Journal articles on the topic 'Confinement loss'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Confinement loss.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sakai, Jun-ichi, and Norihiro Nishida. "Confinement loss, including cladding material loss effects, in Bragg fibers." Journal of the Optical Society of America B 28, no. 3 (2011): 379. http://dx.doi.org/10.1364/josab.28.000379.
Full textTeng, Da, Yuanming Tian, Xuemei Hu, et al. "Sodium-Based Cylindrical Plasmonic Waveguides in the Near-Infrared." Nanomaterials 12, no. 12 (2022): 1950. http://dx.doi.org/10.3390/nano12121950.
Full textSun, Tianran, Xinyang Su, Fanchao Meng та ін. "Design of 2 μm Low-Loss Hollow-Core Anti-Resonant Fibers". Micromachines 14, № 6 (2023): 1198. http://dx.doi.org/10.3390/mi14061198.
Full textKhurgin, Jacob B. "Ultimate limit of field confinement by surface plasmon polaritons." Faraday Discussions 178 (2015): 109–22. http://dx.doi.org/10.1039/c4fd00193a.
Full textXu, Ding Jie, Hong Ru Song, and Wei Wang. "Analysis of Transmission Characteristic in Single Polarization Dual Elliptical Assistant Holes Hollow Fiber." Applied Mechanics and Materials 475-476 (December 2013): 1359–62. http://dx.doi.org/10.4028/www.scientific.net/amm.475-476.1359.
Full textGhoroku, Kazuo, and Kouki Kubo. "Accelerated quarks and energy loss in confinement theory." International Journal of Modern Physics A 31, no. 18 (2016): 1650103. http://dx.doi.org/10.1142/s0217751x16501037.
Full textYi, Ni, An Liang, Xie Yuejian, Zhang Lei, and Peng Jiangde. "Confinement loss in solid-core photonic bandgap fibers." Optics Communications 235, no. 4-6 (2004): 305–10. http://dx.doi.org/10.1016/j.optcom.2004.02.072.
Full textMonfared, Yashar E., A. R. Maleki Javan, and A. R. Monajati Kashani. "Confinement loss in hexagonal lattice photonic crystal fibers." Optik 124, no. 24 (2013): 7049–52. http://dx.doi.org/10.1016/j.ijleo.2013.05.168.
Full textKuhlmey, Boris T., Hong C. Nguyen, M. J. Steel, and Benjamin J. Eggleton. "Confinement loss in adiabatic photonic crystal fiber tapers." Journal of the Optical Society of America B 23, no. 9 (2006): 1965. http://dx.doi.org/10.1364/josab.23.001965.
Full textHossain, M. B., K. A. J. Alsalem, K. Ahmed, F. M. Bui, S. M. Ibrahim, and S. K. Patel. "Terahertz detection of chemicals through zeonex fiber material." Digest Journal of Nanomaterials and Biostructures 18, no. 2 (2023): 511–22. http://dx.doi.org/10.15251/djnb.2023.182.511.
Full textPourfathi Fard, Abdolreza, Somayeh Makouei, Morad Danishvar, and Sebelan Danishvar. "The Design of a Photonic Crystal Fiber for Hydrogen Cyanide Gas Detection." Photonics 11, no. 2 (2024): 178. http://dx.doi.org/10.3390/photonics11020178.
Full textYuan, Ziwei, Yi Wang, Dexian Yan, et al. "Study on the high birefringence and low confinement loss terahertz fiber based on the combination of double negative curvature and nested claddings." Journal of Physics D: Applied Physics 55, no. 11 (2021): 115106. http://dx.doi.org/10.1088/1361-6463/ac4136.
Full textWang, Wei, and David Bird. "Confinement loss of anti-resonant capillaries with curved boundaries." Optics Express 29, no. 16 (2021): 25314. http://dx.doi.org/10.1364/oe.433189.
Full textLorenzini, R., F. Auriemma, P. Innocente, E. Martines, S. Martini, and D. Terranova. "Confinement loss during dynamo relaxation event in RFX-mod." Plasma Physics and Controlled Fusion 50, no. 3 (2008): 035004. http://dx.doi.org/10.1088/0741-3335/50/3/035004.
Full textChen, Daru, and Linfang Shen. "Ultrahigh Birefringent Photonic Crystal Fiber With Ultralow Confinement Loss." IEEE Photonics Technology Letters 19, no. 4 (2007): 185–87. http://dx.doi.org/10.1109/lpt.2006.890040.
Full textCheng, Tonglei, Meisong Liao, Weiqing Gao, Zhongchao Duan, Takenobu Suzuki, and Yasutake Ohishi. "Low confinement loss hybrid-guiding tellurite photonic bandgap fiber." Optical Fiber Technology 18, no. 6 (2012): 498–501. http://dx.doi.org/10.1016/j.yofte.2012.07.017.
Full textForoni, M., D. Passaro, F. Poli, et al. "Confinement loss spectral behavior in hollow-core Bragg fibers." Optics Letters 32, no. 21 (2007): 3164. http://dx.doi.org/10.1364/ol.32.003164.
Full textKhalid, M., I. Arshad, and M. Zafarullah. "DESIGN AND SIMULATION OF PHOTONIC CRYSTAL FIBERS TO EVALUATE DISPERSION AND CONFINEMENT LOSS FOR WAVELENGTH DIVISION MULTIPLEXING SYSTEMS." Nucleus 51, no. 2 (2014): 249–58. https://doi.org/10.71330/thenucleus.2014.711.
Full textLe, Van Hieu. "Dispersion management in organic liquid-cladding photonic crystal fiber based on GeSe2–As2Se3–PbSe chalcogenide." Communications in Physics 35, no. 1 (2025): 87. https://doi.org/10.15625/0868-3166/22079.
Full textButler, H. Daniel, Benjamin Steiner, Matthew D. Makarios, and Lawrence F. Travis. "An Examination of the Influence of Exposure to Disciplinary Segregation on Recidivism." Crime & Delinquency 66, no. 4 (2019): 485–512. http://dx.doi.org/10.1177/0011128719869194.
Full textGowre, Sanjaykumar, Sudipta Mahapatra, and P. K. Sahu. "A Modified Structure for All-Glass Photonic Bandgap Fibers: Dispersion Characteristics and Confinement Loss Analysis." ISRN Optics 2013 (September 22, 2013): 1–5. http://dx.doi.org/10.1155/2013/416537.
Full textGarcía, Inmaculada Jimeno, and Anne Marie Garvey. "Economic and Social Interactions in Business Students during COVID-19 Confinement: Relationship with Sleep Disturbance." Behavioral Sciences 12, no. 4 (2022): 100. http://dx.doi.org/10.3390/bs12040100.
Full textDu, Yuhang, Dinghao Zhou, Ruizhe Zhang, Jingkai Zhou, and Hui Zou. "Anti-Resonant Hollow-Core Fibers with High Birefringence and Low Loss for Terahertz Propagation." Electronics 13, no. 12 (2024): 2382. http://dx.doi.org/10.3390/electronics13122382.
Full textXu, Litu, Fang Li, Lai Wei, Jianxin Zhou, and Shuai Liu. "Design of Surface Plasmon Nanolaser Based on MoS2." Applied Sciences 8, no. 11 (2018): 2110. http://dx.doi.org/10.3390/app8112110.
Full textRumpa, Ramin Chapa. "Ultra-High Birefringence Property and Low Confinement Loss of Circular Photonic Crystal Fiber for Telecommunication Application." International Journal for Research in Applied Science and Engineering Technology 12, no. 3 (2024): 3366–81. http://dx.doi.org/10.22214/ijraset.2024.58219.
Full textTobon, Monica. "Separation, Loss, Confinement, and Change: How Evagrius Can Speak to the Experience of Lockdown." Vox Patrum 82 (June 15, 2022): 89–112. http://dx.doi.org/10.31743/vp.13460.
Full textBiswas, Shovasis Kumar. "DESIGN OF HEXAGONAL PHOTONIC CRYSTAL FIBER WITH ULTRA-HIGH BIREFRINGENT AND LARGE NEGATIVE DISPERSION COEFFICIENT FOR THE APPLICATION OF BROADBAND FIBER." International Journal of Engineering Science Technologies 2, no. 1 (2019): 9–16. http://dx.doi.org/10.29121/ijoest.v2.i1.2017.02.
Full textMaidi, Abdul Mu’iz, Md Abul Kalam, and Feroza Begum. "Photonic Crystal Fiber Sensor for Detecting Sulfuric Acid in Different Concentrations." Photonics 9, no. 12 (2022): 958. http://dx.doi.org/10.3390/photonics9120958.
Full textZheng, Hong Jun, Chong Qing Wu, Zhi Wang, Jian Wang, Shan Liang Liu, and Xin Li. "A Single-Polarization Single-Mode Photonic Crystal Fiber with Four Lines of Small Elliptical Air-Holes." Advanced Materials Research 301-303 (July 2011): 50–54. http://dx.doi.org/10.4028/www.scientific.net/amr.301-303.50.
Full textDoughan, Isaac, Kehinde Oyemakinwa, Olli Ovaskainen, and Matthieu Roussey. "Low Loss Vertical TiO2/Polymer Hybrid Nano-Waveguides." Nanomaterials 13, no. 3 (2023): 469. http://dx.doi.org/10.3390/nano13030469.
Full textR., Manojguru, and Ravindranath Chandra R. "EXPERIMENTAL STUDY ON HIGH TEMPERATURE MESH CONFINED CONCRETE." International Journal of Engineering Research and Modern Education Special Issue, April 2017 (2017): 242–47. https://doi.org/10.5281/zenodo.579566.
Full textZendehnam, Akbar, Mahmoud Mirzaei, and Razieh Solgi. "Confinement Loss and GVD for HF and AHAOF by FEM." International Journal of Optics and Applications 2, no. 4 (2012): 34–37. http://dx.doi.org/10.5923/j.optics.20120204.01.
Full textLiang, Wenbin, Ningliang Liu, Zhihua Li, and Peixiang Lu. "Highly Birefringent Elliptical-Hole Microstructure Fibers With Low Confinement Loss." Journal of Lightwave Technology 30, no. 21 (2012): 3381–86. http://dx.doi.org/10.1109/jlt.2012.2217314.
Full textPogossian, S. P., L. Vescan, and A. Vonsovici. "High-confinement SiGe low-loss waveguides for Si-based optoelectronics." Applied Physics Letters 75, no. 10 (1999): 1440–42. http://dx.doi.org/10.1063/1.124719.
Full textHao, Rui, Zhiquan Li, Guifang Sun, Liyong Niu, and Yuchao Sun. "Photonic crystal fiber with high birefringence and low confinement loss." Optik 124, no. 21 (2013): 4880–83. http://dx.doi.org/10.1016/j.ijleo.2013.02.033.
Full textDominguez-Espinosa, Alejandra del Carmen, and Johnny R. J. Fontaine. "It Is Not the Virus Exposure: Differentiating Job Demands and Resources That Account for Distress during the COVID-19 Pandemic among Health Sector Workers." International Journal of Environmental Research and Public Health 20, no. 2 (2023): 1212. http://dx.doi.org/10.3390/ijerph20021212.
Full textLuo, Weixuan, Bin Zhang, Anping Xiao, et al. "All-Solid Single-Polarization Anti-Resonant Fiber Base on Anisotropic Glass." Photonics 10, no. 4 (2023): 412. http://dx.doi.org/10.3390/photonics10040412.
Full textGallman, Antonia E., Finn D. Wolfreys, David N. Nguyen, et al. "Abcc1 and Ggt5 support lymphocyte guidance through export and catabolism of S-geranylgeranyl-l-glutathione." Science Immunology 6, no. 60 (2021): eabg1101. http://dx.doi.org/10.1126/sciimmunol.abg1101.
Full textMedeiros, Ertha Janine Lacerda de, Francisco Harley de Oliveira Mendonça, Rita de Cássia Ramos do Egypto Queiroga, and Marta Suely Madruga. "Meat quality characteristics of exotic and SPRD crossbred goats from the semiarid region." Food Science and Technology 32, no. 4 (2012): 768–74. http://dx.doi.org/10.1590/s0101-20612012005000102.
Full textS., M. Rakibul Islam, Monirul Islam Md., Nafiz Ahbabur Rahman Md., Mahmudul Alam Mia Mohammad, Shahrier Hakim Md, and Kumar Biswas Shovasis. "DESIGN OF HEXAGONAL PHOTONIC CRYSTAL FIBER WITH ULTRA-HIGH BIREFRINGENT AND LARGE NEGATIVE DISPERSION COEFFICIENT FOR THE APPLICATION OF BROADBAND FIBER." International Journal of Engineering Science Technologies 2, no. 1 (2017): 9–16. https://doi.org/10.5281/zenodo.1036615.
Full textWang, Wang, Jin Luo, Wenhui Chen, Jun Li, Wei Xing, and Shengli Chen. "Synthesis of mesoporous Fe/N/C oxygen reduction catalysts through NaCl crystallite-confined pyrolysis of polyvinylpyrrolidone." Journal of Materials Chemistry A 4, no. 33 (2016): 12768–73. http://dx.doi.org/10.1039/c6ta05075a.
Full textNoh, Byung-Il, Salvio Reza, Cassie Hardy, et al. "Low Dielectric Medium for Hyperbolic Phonon Polariton Waveguide in van der Waals Heterostructures." Nanomaterials 14, no. 16 (2024): 1344. http://dx.doi.org/10.3390/nano14161344.
Full textWilson Alphonse, Carlton Ranjith, and Rajesh Kannan Rajaretinam. "Habituation and Behavioural Response of Confinement-Induced Anxiety Conditions in a Zebrafish Model." Applied Biosciences 1, no. 3 (2022): 315–23. http://dx.doi.org/10.3390/applbiosci1030020.
Full textFECHNER, WALTER, and P. D. MORLEY. "THE PLASMA ANVIL IN INERTIAL CONFINEMENT FUSION." International Journal of Modern Physics E 01, no. 01 (1992): 215–19. http://dx.doi.org/10.1142/s0218301392000102.
Full textLiu, Zhaolun, Chunlan Zhang, and Yuwei Qu. "An All-Solid Dispersion-Compensating Photonic Crystal Fiber Based on Mode Coupling Mechanism in Dual-Concentric Core." International Journal of Optics 2020 (December 9, 2020): 1–9. http://dx.doi.org/10.1155/2020/4718054.
Full textHabib, Md Ahasan. "A Refractive Index Based Micro-Structured Sensor for Blood Components Detection in Terahertz Regime." Sensor Letters 18, no. 1 (2020): 74–82. http://dx.doi.org/10.1166/sl.2020.4186.
Full textWoo, K. M., and R. Betti. "Impact of areal-density asymmetries on the loss of confinement and ignition threshold in inertial confinement fusion capsules." Physics of Plasmas 28, no. 5 (2021): 054503. http://dx.doi.org/10.1063/5.0045317.
Full textLin, Xianqing, Jian Ye, Yongli Yan, et al. "Loss compensation during subwavelength propagation of enhanced second-harmonic generation signals in a hybrid plasmonic waveguide." Materials Chemistry Frontiers 2, no. 3 (2018): 491–96. http://dx.doi.org/10.1039/c7qm00471k.
Full textPalummo, Maurizia, Conor Hogan, and Stefano Ossicini. "Ab initio energy loss spectra of Si and Ge nanowires." Physical Chemistry Chemical Physics 17, no. 43 (2015): 29085–89. http://dx.doi.org/10.1039/c5cp05074j.
Full textWang, Xiu Ping, and Zhong Jiao He. "Highly Birefringent Extruded Elliptical-Hole Photonic Crystal Fiber." Advanced Materials Research 663 (February 2013): 387–91. http://dx.doi.org/10.4028/www.scientific.net/amr.663.387.
Full text