Journal articles on the topic 'Confinement loss'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Confinement loss.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sakai, Jun-ichi, and Norihiro Nishida. "Confinement loss, including cladding material loss effects, in Bragg fibers." Journal of the Optical Society of America B 28, no. 3 (February 8, 2011): 379. http://dx.doi.org/10.1364/josab.28.000379.
Full textTeng, Da, Yuanming Tian, Xuemei Hu, Ziyi Guan, Wencang Gao, Pengyuan Li, Hongli Fang, Jianjun Yan, Zhiwen Wang, and Kai Wang. "Sodium-Based Cylindrical Plasmonic Waveguides in the Near-Infrared." Nanomaterials 12, no. 12 (June 7, 2022): 1950. http://dx.doi.org/10.3390/nano12121950.
Full textGhoroku, Kazuo, and Kouki Kubo. "Accelerated quarks and energy loss in confinement theory." International Journal of Modern Physics A 31, no. 18 (June 29, 2016): 1650103. http://dx.doi.org/10.1142/s0217751x16501037.
Full textYi, Ni, An Liang, Xie Yuejian, Zhang Lei, and Peng Jiangde. "Confinement loss in solid-core photonic bandgap fibers." Optics Communications 235, no. 4-6 (May 2004): 305–10. http://dx.doi.org/10.1016/j.optcom.2004.02.072.
Full textMonfared, Yashar E., A. R. Maleki Javan, and A. R. Monajati Kashani. "Confinement loss in hexagonal lattice photonic crystal fibers." Optik 124, no. 24 (December 2013): 7049–52. http://dx.doi.org/10.1016/j.ijleo.2013.05.168.
Full textKuhlmey, Boris T., Hong C. Nguyen, M. J. Steel, and Benjamin J. Eggleton. "Confinement loss in adiabatic photonic crystal fiber tapers." Journal of the Optical Society of America B 23, no. 9 (September 1, 2006): 1965. http://dx.doi.org/10.1364/josab.23.001965.
Full textSun, Tianran, Xinyang Su, Fanchao Meng, Zaining Wang, Jiale Song, Chenglong Zhang, Tianjia Xu, et al. "Design of 2 μm Low-Loss Hollow-Core Anti-Resonant Fibers." Micromachines 14, no. 6 (June 5, 2023): 1198. http://dx.doi.org/10.3390/mi14061198.
Full textKhurgin, Jacob B. "Ultimate limit of field confinement by surface plasmon polaritons." Faraday Discussions 178 (2015): 109–22. http://dx.doi.org/10.1039/c4fd00193a.
Full textXu, Ding Jie, Hong Ru Song, and Wei Wang. "Analysis of Transmission Characteristic in Single Polarization Dual Elliptical Assistant Holes Hollow Fiber." Applied Mechanics and Materials 475-476 (December 2013): 1359–62. http://dx.doi.org/10.4028/www.scientific.net/amm.475-476.1359.
Full textHossain, M. B., K. A. J. Alsalem, K. Ahmed, F. M. Bui, S. M. Ibrahim, and S. K. Patel. "Terahertz detection of chemicals through zeonex fiber material." Digest Journal of Nanomaterials and Biostructures 18, no. 2 (April 2023): 511–22. http://dx.doi.org/10.15251/djnb.2023.182.511.
Full textWang, Wei, and David Bird. "Confinement loss of anti-resonant capillaries with curved boundaries." Optics Express 29, no. 16 (July 23, 2021): 25314. http://dx.doi.org/10.1364/oe.433189.
Full textLorenzini, R., F. Auriemma, P. Innocente, E. Martines, S. Martini, and D. Terranova. "Confinement loss during dynamo relaxation event in RFX-mod." Plasma Physics and Controlled Fusion 50, no. 3 (January 30, 2008): 035004. http://dx.doi.org/10.1088/0741-3335/50/3/035004.
Full textChen, Daru, and Linfang Shen. "Ultrahigh Birefringent Photonic Crystal Fiber With Ultralow Confinement Loss." IEEE Photonics Technology Letters 19, no. 4 (February 2007): 185–87. http://dx.doi.org/10.1109/lpt.2006.890040.
Full textCheng, Tonglei, Meisong Liao, Weiqing Gao, Zhongchao Duan, Takenobu Suzuki, and Yasutake Ohishi. "Low confinement loss hybrid-guiding tellurite photonic bandgap fiber." Optical Fiber Technology 18, no. 6 (December 2012): 498–501. http://dx.doi.org/10.1016/j.yofte.2012.07.017.
Full textForoni, M., D. Passaro, F. Poli, A. Cucinotta, S. Selleri, J. Lægsgaard, and A. Bjarklev. "Confinement loss spectral behavior in hollow-core Bragg fibers." Optics Letters 32, no. 21 (October 24, 2007): 3164. http://dx.doi.org/10.1364/ol.32.003164.
Full textYuan, Ziwei, Yi Wang, Dexian Yan, Mingxuan Cao, Miao Meng, Xiangjun Li, and Shuai Sun. "Study on the high birefringence and low confinement loss terahertz fiber based on the combination of double negative curvature and nested claddings." Journal of Physics D: Applied Physics 55, no. 11 (December 17, 2021): 115106. http://dx.doi.org/10.1088/1361-6463/ac4136.
Full textButler, H. Daniel, Benjamin Steiner, Matthew D. Makarios, and Lawrence F. Travis. "An Examination of the Influence of Exposure to Disciplinary Segregation on Recidivism." Crime & Delinquency 66, no. 4 (August 13, 2019): 485–512. http://dx.doi.org/10.1177/0011128719869194.
Full textGowre, Sanjaykumar, Sudipta Mahapatra, and P. K. Sahu. "A Modified Structure for All-Glass Photonic Bandgap Fibers: Dispersion Characteristics and Confinement Loss Analysis." ISRN Optics 2013 (September 22, 2013): 1–5. http://dx.doi.org/10.1155/2013/416537.
Full textGarcía, Inmaculada Jimeno, and Anne Marie Garvey. "Economic and Social Interactions in Business Students during COVID-19 Confinement: Relationship with Sleep Disturbance." Behavioral Sciences 12, no. 4 (April 9, 2022): 100. http://dx.doi.org/10.3390/bs12040100.
Full textZendehnam, Akbar, Mahmoud Mirzaei, and Razieh Solgi. "Confinement Loss and GVD for HF and AHAOF by FEM." International Journal of Optics and Applications 2, no. 4 (August 31, 2012): 34–37. http://dx.doi.org/10.5923/j.optics.20120204.01.
Full textLiang, Wenbin, Ningliang Liu, Zhihua Li, and Peixiang Lu. "Highly Birefringent Elliptical-Hole Microstructure Fibers With Low Confinement Loss." Journal of Lightwave Technology 30, no. 21 (November 2012): 3381–86. http://dx.doi.org/10.1109/jlt.2012.2217314.
Full textPogossian, S. P., L. Vescan, and A. Vonsovici. "High-confinement SiGe low-loss waveguides for Si-based optoelectronics." Applied Physics Letters 75, no. 10 (September 6, 1999): 1440–42. http://dx.doi.org/10.1063/1.124719.
Full textHao, Rui, Zhiquan Li, Guifang Sun, Liyong Niu, and Yuchao Sun. "Photonic crystal fiber with high birefringence and low confinement loss." Optik 124, no. 21 (November 2013): 4880–83. http://dx.doi.org/10.1016/j.ijleo.2013.02.033.
Full textDoughan, Isaac, Kehinde Oyemakinwa, Olli Ovaskainen, and Matthieu Roussey. "Low Loss Vertical TiO2/Polymer Hybrid Nano-Waveguides." Nanomaterials 13, no. 3 (January 24, 2023): 469. http://dx.doi.org/10.3390/nano13030469.
Full textXu, Litu, Fang Li, Lai Wei, Jianxin Zhou, and Shuai Liu. "Design of Surface Plasmon Nanolaser Based on MoS2." Applied Sciences 8, no. 11 (November 1, 2018): 2110. http://dx.doi.org/10.3390/app8112110.
Full textTobon, Monica. "Separation, Loss, Confinement, and Change: How Evagrius Can Speak to the Experience of Lockdown." Vox Patrum 82 (June 15, 2022): 89–112. http://dx.doi.org/10.31743/vp.13460.
Full textBiswas, Shovasis Kumar. "DESIGN OF HEXAGONAL PHOTONIC CRYSTAL FIBER WITH ULTRA-HIGH BIREFRINGENT AND LARGE NEGATIVE DISPERSION COEFFICIENT FOR THE APPLICATION OF BROADBAND FIBER." International Journal of Engineering Science Technologies 2, no. 1 (August 17, 2019): 9–16. http://dx.doi.org/10.29121/ijoest.v2.i1.2017.02.
Full textZheng, Hong Jun, Chong Qing Wu, Zhi Wang, Jian Wang, Shan Liang Liu, and Xin Li. "A Single-Polarization Single-Mode Photonic Crystal Fiber with Four Lines of Small Elliptical Air-Holes." Advanced Materials Research 301-303 (July 2011): 50–54. http://dx.doi.org/10.4028/www.scientific.net/amr.301-303.50.
Full textMaidi, Abdul Mu’iz, Md Abul Kalam, and Feroza Begum. "Photonic Crystal Fiber Sensor for Detecting Sulfuric Acid in Different Concentrations." Photonics 9, no. 12 (December 9, 2022): 958. http://dx.doi.org/10.3390/photonics9120958.
Full textWoo, K. M., and R. Betti. "Impact of areal-density asymmetries on the loss of confinement and ignition threshold in inertial confinement fusion capsules." Physics of Plasmas 28, no. 5 (May 2021): 054503. http://dx.doi.org/10.1063/5.0045317.
Full textDominguez-Espinosa, Alejandra del Carmen, and Johnny R. J. Fontaine. "It Is Not the Virus Exposure: Differentiating Job Demands and Resources That Account for Distress during the COVID-19 Pandemic among Health Sector Workers." International Journal of Environmental Research and Public Health 20, no. 2 (January 10, 2023): 1212. http://dx.doi.org/10.3390/ijerph20021212.
Full textLuo, Weixuan, Bin Zhang, Anping Xiao, Zhiwei Duan, Qiang Ling, Yusheng Zhang, Zhangwei Yu, Zuguang Guan, and Daru Chen. "All-Solid Single-Polarization Anti-Resonant Fiber Base on Anisotropic Glass." Photonics 10, no. 4 (April 6, 2023): 412. http://dx.doi.org/10.3390/photonics10040412.
Full textFECHNER, WALTER, and P. D. MORLEY. "THE PLASMA ANVIL IN INERTIAL CONFINEMENT FUSION." International Journal of Modern Physics E 01, no. 01 (March 1992): 215–19. http://dx.doi.org/10.1142/s0218301392000102.
Full textGallman, Antonia E., Finn D. Wolfreys, David N. Nguyen, Moriah Sandy, Ying Xu, Jinping An, Zhongmei Li, Alexander Marson, Erick Lu, and Jason G. Cyster. "Abcc1 and Ggt5 support lymphocyte guidance through export and catabolism of S-geranylgeranyl-l-glutathione." Science Immunology 6, no. 60 (June 4, 2021): eabg1101. http://dx.doi.org/10.1126/sciimmunol.abg1101.
Full textMedeiros, Ertha Janine Lacerda de, Francisco Harley de Oliveira Mendonça, Rita de Cássia Ramos do Egypto Queiroga, and Marta Suely Madruga. "Meat quality characteristics of exotic and SPRD crossbred goats from the semiarid region." Food Science and Technology 32, no. 4 (September 11, 2012): 768–74. http://dx.doi.org/10.1590/s0101-20612012005000102.
Full textWang, Wang, Jin Luo, Wenhui Chen, Jun Li, Wei Xing, and Shengli Chen. "Synthesis of mesoporous Fe/N/C oxygen reduction catalysts through NaCl crystallite-confined pyrolysis of polyvinylpyrrolidone." Journal of Materials Chemistry A 4, no. 33 (2016): 12768–73. http://dx.doi.org/10.1039/c6ta05075a.
Full textPalummo, Maurizia, Conor Hogan, and Stefano Ossicini. "Ab initio energy loss spectra of Si and Ge nanowires." Physical Chemistry Chemical Physics 17, no. 43 (2015): 29085–89. http://dx.doi.org/10.1039/c5cp05074j.
Full textLin, Xianqing, Jian Ye, Yongli Yan, Haiyun Dong, Jianmin Gu, Wei Zhang, Cong Wei, Jiannian Yao, and Yong Sheng Zhao. "Loss compensation during subwavelength propagation of enhanced second-harmonic generation signals in a hybrid plasmonic waveguide." Materials Chemistry Frontiers 2, no. 3 (2018): 491–96. http://dx.doi.org/10.1039/c7qm00471k.
Full textLiu, Zhaolun, Chunlan Zhang, and Yuwei Qu. "An All-Solid Dispersion-Compensating Photonic Crystal Fiber Based on Mode Coupling Mechanism in Dual-Concentric Core." International Journal of Optics 2020 (December 9, 2020): 1–9. http://dx.doi.org/10.1155/2020/4718054.
Full textHabib, Md Ahasan. "A Refractive Index Based Micro-Structured Sensor for Blood Components Detection in Terahertz Regime." Sensor Letters 18, no. 1 (January 1, 2020): 74–82. http://dx.doi.org/10.1166/sl.2020.4186.
Full textMeng, Fanchao, Xiaoting Zhao, Jinmin Ding, Yingli Niu, Xinghua Zhang, Lvyun Yang, Xin Wang, et al. "Discovering extremely low confinement-loss anti-resonant fibers via swarm intelligence." Optics Express 29, no. 22 (October 14, 2021): 35544. http://dx.doi.org/10.1364/oe.440949.
Full textKoren, U., B. I. Miller, Y. K. Su, T. L. Koch, and J. E. Bowers. "Low internal loss separate confinement heterostructure InGaAs/InGaAsP quantum well laser." Applied Physics Letters 51, no. 21 (November 23, 1987): 1744–46. http://dx.doi.org/10.1063/1.98510.
Full textLu, Dunke, Xuedian Zhang, Min Chang, Ge Wang, Lina Pan, and Songlin Zhuang. "Endlessly single-polarization single-mode holey fibers with low confinement loss." Optics Letters 38, no. 15 (August 1, 2013): 2915. http://dx.doi.org/10.1364/ol.38.002915.
Full textChen Xiang, 陈翔, 胡雄伟 Hu Xiongwei, and 李进延 Li Jinyan. "Influence Factors of Confinement Loss of Negative Curvature Hollow Core Fiber." Laser & Optoelectronics Progress 56, no. 5 (2019): 050602. http://dx.doi.org/10.3788/lop56.050602.
Full textLee, Yu-Lin. "Establishment of the confinement loss curve using the tunnel convergence data." Journal of the Chinese Institute of Engineers 43, no. 7 (February 12, 2020): 613–27. http://dx.doi.org/10.1080/02533839.2020.1719901.
Full textSiriani, Dominic F., Paul O. Leisher, and Kent D. Choquette. "Loss-Induced Confinement in Photonic Crystal Vertical-Cavity Surface-Emitting Lasers." IEEE Journal of Quantum Electronics 45, no. 7 (July 2009): 762–68. http://dx.doi.org/10.1109/jqe.2009.2013124.
Full textPfeiffer, Martin Hubert Peter, Clemens Herkommer, Junqiu Liu, Tiago Morais, Michael Zervas, Michael Geiselmann, and Tobias J. Kippenberg. "Photonic Damascene Process for Low-Loss, High-Confinement Silicon Nitride Waveguides." IEEE Journal of Selected Topics in Quantum Electronics 24, no. 4 (July 2018): 1–11. http://dx.doi.org/10.1109/jstqe.2018.2808258.
Full textVincetti, Luca, and Valerio Setti. "Confinement Loss in Kagome and Tube Lattice Fibers: Comparison and Analysis." Journal of Lightwave Technology 30, no. 10 (May 2012): 1470–74. http://dx.doi.org/10.1109/jlt.2012.2186559.
Full textHe, Xueqing, Tigang Ning, Shaohua Lu, Jingjing Zheng, Jing Li, Rujiang Li, and Li Pei. "Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement." Optics Express 26, no. 8 (April 9, 2018): 10109. http://dx.doi.org/10.1364/oe.26.010109.
Full textLu, Qijing, Chang-Ling Zou, Daru Chen, Pei Zhou, and Genzhu Wu. "Extreme light confinement and low loss in triangle hybrid plasmonic waveguide." Optics Communications 319 (May 2014): 141–46. http://dx.doi.org/10.1016/j.optcom.2013.12.072.
Full text