observations and a dual cone model." Optics Express 21, no. 9 (April 30, 2013): 11125. http://dx.doi.org/10.1364/oe.21.011125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hellström, Jonas, Hanna Henricsson, Valdas Pasiskevicius, Udo Bünting, and Dirk Haussmann. "Polarization-tunable Yb:KGW laser based on internal conical refraction." Optics Letters 32, no. 19 (September 18, 2007): 2783. http://dx.doi.org/10.1364/ol.32.002783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

De Smet, D. J. "4 × 4 matrix formalism applied to internal conical refraction." Journal of the Optical Society of America A 10, no. 1 (January 1, 1993): 186. http://dx.doi.org/10.1364/josaa.10.000186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Berry, M. V., and M. R. Jeffrey. "Conical diffraction complexified: dichroism and the transition to double refraction." Journal of Optics A: Pure and Applied Optics 8, no. 12 (November 1, 2006): 1043–51. http://dx.doi.org/10.1088/1464-4258/8/12/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Filippov, V. V. "Spatial, polarization and angular characteristics of external conical refraction." Optics Communications 387 (March 2017): 141–47. http://dx.doi.org/10.1016/j.optcom.2016.11.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Jalviste, E., V. Palm, and V. Peet. "Vortex light beams in a degenerate two-crystal cascade conical refraction." Journal of Optics 20, no. 1 (December 5, 2017): 015601. http://dx.doi.org/10.1088/2040-8986/aa98b5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Turpin, A., V. Shvedov, C. Hnatovsky, Yu V. Loiko, J. Mompart, and W. Krolikowski. "Optical vault: A reconfigurable bottle beam based on conical refraction of light." Optics Express 21, no. 22 (October 25, 2013): 26335. http://dx.doi.org/10.1364/oe.21.026335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Akbari, R., C. Howlader, K. A. Fedorova, G. S. Sokolovskii, E. U. Rafailov, and A. Major. "Conical refraction output from a Nd:YVO4 laser with an intracavity conerefringent element." Optics Letters 44, no. 3 (January 28, 2019): 642. http://dx.doi.org/10.1364/ol.44.000642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

WU Zhi-chao, 武志超, 董渊 DONG Yuan, and 梁柱 LIANG Zhu. "Phase Difference and Polarization Characteristic of Hollow Beams Achieved by Conical Refraction Effect." ACTA PHOTONICA SINICA 39, no. 8 (2010): 1487–90. http://dx.doi.org/10.3788/gzxb20103908.1487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Peet, Viktor. "Conical refraction and formation of multiring focal image with Laguerre–Gauss light beams." Optics Letters 36, no. 15 (August 1, 2011): 2913. http://dx.doi.org/10.1364/ol.36.002913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hayamizu, Yoshisada. "Analysis of Internal Conical Refraction Using Ray Tracing Formulas for the Biaxial Crystal." Optical Review 13, no. 4 (July 2006): 169–83. http://dx.doi.org/10.1007/s10043-006-0169-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Peet, V., and S. Shchemelyov. "Frequency doubling with laser beams transformed by conical refraction in a biaxial crystal." Journal of Optics 13, no. 5 (April 15, 2011): 055205. http://dx.doi.org/10.1088/2040-8978/13/5/055205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kazak, N. S., N. A. Khilo, A. A. Ryzhevich, and E. G. Katranzhi. "Forming annular and Bessel light beams under conditions of internal conical refraction." Journal of Optical Technology 67, no. 12 (December 1, 2000): 1064. http://dx.doi.org/10.1364/jot.67.001064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Peinado, Alba, Alex Turpin, Claudio Iemmi, Andrés Márquez, Todor K. Kalkandjiev, Jordi Mompart, and Juan Campos. "Interferometric characterization of the structured polarized light beam produced by the conical refraction phenomenon." Optics Express 23, no. 14 (July 2, 2015): 18080. http://dx.doi.org/10.1364/oe.23.018080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Peet, V. "Improving directivity of laser beams by employing the effect of conical refraction in biaxial crystals." Optics Express 18, no. 19 (August 31, 2010): 19566. http://dx.doi.org/10.1364/oe.18.019566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Peinado, Alba, Angel Lizana, Alejandro Turpín, Claudio Iemmi, Todor K. Kalkandjiev, Jordi Mompart, and Juan Campos. "Optimization, tolerance analysis and implementation of a Stokes polarimeter based on the conical refraction phenomenon." Optics Express 23, no. 5 (February 24, 2015): 5636. http://dx.doi.org/10.1364/oe.23.005636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Peet, V. "Experimental study of internal conical refraction in a biaxial crystal with Laguerre–Gauss light beams." Journal of Optics 16, no. 7 (June 11, 2014): 075702. http://dx.doi.org/10.1088/2040-8978/16/7/075702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

GUO, SHENG-LI, ZHUN GUO, T. SUSDORF, and TIAN-DE CAO. "ABSORPTION, EMISSION AND NONLINEAR SPECTROSCOPIC CHARACTERIZATION OF REACTIVE DYE." Journal of Nonlinear Optical Physics & Materials 15, no. 04 (December 2006): 481–90. http://dx.doi.org/10.1142/s0218863506003414.

Full text
Abstract:
An optical spectroscopic characterization is carried out on a reactive dye (reactive orange 1). This dye is widely applied in textile coloration. It is a potential candidate for photonics applications. Its absorption cross-section spectra are measured. A fluorescence spectroscopic characterization is undertaken by measuring the fluorescence quantum distributions and fluorescence quantum yields. The saturable absorption is studied by nonlinear transmission measurements with intense picosecond laser pulses (second harmonic pulses of a mode-locked Nd :glass laser). The nonlinear optical absorption and refraction coefficients are measured by using the top-hat Z-scan technique at a wavelength of 532 nm with 35 ps duration pulses. Reactive orange 1 has the two-photon absorption coefficient of 1.20 cm/GW and the nonlinear refraction coefficient of -7.33 × 10-6 cm2/GW, respectively. In reactive orange 1, there occurs fast ground-state recovery by internal conversion likely via conical intersections. Low excited-state absorption and fast ground-state absorption recovery make it an ideal candidate for passive mode-locking of picosecond and femtosecond lasers as well as for fast nonlinear optical gating.
APA, Harvard, Vancouver, ISO, and other styles
32

Jalviste, Erko, and Viktor Peet. "Interplay of vortex and non-vortex beam components in a variable two-crystal cascade conical refraction." Optics Letters 43, no. 19 (September 17, 2018): 4566. http://dx.doi.org/10.1364/ol.43.004566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Nie, Pengcheng, Dagong Jia, Chuang Du, Hongxia Zhang, Tianhua Xu, and Tiegeng Liu. "Method Based on Fast Fourier Transform for Calculating Conical Refraction of Beams With Noncircular Symmetry." IEEE Photonics Journal 9, no. 2 (April 2017): 1–7. http://dx.doi.org/10.1109/jphot.2017.2669520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Saad, F., and A. Belafhal. "A detailed study of internal conical refraction phenomenon of Flattened Gaussian beams propagating in a biaxial crystal." Optik 138 (June 2017): 145–52. http://dx.doi.org/10.1016/j.ijleo.2017.03.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Dettwiller, Luc. "Absence of internal conical refraction with the spatially dispersive index surface of fluorine; discussion of the orthogonality of the Poynting vector to the index surface." Optics Express 14, no. 8 (2006): 3339. http://dx.doi.org/10.1364/oe.14.003339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

McDonald, C., C. McDougall, E. Rafailov, and D. McGloin. "Characterizing conical refraction optical tweezers." Optics Letters 39, no. 23 (November 25, 2014): 6691. http://dx.doi.org/10.1364/ol.39.006691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

O’Dwyer, D. P., K. E. Ballantine, C. F. Phelan, J. G. Lunney, and J. F. Donegan. "Optical trapping using cascade conical refraction of light." Optics Express 20, no. 19 (August 30, 2012): 21119. http://dx.doi.org/10.1364/oe.20.021119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Huang, Zun, and Evgenii E. Narimanov. "Optical phase retrieval using conical refraction in structured media." Optics Letters 41, no. 23 (November 29, 2016): 5567. http://dx.doi.org/10.1364/ol.41.005567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kuruba, Nithin, and Tao Lu. "Hollow Fiber Coupler Sensor." Sensors 19, no. 4 (February 16, 2019): 806. http://dx.doi.org/10.3390/s19040806.

Full text
Abstract:
We present a bi-conical optical directional coupler composed of solid and hollow core fibers. Through an evanescent wave coupling mechanism, the detection of liquid refractive index and its temperature are demonstrated. The experimental results illustrated that the sensor offers a sensitivity of 4.03 ± 0.50 volts per refractive index units (V/RIU) for refractive indices ranging from 1.331 ± 0.003 to 1.403 ± 0.003 with a resolution of 3.5 × 10 − 3 refractive index units (RIU).
APA, Harvard, Vancouver, ISO, and other styles
40

Dinh Lam, Nguyen, Youngjo Kim, Kangho Kim, and Jaejin Lee. "Influences of InGaP Conical Frustum Nanostructures on the Characteristics of GaAs Solar Cells." Journal of Nanomaterials 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/785359.

Full text
Abstract:
Conical frustums with quasihexagonal nanostructures are fabricated on an InGaP window layer of single junction GaAs solar cells using a polystyrene nanosphere lithography technique followed by anisotropic etching processes. The optical and photovoltaic characteristics of the conical frustum nanostructured solar cells are investigated. Reflectance of the conical frustum nanostructured solar cells is significantly reduced in a wide range of wavelengths compared to that of the planar sample. The measured reflectance reduction is attributed to the gradual change in the refractive index of the InGaP conical frustum window layer. An increase of 15.2% in the power conversion efficiency has been achieved in the fabricated cell with an optimized conical frustum nanostructure compared to that of the planar cell.
APA, Harvard, Vancouver, ISO, and other styles
41

Zhou, Ying Wu. "High-Sensitivity Refractive Index Sensor Based on Simply Fabricated Single Mode Fiber Tapers." Advanced Materials Research 542-543 (June 2012): 901–4. http://dx.doi.org/10.4028/www.scientific.net/amr.542-543.901.

Full text
Abstract:
A high sensitivity fiber-optic refractive index sensor based on the bi-conical single mode fiber tapers is proposed and demonstrated. The relationship between the resonance wavelength shift and surrounding refractive index is investigated. The experimental results show that the resonance wavelength linearly shifts toward longer wavelengths with the environmental refractive index ranging from 1.333 to 1.380. The response sensitivity increases with the decrease of the waist diameter of the tapered fiber. The proposed sensor is easily fabricated, compact and may be useful for the chemical and biotechnological industry.
APA, Harvard, Vancouver, ISO, and other styles
42

Shvarts, Maxim Z., and Andrey A. Soluyanov. "Improved Concentration Capabilities of Flat-Plate Fresnel Lenses." Advances in Science and Technology 74 (October 2010): 188–95. http://dx.doi.org/10.4028/www.scientific.net/ast.74.188.

Full text
Abstract:
This paper presents an experience in designing, manufacturing and testing the Fresnel lenses (FLs) for sunlight concentration in photovoltaic modules with multi-junction solar cells (SCs). A power ray tracing model is used for calculating and optimizing refractive profile parameters and obtaining optical-power characteristics (OPCs) of Fresnel lenses. In searching the optimum combination of the lens aperture, its focal distance and profile configuration, the optimization criterion was the maximum of the average sunlight concentration at high optical efficiency in the focal spot of minimum size. Analysis of characteristics of circular Fresnel lenses with conical (the facet generating lines are straight ones) and curvilinear (the facet generating lines are curved ones) refracting surfaces has been carried out. The effect material parameters on the lens optical efficiency were studied. Molds for Fresnel lens formation and experimental specimens were fabricated and a control of their profile parameters has been done. A degree of the effect of the light flux characteristics and Fresnel lens geometrical imperfections on validity of the experimental data interpretation has been examined. The correction procedure have been applied in the calculation model to establish the lens optical efficiency values at standard irradiance conditions.
APA, Harvard, Vancouver, ISO, and other styles
43

Khatkevich, A. G. "Conical refraction and radiation transformation in the vicinity of optical axes." Journal of Applied Spectroscopy 63, no. 6 (November 1996): 872–78. http://dx.doi.org/10.1007/bf02606257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Chan, C. T., Zhi Hong Hang, and Xueqin Huang. "Dirac Dispersion in Two-Dimensional Photonic Crystals." Advances in OptoElectronics 2012 (October 22, 2012): 1–11. http://dx.doi.org/10.1155/2012/313984.

Full text
Abstract:
We show how one may obtain conical (Dirac) dispersions in photonic crystals, and in some cases, such conical dispersions can be used to create a metamaterial with an effective zero refractive index. We show specifically that in two-dimensional photonic crystals with C4v symmetry, we can adjust the system parameters to obtain accidental triple degeneracy at Γ point, whose band dispersion comprises two linear bands that generate conical dispersion surfaces and an additional flat band crossing the Dirac-like point. If this triply degenerate state is formed by monopole and dipole excitations, the system can be mapped to an effective medium with permittivity and permeability equal to zero simultaneously, and this system can transport wave as if the refractive index is effectively zero. However, not all the triply degenerate states can be described by monopole and dipole excitations and in those cases, the conical dispersion may not be related to an effective zero refractive index. Using multiple scattering theory, we calculate the Berry phase of the eigenmodes in the Dirac-like cone to be equal to zero for modes in the Dirac-like cone at the zone center, in contrast with the Berry phase of π for Dirac cones at the zone boundary.
APA, Harvard, Vancouver, ISO, and other styles
45

Mohammadi, Gholamreza, Fazel Jahangiri, and Tahereh Amini. "Design of an optical diode based on conical refraction in biaxial crystals." Engineering Research Express 1, no. 2 (December 6, 2019): 025047. http://dx.doi.org/10.1088/2631-8695/ab5c6b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Turpin, Alex, Yurii Loiko, Todor K. Kalkandjiev, and Jordi Mompart. "Free-space optical polarization demultiplexing and multiplexing by means of conical refraction." Optics Letters 37, no. 20 (October 3, 2012): 4197. http://dx.doi.org/10.1364/ol.37.004197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Turpin, A., J. Polo, Yu V. Loiko, J. Küber, F. Schmaltz, T. K. Kalkandjiev, V. Ahufinger, G. Birkl, and J. Mompart. "Blue-detuned optical ring trap for Bose-Einstein condensates based on conical refraction." Optics Express 23, no. 2 (January 23, 2015): 1638. http://dx.doi.org/10.1364/oe.23.001638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Migachev, S. A., M. F. Sadykov, M. M. Shakirzyanov, and D. A. Ivanov. "Magnetic birefringence and conical refraction of elastic waves in antiferromagnetic α-Fe2O3." Physics of the Solid State 53, no. 3 (March 2011): 485–89. http://dx.doi.org/10.1134/s1063783411030176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

KITAMURA, NAOYUKI, KOHEI FUKUMI, JUNICHI NAKAMURA, TATSUO HIDAKA, TAKUROU IKEDA, HIDEKAZU HASHIMA, and JUNJI NISHII. "LOW-Tg BISMUTH PHOSPHATE GLASSES FOR GLASS-IMPRINTING AND FABRICATION OF 2D SUB-WAVELENGTH STRUCTURE." Journal of Nonlinear Optical Physics & Materials 19, no. 04 (December 2010): 753–59. http://dx.doi.org/10.1142/s0218863510005662.

Full text
Abstract:
We have developed zinc-bismuth-phosphate glasses, which have deformation temperatures under 450°C and refractive indices higher than 1.7, in order to produce an antireflection structure on the surface by a glass-imprinting process. Two-dimensionally arrayed conical cavities of sub-wavelength size were fabricated on a SiC mold by electron lithography and dry etching techniques. The sub-wavelength periodic structure was transferred onto the glass surface by a glass-imprinting process using the mold. The sub-wavelength structure suppressed the reflectance by approximately 90%. A weak maximum was observed in the reflection spectra around 400–500 nm, which decreased in intensity and shifted toward shorter wavelengths with decreasing pitch.
APA, Harvard, Vancouver, ISO, and other styles
50

S.Yaqoob, Nooralhuda, and Sabah M.M. Ameen. "Variable Optical Buffer Using EIT in Three Level System Based on Semiconductor Conical Quantum Dots." Journal of Kufa-Physics 12, no. 01 (December 10, 2020): 50–60. http://dx.doi.org/10.31257/2018/jkp/2020/120108.

Full text
Abstract:
A variable semiconductor optical buffer based on the electromagnetically induced transparency (EIT) in a three level conical quantum dot system (CQD) is theoretically investigated. The system is interacting with two (control and signal) laser beams. Signal light with subluminal velocity is possible in such system through the quantum interference effect induced by the control pump field. We investigate the refractive index and absorption spectra of the QD waveguide at different pump levels, which exhibit an optimal pump power for maximum slow-down factor (SDF). The group velocity SDF is theoretically analyzed as a function of the pump intensity at different broadened linewidths. The present study is based on the assumption that the medium is homogeneous. In this paper, a SDF as a function of CQD radius was studied. The simulation results indicate that the SDF increases with decreasing CQD radius.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography