Academic literature on the topic 'Cone singularities'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cone singularities.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cone singularities"
Oberlin, Daniel M. "singularities on the light cone." Duke Mathematical Journal 59, no. 3 (December 1989): 747–57. http://dx.doi.org/10.1215/s0012-7094-89-05934-6.
Full textSoliman, Yousuf, Dejan Slepčev, and Keenan Crane. "Optimal cone singularities for conformal flattening." ACM Transactions on Graphics 37, no. 4 (August 10, 2018): 1–17. http://dx.doi.org/10.1145/3197517.3201367.
Full textAnan'in, Sasha, Carlos H. Grossi, Jaejeong Lee, and João dos Reis. "Hyperbolic 2-spheres with cone singularities." Topology and its Applications 272 (March 2020): 107073. http://dx.doi.org/10.1016/j.topol.2020.107073.
Full textDimitrov, Nikolay. "Hyper-ideal Circle Patterns with Cone Singularities." Results in Mathematics 68, no. 3-4 (March 24, 2015): 455–99. http://dx.doi.org/10.1007/s00025-015-0453-3.
Full textMOORE, HELEN. "STABLE MINIMAL HYPERSURFACES AND TANGENT CONE SINGULARITIES." International Journal of Mathematics 10, no. 03 (May 1999): 407–13. http://dx.doi.org/10.1142/s0129167x9900015x.
Full textJärv, L., C. Mayer, T. Mohaupt, and F. Saueressig. "Space-time singularities and the Kähler cone." Fortschritte der Physik 52, no. 67 (June 1, 2004): 624–29. http://dx.doi.org/10.1002/prop.200310154.
Full textLIANG, JIANFENG. "HYPERBOLIC SMOOTHING EFFECT FOR SEMILINEAR WAVE EQUATIONS AT A FOCAL POINT." Journal of Hyperbolic Differential Equations 06, no. 01 (March 2009): 1–23. http://dx.doi.org/10.1142/s0219891609001745.
Full textWang, Weiqiang. "Resolution of Singularities of Null Cones." Canadian Mathematical Bulletin 44, no. 4 (December 1, 2001): 491–503. http://dx.doi.org/10.4153/cmb-2001-049-6.
Full textPIMENTEL, B. M., and A. T. SUZUKI. "CAUSAL PRESCRIPTION FOR THE LIGHT-CONE GAUGE." Modern Physics Letters A 06, no. 28 (September 14, 1991): 2649–53. http://dx.doi.org/10.1142/s0217732391003080.
Full textGUENANCIA, HENRI. "KÄHLER–EINSTEIN METRICS WITH CONE SINGULARITIES ON KLT PAIRS." International Journal of Mathematics 24, no. 05 (May 2013): 1350035. http://dx.doi.org/10.1142/s0129167x13500353.
Full textDissertations / Theses on the topic "Cone singularities"
Fornasin, Nelvis [Verfasser], Sebastian [Akademischer Betreuer] Goette, and Katrin [Akademischer Betreuer] Wendland. "[eta] invariants under degeneration to cone-edge singularities = η invariants under degeneration to cone-edge singularities." Freiburg : Universität, 2019. http://d-nb.info/1203804326/34.
Full textMcDonald, Patrick T. (Patrick Timothy). "The Laplacian for spaces with cone-like singularities." Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/13645.
Full textde, Borbon Gonzalo Martin. "Asymptotically conical Ricci-flat Kahler metrics with cone singularities." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/31373.
Full textJANIGRO, AGNESE. "Compact 3-dimensional Anti-de Sitter manifolds with spin-cone singularities." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. https://hdl.handle.net/10281/402356.
Full textIn this thesis, we study compact Anti-de Sitter manifolds of dimension 3 with generalized spin-cone singularities. Given a closed surface equipped with a hyperbolic metric and a contraction map between the universal cover of the surface and the hyperbolic plane, it is possible to construct a compact Anti-de Sitter manifold of dimension 3 as fiber bundle over the surface. We show that, when the surface has hyperbolic metric with conical singular points, the same construction of the non singular case leads to compact Anti-de Sitter manifolds as fiber bundle with singular fibers over the surface. These singular fibers over the singular conical points are locally isometric to what we defined Model for generalized spin-cone singularity. In particular, from the model come out two invariants that allows us to study the compact Anti-de Sitter manifolds of dimension 3 with spin-cone singularities. The last result of this work is about the computation of the volume of these compact Anti-de Sitter manifolds with spin-cone singularities.
Ma, L., and Bert-Wolfgang Schulze. "Operators on manifolds with conical singularities." Universität Potsdam, 2009. http://opus.kobv.de/ubp/volltexte/2009/3660/.
Full textNazaikinskii, Vladimir, Anton Savin, Bert-Wolfgang Schulze, and Boris Sternin. "Elliptic theory on manifolds with nonisolated singularities : I. The index of families of cone-degenerate operators." Universität Potsdam, 2002. http://opus.kobv.de/ubp/volltexte/2008/2632/.
Full textGiovenzana, Luca [Verfasser], Christian [Akademischer Betreuer] Lehn, Christian [Gutachter] Lehn, Klaus [Gutachter] Hulek, and Gregory [Gutachter] Sankaran. "Singularities of the Perfect Cone Compactification / Luca Giovenzana ; Gutachter: Christian Lehn, Klaus Hulek, Gregory Sankaran ; Betreuer: Christian Lehn." Chemnitz : Technische Universität Chemnitz, 2021. http://d-nb.info/1229085262/34.
Full textVintescu, Ana-Maria. "Copier-coller 3D : paramétrisation cohérente de maillages triangulaires." Electronic Thesis or Diss., Paris, ENST, 2017. http://www.theses.fr/2017ENST0031.
Full textWe propose an efficient algorithm for the global parameterization of triangulated surfaces. First, cone singularities are automatically detected in visually significant locations ; this process is computationally efficient and aims at detecting such cones at vertices of the mesh where high values of area distortion can be predicted prior to the actual parameterization. In order to ensure continuity across conic cuts resulted after cutting the mesh open through the detected cones, affine transition functions are employed ; these will be integrated into a linear system which aims at minimizing angular distortion. In this thesis we also present a new Cross-Parameterization algorithm which, given two input triangular meshes and sparse user landmark correspondences, computes topologically and geometrically consistent parameterizations. The simultaneous consistent parameterization of the meshes is achieved in a matter of only a few seconds, solving at most four linear systems in a least squares sense. We validate the results of the proposed algorithms by providing extensive experimental results, demonstrating the time efficiency, as well as the quality - illustrated by examining accepted distortion measures. The computational efficiency of the presented algorithms allows their usage in interactive applications, where the user can modify or add cone singularities (or landmark correspondences for the cross-parameterization pipeline) and still obtain results in practical running times
Moreno, Ávila Carlos Jesús. "Global geometry of surfaces defined by non-positive and negative at infinity valuations." Doctoral thesis, Universitat Jaume I, 2021. http://hdl.handle.net/10803/672247.
Full textIntroducimos los conceptos de no positividad y negatividad en el infinito para valoraciones planas divisoriales de una superficie de Hirzebruch. Probamos que las superficies dadas por valoraciones con las características anteriores poseen interesantes propiedades globales y locales. Además, las valoraciones divisoriales no positivas en el infinito son aquellas valoraciones divisoriales de superficies de Hirzebruch que dan lugar a superficies racionales tales que su cono de curvas está generado por un número mínimo de generadores. Los conceptos de no positividad y negatividad en el infinito también se extienden a valoraciones reales del plano proyectivo y de superficies de Hirzebruch. Por último, calculamos explícitamente las constantes de tipo Seshadri para pares formados por divisores big y valoraciones divisoriales de superficies de Hirzebruch y obtenemos los vértices de los cuerpos de Newton-Okounkov para pares como los anteriores bajo la condición de no positividad en el infinito.
Programa de Doctorat en Ciències
Imagi, Yohsuke. "Surjectivity of a Gluing for Stable T2-cones in Special Lagrangian Geometry." 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/189337.
Full textBooks on the topic "Cone singularities"
Randell, Richard, ed. Singularities. Providence, Rhode Island: American Mathematical Society, 1989. http://dx.doi.org/10.1090/conm/090.
Full textBrasselet, Jean-Paul, José Luis Cisneros-Molina, David Massey, José Seade, and Bernard Teissier, eds. Singularities I. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/conm/474.
Full textBrasselet, Jean-Paul, José Luis Cisneros-Molina, David Massey, José Seade, and Bernard Teissier, eds. Singularities II. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/conm/475.
Full textCastro-Jiménez, Francisco-Jesús, David Massey, Bernard Teissier, and Meral Tosun, eds. A Panorama of Singularities. Providence, Rhode Island: American Mathematical Society, 2020. http://dx.doi.org/10.1090/conm/742.
Full textGoryunov, Victor, Kevin Houston, and Roberta Wik-Atique, eds. Real and Complex Singularities. Providence, Rhode Island: American Mathematical Society, 2012. http://dx.doi.org/10.1090/conm/569.
Full textNabarro, Ana, Juan Nuño-Ballesteros, Raúl Sinha, and Maria Aparecida Soares Ruas, eds. Real and Complex Singularities. Providence, Rhode Island: American Mathematical Society, 2016. http://dx.doi.org/10.1090/conm/675.
Full textGaffney, Terence, and Maria Aparecida Soares Ruas, eds. Real and Complex Singularities. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/conm/354.
Full textSaia, Marcelo J., and José Seade, eds. Real and Complex Singularities. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/conm/459.
Full textMelles, Caroline Grant, and Ruth I. Michler, eds. Singularities in Algebraic and Analytic Geometry. Providence, Rhode Island: American Mathematical Society, 2000. http://dx.doi.org/10.1090/conm/266.
Full textCogolludo-Agustín, José Ignacio, and Eriko Hironaka, eds. Topology of Algebraic Varieties and Singularities. Providence, Rhode Island: American Mathematical Society, 2011. http://dx.doi.org/10.1090/conm/538.
Full textBook chapters on the topic "Cone singularities"
Przeszowski, Jerzy A., Elżbieta Dzimida-Chmielewska, and Jan Żochowski. "Light-Front Perturbation Without Spurious Singularities." In Light Cone 2015, 239–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50699-9_38.
Full textKapanadze, D., B. W. Schulze, and I. Witt. "Coordinate Invariance of the Cone Algebra with Asymptotics." In Parabolicity, Volterra Calculus, and Conical Singularities, 307–58. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8191-3_5.
Full textZheng, Kai. "Kähler Metrics with Cone Singularities and Uniqueness Problem." In Trends in Mathematics, 395–408. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12577-0_44.
Full textDonaldson, S. K. "Kähler Metrics with Cone Singularities Along a Divisor." In Essays in Mathematics and its Applications, 49–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28821-0_4.
Full textZavialov, O. I. "Composite Fields. Singularities of the Product of Currents at Short Distances and on the Light Cone." In Renormalized Quantum Field Theory, 252–400. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2585-4_4.
Full textCampillo, Antonio, and Gérard González-Sprinberg. "On Characteristic Cones, Clusters and Chains of Infinitely Near Points." In Singularities, 251–61. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8770-0_13.
Full textKunz, Ernst, and Rolf Waldi. "§6. Applications to curve singularities." In Contemporary Mathematics, 123–47. Providence, Rhode Island: American Mathematical Society, 1988. http://dx.doi.org/10.1090/conm/079/06.
Full textStevens, Jan. "15. Cones over curves." In Deformations of Singularities, 125–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36464-1_16.
Full textStevens, Jan. "16. The versal deformation of hyperelliptic cones." In Deformations of Singularities, 137–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36464-1_17.
Full textApablaza, Victor, and Francisco Melo. "Dynamics of conical singularities: S type d-cones." In Nonlinear Phenomena and Complex Systems, 141–48. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2149-7_7.
Full textConference papers on the topic "Cone singularities"
Grange, Pierre, Bruno Mutet, and Ernst WERNER. "Light-cone gauge singularities in the photon propagator and residual gauge transformations." In LIGHT CONE 2008 Relativistic Nuclear and Particle Physics. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.061.0005.
Full textMüller, Andreas. "Higher-Order Local Analysis of Kinematic Singularities of Lower Pair Linkages." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67039.
Full textMüller, Andreas, and Zijia Li. "Identification of Singularities and Real and Complex Solution Varieties of the Loop Constraints of Linkages Using the Kinematic Tangent Cone." In ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/detc2023-114638.
Full textChirilli, Giovanni Antonio. "Sub-gauge Conditions for the Gluon Propagator Singularities in Light-Cone Gauge." In QCD Evolution 2016. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.284.0038.
Full textMüller, Andreas. "Local Analysis of Closed-Loop Linkages: Mobility, Singularities, and Shakiness." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47485.
Full textLerbet, Jean. "Stability of Singularities of a Kinematical Chain." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84126.
Full textPiipponen, Samuli, Eero Hyry, and Teijo Arponen. "Kinematic Analysis of Multi-4-Bar Mechanisms Using Algebraic Geometry." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67250.
Full textMüller, Andreas, P. C. López Custodio, and J. S. Dai. "Identification of Non-Transversal Bifurcations of Linkages." In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22301.
Full textDe Donno, Mauro, and Faydor L. Litvin. "Computerized Design, Generation and Simulation of Meshing of a Spiroid Worm-Gear Drive With Double-Crowned Worm." In ASME 1998 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/detc98/ptg-5779.
Full textSilva, Homero. "CODE VERIFICATION TEST IN CALCULATIONS AROUND JUMP SINGULARITIES." In 25th International Congress of Mechanical Engineering. ABCM, 2019. http://dx.doi.org/10.26678/abcm.cobem2019.cob2019-2274.
Full text