Academic literature on the topic 'Conformal representations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Conformal representations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Conformal representations"
MATSUDA, SATOSHI. "REPRESENTATION BLOCKS OF CONFORMAL FIELDS FOR THE N=4SU(2)k SUPERCONFORMAL ALGEBRAS." International Journal of Modern Physics A 10, no. 11 (April 30, 1995): 1671–91. http://dx.doi.org/10.1142/s0217751x95000802.
Full textEHOLZER, W. "FUSION ALGEBRAS INDUCED BY REPRESENTATIONS OF THE MODULAR GROUP." International Journal of Modern Physics A 08, no. 20 (August 10, 1993): 3495–507. http://dx.doi.org/10.1142/s0217751x93001405.
Full textLLEDÓ, FERNANDO. "CONFORMAL COVARIANCE OF MASSLESS FREE NETS." Reviews in Mathematical Physics 13, no. 09 (September 2001): 1135–61. http://dx.doi.org/10.1142/s0129055x01000958.
Full textKolesnikov, P. S. "Universal enveloping Poisson conformal algebras." International Journal of Algebra and Computation 30, no. 05 (March 20, 2020): 1015–34. http://dx.doi.org/10.1142/s0218196720500289.
Full textRYTTOV, THOMAS A., and FRANCESCO SANNINO. "CONFORMAL HOUSE." International Journal of Modern Physics A 25, no. 24 (September 30, 2010): 4603–21. http://dx.doi.org/10.1142/s0217751x10050391.
Full textKolesnikov, P. S. "Conformal representations of Leibniz algebras." Siberian Mathematical Journal 49, no. 3 (May 2008): 429–35. http://dx.doi.org/10.1007/s11202-008-0043-7.
Full textCarpi, Sebastiano, and Robin Hillier. "Loop groups and noncommutative geometry." Reviews in Mathematical Physics 29, no. 09 (September 7, 2017): 1750029. http://dx.doi.org/10.1142/s0129055x17500295.
Full textWu, Henan. "Finite irreducible representations of map Lie conformal algebras." International Journal of Mathematics 28, no. 01 (January 2017): 1750002. http://dx.doi.org/10.1142/s0129167x17500021.
Full textALTSCHÜLER, D. "THE CRITICAL REPRESENTATIONS OF AFFINE LIE ALGEBRAS." Modern Physics Letters A 01, no. 10 (November 1986): 557–64. http://dx.doi.org/10.1142/s0217732386000701.
Full textMorel, B., A. Sciarrino, and P. Sorba. "Unitary massless representations of conformal superalgebras." Physics Letters B 166, no. 1 (January 1986): 69–74. http://dx.doi.org/10.1016/0370-2693(86)91157-3.
Full textDissertations / Theses on the topic "Conformal representations"
Diemer, Tammo. "Conformal geometry, representation theory and linear fields." Bonn : Mathematisches Institut der Universität, 2004. http://catalog.hathitrust.org/api/volumes/oclc/62770144.html.
Full textLoke, Terence M. L. "Operator algebras and conformal field theory of the discrete series representations of Diff(S'1)." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338206.
Full textPevzner, Michael. "Représentations des groupes de Lie conformes et quantification des espaces symétriques." Habilitation à diriger des recherches, Université de Reims - Champagne Ardenne, 2005. http://tel.archives-ouvertes.fr/tel-00320444.
Full textШоман, Ольга Вікторівна. "Геометричне моделювання узагальнених паралельних множин." Thesis, Київський державний технічний університет будівництва i архітектури, 2007. http://repository.kpi.kharkov.ua/handle/KhPI-Press/20365.
Full textThesis for a doctor's degree in engineering sciences. Specialty: 05.01.01 – Applied geometry, engineering graphics. – Kyiv National University of Building and Architecture. – Kyiv, 2007. The dissertation is devoted to developing of the geometrical modelling theory of the general parallel sets for problems solving of geometrical objects form-formation in time which are visual geometrical models of dynamic phenomena and processes characterized by wave fronts surfaces which create the space conformal set in the moments of time with the lines on directions of these fronts moving or by isolines which are conformal to directions of physical parameters change. On introduced terminology basis the general approach to the geometrical modelling of different origin physical phenomena and processes displays is proposed. It was developed the theoretical basis of: the method of parallel sets geometrical models creation on the plane by means of Hamilton – Jacobi equation as eikonal equation for the curves with return and self-intersection points; the method of parallel sets geometrical models creation by means of normal equations for the surfaces in parameter form; the method based on conformal representations, in which the new geometrical meaning of twister complex potential function was proposed and the new geometrical models of quasi-parallel lines sets were obtained on the complex plane; the improved image extrapolation method for forecasting of geometrical form of lines on the plane as the elements of general parallel sets. These methods allow to research qualitative change of objects modelled.
Kawai, S. "Boundary conformal field theory in free-field representation." Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249280.
Full textMathéus, Frédéric. "Empilements de cercles : rigidité, discrétisation d'applications conformes." Université Joseph Fourier (Grenoble), 1994. http://www.theses.fr/1994GRE10234.
Full textStröm, David. "The Open Mapping Theorem for Analytic Functions and some applications." Thesis, Karlstad University, Faculty of Technology and Science, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-210.
Full textThis thesis deals with the Open Mapping Theorem for analytic functions on domains in the complex plane: A non-constant analytic function on an open subset of the complex plane is an open map.
As applications of this fundamental theorem we study Schwarz’s Lemma and its consequences concerning the groups of conformal automorphisms of the unit disk and of the upper halfplane.
In the last part of the thesis we indicate the first steps in hyperbolic geometry.
Denna uppsats behandlar satsen om öppna avbildningar för analytiska funktioner på domäner i det komplexa talplanet: En icke-konstant analytisk funktion på en öppen delmängd av det komplexa talplanet är en öppen avbildning.
Som tillämpningar på denna fundamentala sats studeras Schwarz’s lemma och dess konsekvenser för grupperna av konforma automorfismer på enhetsdisken och på det övre halvplanet.
I uppsatsens sista del antyds de första stegen inom hyperbolisk geometri.
Palcoux, Sébastien. "Série discrète unitaire, caractères, fusion de Connes et sous-facteurs pour l'algèbre Neveu-Schwarz." Phd thesis, Université de la Méditerranée - Aix-Marseille II, 2009. http://tel.archives-ouvertes.fr/tel-00514234.
Full textAgrebaoui, Boujemaâ. "Sur la theorie des representations des algebres de kac-moody affines, la theorie des operateurs vertex et la theorie des champs conformes." Université Louis Pasteur (Strasbourg) (1971-2008), 1995. http://www.theses.fr/1995STR13090.
Full textHERNANDEZ, ORTEGA LINDA JOSELINNE. "Elaboración de un portafolio de inversión conformado por las divisas más representativas del mercado y de acciones de empresas en países emergentes del 2016 a 2018." Tesis de Licenciatura, UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO, 2019. http://hdl.handle.net/20.500.11799/105297.
Full textBooks on the topic "Conformal representations"
Todorov, Ivan T. Conformal description of spinning particles. Berlin: Springer-Verlag, 1986.
Find full textDobrev, V. K. Representations of quantum groups and q-deformed invariant wave equations. Clausthal-Zellerfeld: Papierflieger, 1995.
Find full textConformal representation. Mineola, N.Y: Dover Publications, 1998.
Find full textBieberbach, Ludwig. Conformal mapping. Providence, R.I: American Mathematical Society, 2000.
Find full textCourant, Richard. Dirichlet's principle, conformal mapping, and minimal surfaces. Mineola, N.Y: Dover Publications, 2005.
Find full textConformal maps of nonsmooth surfaces and their applications. Philadelphia: Xlibris Corp., 2008.
Find full textMochizuki, Shinichi. Conformal and quasiconformal categorical representation of hyperbolic Riemann surfaces. Kyoto, Japan: Kyōto Daigaku Sūri Kaiseki Kenkyūjo, 2004.
Find full textGrafarend, Erik W. Map projections: Cartographic information systems. Berlin: Springer, 2006.
Find full textShakespeare, William. King Henry V: Or, The conquest of France, a tragedy. Printed exactly conformable to the representation, on its revival at the Theatre Royal. Drury Lane, October I, 1789. Oxford: Pergamon Press, 1985.
Find full textTrade, United States Congress House Committee on Ways and Means Subcommittee on. Proposals to conform the customs user fee on merchandise processing and the superfund tax differential with U.S. GATT obligations: Hearing before the Subcommittee on Trade of the Committee on Ways and Means, House of Representatives, One Hundred First Congress, first session, January 25, 1989. Washington: U.S. G.P.O., 1989.
Find full textBook chapters on the topic "Conformal representations"
Jackiw, Roman. "Representations of the Two-Dimensional Conformal Group." In Super Field Theories, 191–208. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-0913-0_7.
Full textGu, Xianfeng, and Baba C. Vemuri. "Matching 3D Shapes Using 2D Conformal Representations." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004, 771–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30135-6_94.
Full textTodorov, Ivan T. "The Conformal Group of a Conformally Flat Space Time and Its Twistor Representations." In Conformal Description of Spinning Particles, 5–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82868-3_3.
Full textBincer, Adam M. "Massless Representations of the Poincaré Group and Conformal Invariance." In Symmetries in Science VI, 85–87. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1219-0_8.
Full textKohno, Toshitake. "Homological Representations of Braid Groups and the Space of Conformal Blocks." In Perspectives in Lie Theory, 427–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58971-8_16.
Full textMarussi, Antonio. "Some Integral Properties of the Conformal Representations of Surfaces on Surfaces." In Intrinsic Geodesy, 149–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70243-3_16.
Full textMarussi, Antonio. "Some Remarks on the Use of Conformal Representations in Three-Dimensional Geodesy." In Intrinsic Geodesy, 131–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70243-3_13.
Full textGörnitz, Th, and C. F. v. Weizsäcker. "De — sitter representations and the particle concept, studied in an ur-theoretical cosmological model." In Conformal Groups and Related Symmetries Physical Results and Mathematical Background, 63–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/3540171630_70.
Full textMarussi, Antonio. "An Analogy Between the Laws of Propagation of Light in Continuous Isotropic Refracting Media and Conformal Representations." In Intrinsic Geodesy, 169–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70243-3_19.
Full textHenkel, Malte. "Representation Theory of the Virasoro Algebra." In Conformal Invariance and Critical Phenomena, 83–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03937-3_4.
Full textConference papers on the topic "Conformal representations"
RETAKH, ALEXANDER. "STRUCTURE AND REPRESENTATIONS OF CONFORMAL ALGEBRAS." In Proceedings of the International Conference on Algebras, Modules and Rings. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774552_0018.
Full textKolesnikov, P. S. "On Representations of Dialgebras and Conformal Algebras." In The International Conference on Algebra 2010 - Advances in Algebraic Structures. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814366311_0028.
Full textTodorov, Ivan, and Vladimir Dobrev. "Minimal Representations and Reductive Dual Pairs in Conformal Field Theory." In LIE THEORY AND ITS APPLICATIONS IN PHYSICS: VIII International Workshop. AIP, 2010. http://dx.doi.org/10.1063/1.3460160.
Full textGUNAYDIN, MURAT. "REALIZATIONS OF EXCEPTIONAL U-DUALITY GROUPS AS CONFORMAL AND QUASI-CONFORMAL GROUPS AND THEIR MINIMAL UNITARY REPRESENTATIONS." In Proceedings of the 3rd International Symposium. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702340_0009.
Full textTaylor, C. M., I. P. Ilyas, K. W. Dalgarno, and J. Gosden. "Manufacture of Production Quality Injection Mold Tools Using SLS and HSM." In ASME 2007 International Manufacturing Science and Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/msec2007-31030.
Full textTo, Son Thanh, Tran Cao Son, and Enrico Pontelli. "A generic approach to planning in the presence of incomplete information: Theory and implementation (Extended Abstract)." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/725.
Full textGantoi, F. Marina, Michael A. Brown, and Ahmed A. Shabana. "ANCF Modeling of the Contact Geometry and Deformation in Biomechanics Applications." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70224.
Full textFeiszli, Matt, and David Mumford. "Shape representation via conformal mapping." In Electronic Imaging 2007, edited by Charles A. Bouman, Eric L. Miller, and Ilya Pollak. SPIE, 2007. http://dx.doi.org/10.1117/12.716028.
Full textHALLER, STEFAN. "SOME PROPERTIES OF LOCALLY CONFORMAL SYMPLECTIC MANIFOLDS." In Infinite Dimensional Lie Groups in Geometry and Representation Theory. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777089_0007.
Full textBANYAGA, A. "ON THE GEOMETRY OF LOCALLY CONFORMAL SYMPLECTIC MANIFOLDS." In Infinite Dimensional Lie Groups in Geometry and Representation Theory. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777089_0006.
Full textReports on the topic "Conformal representations"
Zhang, Yongjie, Wenyan Wang, and Thomas J. Hughes. Conformal Solid T-spline Construction from Boundary T-spline Representations. Fort Belvoir, VA: Defense Technical Information Center, July 2012. http://dx.doi.org/10.21236/ada588397.
Full textYan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.
Full text