Academic literature on the topic 'Conical refraction; Optics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Conical refraction; Optics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Conical refraction; Optics"

1

Indik, R. A., and A. C. Newell. "Conical refraction and nonlinearity." Optics Express 14, no. 22 (2006): 10614. http://dx.doi.org/10.1364/oe.14.010614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Abdolvand, Amin, Keith G. Wilcox, Todor K. Kalkandjiev, and Edik U. Rafailov. "Conical refraction Nd:KGd(WO_4)_2 laser." Optics Express 18, no. 3 (January 26, 2010): 2753. http://dx.doi.org/10.1364/oe.18.002753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kroupa, J. "Second-harmonic conical refraction in GUHP." Journal of Optics 12, no. 4 (April 1, 2010): 045706. http://dx.doi.org/10.1088/2040-8978/12/4/045706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Loiko, Yu V., A. Turpin, G. S. Sokolovskii, and E. U. Rafailov. "Conical refraction mode of an optical resonator." Optics Letters 45, no. 6 (March 3, 2020): 1317. http://dx.doi.org/10.1364/ol.387182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Turpin, Alex, Yurii V. Loiko, Todor K. Kalkandjiev, and Jordi Mompart. "Multiple rings formation in cascaded conical refraction." Optics Letters 38, no. 9 (April 25, 2013): 1455. http://dx.doi.org/10.1364/ol.38.001455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mylnikov, V. Yu, S. N. Losev, V. V. Dudelev, K. A. Fedorova, E. U. Rafailov, and G. S. Sokolovskii. "Conical refraction with low-coherence light sources." Optics Express 27, no. 18 (August 22, 2019): 25428. http://dx.doi.org/10.1364/oe.27.025428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Berry, Michael. "Nature’s Optics and Our Understanding of Light." مجلة جامعة فلسطين التقنية خضوري للأبحاث 6, no. 2 (November 20, 2018): 23–67. http://dx.doi.org/10.53671/ptukrj.v6i2.64.

Full text
Abstract:
Optical phenomena visible to everyone abundantly illustrate important ideas in science and mathematics. The phenomena considered include rainbows, sparkling reflections on water, green flashes, earthlight on the moon, glories, daylight, crystals, and the squint moon. The concepts include refraction, wave interference, numerical experiments, asymptotics, Regge poles, polarisation singularities, conical intersections, and visual illusions
APA, Harvard, Vancouver, ISO, and other styles
8

Berry, Michael. "Nature’s Optics and Our Understanding of Light." مجلة جامعة فلسطين التقنية للأبحاث 6, no. 2 (November 20, 2018): 23–67. http://dx.doi.org/10.53671/pturj.v6i2.64.

Full text
Abstract:
Optical phenomena visible to everyone abundantly illustrate important ideas in science and mathematics. The phenomena considered include rainbows, sparkling reflections on water, green flashes, earthlight on the moon, glories, daylight, crystals, and the squint moon. The concepts include refraction, wave interference, numerical experiments, asymptotics, Regge poles, polarisation singularities, conical intersections, and visual illusions
APA, Harvard, Vancouver, ISO, and other styles
9

Kuznetsov, E. V., and A. M. Merzlikin. "Conical refraction in a magneto-optical biaxial crystal." Journal of Optics 19, no. 5 (April 5, 2017): 055610. http://dx.doi.org/10.1088/2040-8986/aa663e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Turpin, A., Yu V. Loiko, T. K. Kalkandjiev, H. Tomizawa, and J. Mompart. "Wave-vector and polarization dependence of conical refraction." Optics Express 21, no. 4 (February 13, 2013): 4503. http://dx.doi.org/10.1364/oe.21.004503.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Conical refraction; Optics"

1

Valero, Carlos. "On the geometry and topology of hyperbolic variational symbols." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Turpin, Avilés Alejandro. "Conical refraction: fundamentals and applications." Doctoral thesis, Universitat Autònoma de Barcelona, 2015. http://hdl.handle.net/10803/322801.

Full text
Abstract:
El fenomen de la refracció cònica en cristalls biaxials és conegut des del 1832, quan William Hamilton va predir matemàticament que un feix de llum idealment col·limat travessant un cristall biaxial paral·lelament a un dels eixos òptics del cristall, es refracta com un conus asimètric i emergeix del cristall com un cilindre de llum, la secció transversal del qual forma un anell de llum. La posterior observació del fenomen només uns mesos després per part de Humphrey Lloyd, va convertir la refracció cònica en un dels primers fenòmens observats després de la seva predicció, així com va donar el triomf de la teoria ondulatòria de la llum sobre la teoria corpuscular. A finals dels anys 70 del segle passat, Belsky i Khapalyuk van presentar la formulació difractiva del fenomen per a feixos amb simetria cil·líndrica, la qual va estar re-formulada per Berry durant la passada dècada. En aquesta tesi, explorem la refracció cònica d’una manera àmplia, alhora que profunda. Primerament, demostrem que, després d’un cert desenvolupament, la teoria de Berry pot ser utilitzada per estudiar la propagació de qualsevol feix, independentment del seu estat de polarització o perfil transversal, tant al llarg de l’eix òptic com a fora del mateix i per a qualsevol nombre de cristalls biaxials en cascada. Aquesta teoria difractiva també és utilitzada per a demostrar que, només ajustant la raó entre el radi de l’anell de refracció cònica i l’amplada del feix d’entrada, es poden aconseguir feixos molt dispars i que donen lloc a singularitats òptiques i vector beams molt interessants. Seguidament, demostrem que la refracció cònica pot ser entesa com la transformació de les ones incidents en dues ones còniques, la interferència de les quals dóna lloc als típics anells dobles al pla focal. A més a més, proposem una teoria alternativa que permet calcular el patró final després del cristall de qualsevol tipus de feix d’entrada, només tenint en compte refracció de vectors d’ona incidents i ho apliquem al cas particular de tenir múltiples cristalls en cascada. En particular, demostrem un sistema de multiplexació i de-multiplexació de senyals monocromàtiques per a aplicacions en les comunicacions òptiques en espai lliure basat en tres cristalls biaxials en cascada. Tot l’estudi anterior serveix per a la realització de noves propostes per a trampes òptiques per a àtoms neutres i partícules absorbents. En aquest sentit, demostrem tant teòricament com experimental que les estructures fosques que es generen amb refracció cònica són de gran utilitat per a atrapar àtoms ultra-freds, en col·laboració amb el grup del Prof. Gerhard Birkl a la Technische Universität Darmstadt. Tanmateix, utilitzem la particular distribució de polarització dels anells de refracció cònica per a construir una ampolla òptica re-configurable en temps real i que permet carregar i descarregar partícules macroscòpiques absorbents. També ens endinsem en el món de l’òptica quàntica a través de l’estudi de la generació de segon harmònic tant de tipus I com de tipus II a partir d’un feix de refracció cònica i demostrem que les propietats del feix de segon harmònic són pràcticament iguals a les del feix fonamental. Finalment, fem una proposta teòrica per a dissenyar un dispositiu capaç de detectar entrellaçament quàntic en moment lineal entre fotons bessons on l’element clau és un cristall biaxial.
The conical refraction phenomenon in biaxial crystals is known since 1832 when William Hamilton predicted mathematically that and ideally collimated light beam passing through a biaxial crystal parallel to one of the crystal optic axes would refract as an slanted cone within the crystal and emerge as a hollow light cylinder, whose transverse profiles forms a light ring. The afterwards observation of the phenomenon by Humphrey Lloyd made the conical refraction phenomenon to become one of the first phenomenon that were observed after their prediction, as well as the one who tip the scales towards the wave theory of light against the corpuscular theory. In the late 70s, Belsky and Khapalyuk presented the diffractive formulation of the phenomenon for cylindrically symmetric beams, this formalism being reformulated by Berry during the last decade. In this thesis, we explore conical refraction in deep and present some applications of this phenomenon. Firstly, we show that, after some theoretical development, Berry’s formalism can be used to predict the transformation of beams along any propagation direction, no matter the state of polarization or transverse profile they posses and the number of crystals in cascade used. The diffractive theory is also used to demonstrate that, by simply tuning the ratio between the conical refraction ring radius and the waist radius of the input beam, a rich variety of light beams and optical singularities can be generated. Then, we show that conical refraction can be understood as the transformation of the input plane waves into a pair of conical waves whose interference leads to the characteristic concentric bright rings at the focal plane. Additionally, we propose an alternative theory that allows calculating the resulting pattern beyond the biaxial crystal for any input light beam by considering splitting of input wave-vectors and we apply this simple formalism to predict the resulting pattern for a cascade of crystals. In particular, we demonstrate a multiplexing and de-multiplexing system for monochromatic signals for free space optical communications applications based on three biaxial crystals in cascade. The latter results are used to propose and realize different optical architectures for optical trapping of both ultra-cold atoms and absorbing particles. In this sense, show both theoretically and experimentally that dark optical geometries generated with conical refraction are of complete usefulness to trap Bose–Einstein condensates, in collaboration with the group of Prof. Gerhard Birkl at the Technische Universität Darmstadt. Additionally, we use the particular polarization distribution along the conical refraction rings to build a reconfigurable optical bottle capable to load and unload macroscopic absorbing particles at wish, in collaboration with the group of Prof. Wieslaw Krolikowski at the Australian National University. We also explore the world of quantum optics throughout the analysis of both type I and type II second harmonic generation of a conically refracted beam and we demonstrate that the second harmonic beam keeps most of the properties of the fundamental harmonic beam. Finally, we present a theoretical proposal to design an optical device able to detect linear momentum entanglement between twin photons, a biaxial crystal being the key element of the device.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Wei-Hao, and 王緯豪. "An Al-SiO2-Al Conical Nanosandwich Array with Negative Refractive Index:Fabrication and Optical Measurement." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/5vs72q.

Full text
Abstract:
碩士
國立臺北科技大學
光電工程系研究所
99
In this work, the conical nanosandwich array made of aluminum/silicon dioxide/aluminum is fabricated by glancing angle deposition technology with continuous substrate rotation during deposition. The magnetic field reversal related to negative real part of equivalent permeability is analyzed and simulated for the coupled anti-phase electric fields in the dielectric layer. In the measurement, the equivalent transmission and reflection coefficients of the thin films are measured by polarization and walk-off interferometers in the visible regime. The films exhibit high transmission in the visible regime. Furthermore, the equivalent permittivity and permeability are computed from the equivalent transmission and reflection coefficients. Besides the equivalent permeability, both the index of refraction and the equivalent permittivity of the sandwich nanostructure thin film are negative.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Conical refraction; Optics"

1

"Paper 2.10: A.J. Schell and N. Bloembergen, “Second harmonic conical refraction,” Optics Comm. 21, 150–153, 1977." In Encounters in Nonlinear Optics, 183–87. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789812795793_0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Paper 2.9: N. Bloembergen and H. Shih, “Conical refraction in nonlinear optics,” Optics Comm. 1, 70–73, 1969." In Encounters in Nonlinear Optics, 179–82. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789812795793_0017.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Conical refraction; Optics"

1

Abdolvand, Amin, Keith G. Wilcox, Todor K. Kalkandjiev, and Edik U. Rafailov. "Solid-State Conical Refraction Laser." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.cpdb1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mylnikov, V. Yu, E. U. Rafailov, and G. S. Sokolovskii. "Conical refraction with Gaussian Schell-model sources." In 2020 International Conference Laser Optics (ICLO). IEEE, 2020. http://dx.doi.org/10.1109/iclo48556.2020.9285625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sokolovskii, G. S., V. Yu Mylnikov, S. N. Losev, K. A. Fedorova, and E. U. Rafailov. "Conical refraction with low-coherent light sources." In 2016 International Conference Laser Optics (LO). IEEE, 2016. http://dx.doi.org/10.1109/lo.2016.7549735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sokolovskii, G. S., D. J. Carnegie, T. K. Kalkandjiev, and E. U. Rafailov. "Conical refraction: A dual-cone model." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Abdolvand, Amin, Keith G. Wilcox, Todor K. Kalkandjiev, Yuri Loiko, Jordi Mompart, and Edik U. Rafailov. "Gaussian to Lorentzian Beam Profile Convertor Based on Conical Refraction." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/cleo.2010.ctug3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Turpin, Alex, Todor K. Kalkandjiev, and Jordi Mompart. "Conical refraction to increase channel capacity in free-space optical communications." In 2016 15th Workshop on Information Optics (WIO). IEEE, 2016. http://dx.doi.org/10.1109/wio.2016.7745604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McGuinness, Robert, and Paul Eastham. "CLEO®/Europe-EQEC 2017 optical chern insulators from conical refraction." In 2017 Conference on Lasers and Electro-Optics Europe (CLEO/Europe) & European Quantum Electronics Conference (EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8087811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Turpin, A., Y. L. Loiko, T. K. Kalkandjiev, and J. Mompart. "Free-space optical polarization demultiplexing and multiplexing by means of conical refraction." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mylnikov, Valentin Yu, Edik U. Rafailov, and Grigorii S. Sokolovskii. "Conical Refraction with Laguerre-Gaussian Beams: From Raman Spot to ‘Anti-Raman’ Doughnut Distribution." In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2019. http://dx.doi.org/10.1109/cleoe-eqec.2019.8872781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Turpin, Alex, Laura Rego, Antonio Picon, Julio San Roman, Luis Plaja, and Carlos Hernandez-Garcia. "EUV light beams with fractional orbital angular momentum driven by high-order harmonic generation and conical refraction." In 2017 Conference on Lasers and Electro-Optics Europe (CLEO/Europe) & European Quantum Electronics Conference (EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8086813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography