Academic literature on the topic 'Conductivity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Conductivity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Conductivity"
Tamasan, A., and A. Timonov. "COUPLED PHYSICS ELECTRICAL CONDUCTIVITY IMAGING." Eurasian Journal of Mathematical and Computer Applications 2, no. 1 (2014): 5–29. http://dx.doi.org/10.32523/2306-3172-2014-2-2-5-29.
Full textTamasan, A., and A. Timonov. "COUPLED PHYSICS ELECTRICAL CONDUCTIVITY IMAGING." Eurasian Journal of Mathematical and Computer Applications 2, no. 3 (2014): 5–29. http://dx.doi.org/10.32523/2306-3172-2014-2-3-5-29.
Full textRomano, Claudia, Brent T. Poe, James Tyburczy, and Fabrizio Nestola. "Electrical conductivity of hydrous wadsleyite." European Journal of Mineralogy 21, no. 3 (June 29, 2009): 615–22. http://dx.doi.org/10.1127/0935-1221/2009/0021-1933.
Full textDonovan, Ryan, Karyanto Karyanto, and Ordas Dewanto. "STUDI SIFAT TERMAL BATUAN DAERAH LAPANGAN PANAS BUMI WAY RATAI BERDASARKAN PENGUKURAN METODE KONDUKTIVITAS TERMAL." Jurnal Geofisika Eksplorasi 4, no. 3 (January 17, 2020): 103–19. http://dx.doi.org/10.23960/jge.v4i3.44.
Full textHawkes, Stephen J. "Conductivity." Journal of Chemical Education 86, no. 4 (April 2009): 431. http://dx.doi.org/10.1021/ed086p431.
Full textBohuslávek, Zdeněk. "The measurement method of meat conductivity." Czech Journal of Food Sciences 36, No. 5 (November 8, 2018): 372–77. http://dx.doi.org/10.17221/164/2018-cjfs.
Full textdos Santos, Roberto Aguiar, Bruno Guimarães Delgado, Ana Luisa Cezar Rissoli, João Paulo de Sousa Silva, and Michéle Dal Toé Casagrande. "Influence of initial compaction and confining pressure on the hydraulic conductivity of compacted iron ore tailings." E3S Web of Conferences 544 (2024): 14005. http://dx.doi.org/10.1051/e3sconf/202454414005.
Full textDixit, Chandra Kumar, and Mohd Tauqeer Mohd. Tauqeer. "Conductivity Studies of Multilayer Thin Films." International Journal of Scientific Research 2, no. 5 (June 1, 2012): 145–46. http://dx.doi.org/10.15373/22778179/may2013/51.
Full textZhanabaev, Z. Zh, T. Yu Grevtseva, and M. K. Ibraimov. "Electrical conductivity of silicon quantum nanowires." Physical Sciences and Technology 2, no. 1 (2015): 37–43. http://dx.doi.org/10.26577/2409-6121-2015-2-1-37-43.
Full textSural, M., and A. Ghosh. "Electrical conductivity and conductivity relaxation in glasses." Journal of Physics: Condensed Matter 10, no. 47 (November 30, 1998): 10577–86. http://dx.doi.org/10.1088/0953-8984/10/47/009.
Full textDissertations / Theses on the topic "Conductivity"
Tardieu, Giliane. "Thermal conductivity prediction." Thesis, Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/10014.
Full textSchroeder, Wade Anthony. "Conductivity Sensor Circuit." University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1429537491.
Full textSylvan, Keith. "RF electrolytic conductivity transducers." Thesis, University of Edinburgh, 1987. http://hdl.handle.net/1842/11450.
Full textMartin, Ana Isabel. "Hydrate Bearing Sediments-Thermal Conductivity." Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6844.
Full textMensah-Brown, Henry. "Thermal conductivity of liquid mixtures." Thesis, Imperial College London, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362870.
Full textPeralta, Martinez Maria Vita. "Thermal conductivity of molten metals." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391505.
Full textJawad, Shadwan Hamid. "Thermal conductivity of polyatomic gases." Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367922.
Full textWilliams, Oliver Aneurin. "Surface conductivity on hydrogenated diamond." Thesis, University College London (University of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405246.
Full textValter, Mikael. "Thermal Conductivity of Uranium Mononitride." Thesis, Linköpings universitet, Tunnfilmsfysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122337.
Full textVärmeledningsförmåga är en avgörande egenskap för kärnbränslen, eftersom det begränsar den maximala drifttemperaturen i reaktorn för att ha säkerhetsmarginaler. Uranmononitrid (UN) är ett framtida bränsle för snabba reaktorer. Jämfört med det dominerande bränslet i lättvattenreaktorer, urandioxid, har endast begränsade experimentella studier gjorts av UN. Målet med detta arbete är att bestämma värmeledningsförmågan i UN och bestämma dess porositetsberoende. Detta gjordes genom att tillverka kompakta och porösa prover av UN och undersöka dem med laserblixtmetoden, vilket tillsammans med värmekapacitet och värmeutvidgning ger värmeledningsförmågan. För att analysera resultatet gjordes en teoretisk studie av värmeledning såväl som en genomgång av och jämförelse med tidigare undersökningar. Provernas porositet sträckte sig från 0.1% till 31% av teoretisk densitet. Värmediffusivitetsdata från laserblixtmetoden, värmeutvidgningsdata och värmekapacitetsdata samlades in för 25–1400 C. Värdena från laserblixtmätningen hade hög diskrepans vid höga temperaturer p.g.a. termisk instabilitet i anordningen och avvikelser p.g.a. grafitavlagring på proverna, men data för låga temperaturer borde vara tillförlitliga. Eftersom resultaten från värmekapacitetsmätningen var av dålig kvalité, användes litteraturdata istället. Som en konsekvens av bristerna i mätningen av värmediffusivitet är presenterade data för värmeledningsförmåga mest exakta för låga temperaturer. En modifierad version av Ondracek-Schulz porositetsmodell användes för att analysera värmeledningsförmågans porositetsberoende genom att ta hänsyn till olika inverkan av öppen och sluten porositet.
Anderson, Stephen Ashcraft. "The thermal conductivity of intermetallics." Master's thesis, University of Cape Town, 1996. http://hdl.handle.net/11427/18185.
Full textThe thermal conductivity of titanium aluminide and several ruthenium-aluminium alloys has been studied from room temperature up to 500°C. Ruthenium aluminide is a B2-type intermetallic which is unusual and of special interest because of its toughness, specific strength and stiffness, oxidation resistance and low cost. The possible use of ruthenium aluminide in high temperature industrial applications required an investigation of the thermal properties of this compound. Apparatus, capable of measuring thermal conductivity at elevated temperatures has been designed and constructed. This study represents the first experimental results for the thermal conductivity of ruthenium aluminide alloys. The electrical resistivity of the intermetallic compounds has been measured using apparatus based on the Van der Pauw method. The Weidman-Franz ratio of the ruthenium aluminide alloys has been calculated and this indicates that the primary source of heat conduction in these alloys is by electronic movement and that the lattice contribution is minor. The electrical and thermal properties of ruthenium aluminide are shown to be similar to that of platinum and nickel aluminide. This has important implications for the use of these alloys in high temperature applications.
Books on the topic "Conductivity"
International, Thermal Conductivity Conference (18th 1983 Rapid City S. D. ). Thermal conductivity 18. New York: Plenum Press, 1985.
Find full textWilkes, Kenneth E., Ralph B. Dinwiddie, and Ronald S. Graves. Thermal Conductivity 23. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003210719.
Full textHasselman, D. P. H., and J. R. Thomas, eds. Thermal Conductivity 20. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0761-7.
Full textAshworth, T., and David R. Smith, eds. Thermal Conductivity 18. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4916-7.
Full textMerrill, S. D. Hydraulic conductivity techniques. S.l: s.n, 1987.
Find full text1937-, Yarbrough D. W., ed. Thermal conductivity 19. New York: Plenum Press, 1988.
Find full textInternational Thermal Conductivity Conference (21st 1989 Lexington, Ky.). Thermal conductivity 21. New York: Plenum Press, 1990.
Find full textInternational Thermal Conductivity Conference (22nd 1993 Arizona State University). Thermal conductivity 22. Lancaster, Penn: Technomic Pub. Co., 1994.
Find full textHasselman, D. P. H. Thermal Conductivity 20. Boston, MA: Springer US, 1989.
Find full textAssociation, Copper Development, ed. High conductivity coppers. Potters Bar: Copper Development Association, 1990.
Find full textBook chapters on the topic "Conductivity"
de Freitas, Michael. "Conductivity." In Selective Neck Dissection for Oral Cancer, 1–2. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-12127-7_66-1.
Full textGooch, Jan W. "Conductivity." In Encyclopedic Dictionary of Polymers, 165. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2815.
Full textPomeranz, Yeshajahu, and Clifton E. Meloan. "Conductivity." In Food Analysis, 199–207. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-6998-5_14.
Full textde Freitas, Michael. "Conductivity." In Encyclopedia of Earth Sciences Series, 180–81. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73568-9_66.
Full textMcGurn, Arthur. "Conductivity." In An Introduction to Condensed Matter Physics for the Nanosciences, 17–67. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003031987-2.
Full textMcGurn, Arthur. "Conductivity." In An Introduction to Condensed Matter Physics for the Nanosciences, 69–87. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003031987-3.
Full textLauth, Jakob SciFox. "Conductivity." In Physical Chemistry in a Nutshell, 159–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-67637-0_11.
Full textHaider, S. A. "Conductivity." In Aeronomy of Mars, 205–9. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3138-5_23.
Full textDukhin, Stanislav S., Ralf Zimmermann, and Carsten Werner. "Surface Conductivity." In Electrical Phenomena at Interfaces and Biointerfaces, 95–126. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118135440.ch7.
Full textGooch, Jan W. "Conductivity (Electrical)." In Encyclopedic Dictionary of Polymers, 165–66. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2816.
Full textConference papers on the topic "Conductivity"
HUA, ZILONG, YUEFANG DONG, and HENG BAN. "Thermal Conductivity Measurement of Ion-irradiated Materials." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30351.
Full textGOETZE, PITT, SIMON HUMMEL, RHENA WULF, TOBIAS FIEBACK, and ULRICH GROSS. "Challenges of Transient-Plane-Source Measurements at Temperatures Between 500K and 1000K." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30332.
Full textHUME, DALE, ANDREY SIZOV, BESIRA M. MIHIRETIE, DANIEL CEDERKRANTZ, SILAS E. GUSTAFSSON, and MATTIAS K. GUSTAVSSON. "Specific Heat Measurements of Large-Size Samples with the Hot Disk Thermal Constants Analyser." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30333.
Full textSONG, ZHUORUI, TYSON WATKINS, and HENG BAN. "Measurement of Thermal Diffusivity at High Temperature by Laser Flash Method." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30334.
Full textCASTIGLIONE, PAOLO, and GAYLON CAMPBELL. "Improved Transient Method Measures Thermal Conductivity of Insulating Materials." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30335.
Full textGARDNER, LEVI, TROY MUNRO, EZEKIEL VILLARREAL, KURT HARRIS, THOMAS FRONK, and HENG BAN. "Laser Flash Measurements on Thermal Conductivity of Bio-Fiber (Kenaf) Reinforced Composites." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30336.
Full textDEHN, SUSANNE, ERIK RASMUSSEN, and CRISPIN ALLEN. "Round Robin Test of Thermal Conductivity for a Loose Fill Thermal Insulation Product in Europe." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30337.
Full textILLKOVA, KSENIA, RADEK MUSALEK, and JAN MEDRICKY. "Measured and Predicted Thermal Conductivities for YSZ Layers: Application of Different Models." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30338.
Full textLAGER, DANIEL, CHRISTIAN KNOLL, DANNY MULLER, WOLFGANG HOHENAUER, PETER WEINBERGER, and ANDREAS WERNER. "Thermal Conductivity Measurements of Calcium Oxalate Monohydrate as Thermochemical Heat Storage Material." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30339.
Full textYARBROUGH, DAVID W., and MICHEL P. DROUIN. "Long-Term Thermal Resistance of Thin Cellular Plastic Insulations." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30340.
Full textReports on the topic "Conductivity"
Wilkinson, A., and A. E. Taylor. Thermal Conductivity. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132227.
Full textClark, D. Thermal Conductivity of Helium. Office of Scientific and Technical Information (OSTI), August 1992. http://dx.doi.org/10.2172/1031796.
Full textM.J. Anderson, H.M. Wade, and T.L. Mitchell. Invert Effective Thermal Conductivity Calculation. US: Yucca Mountain Project, Las Vegas, Nevada, March 2000. http://dx.doi.org/10.2172/894317.
Full textLeader, D. R. Thermal conductivity of cane fiberboard. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/402292.
Full textWang, H. Thermal conductivity Measurements of Kaolite. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/885883.
Full textBraams, B. J., and C. F. F. Karney. Conductivity of a relativistic plasma. Office of Scientific and Technical Information (OSTI), March 1989. http://dx.doi.org/10.2172/6392639.
Full textBauer, R., W. Windl, L. Collins, J. Kress, and I. Kwon. Electrical conductivity of compressed argon. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/642761.
Full textAllcorn, Eric. Conductivity Impact of BFR Additive. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1426056.
Full textAllcorn, Eric. Conductivity Impact of BFR Additive. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1426399.
Full textHin, Celine. Thermal Conductivity of Metallic Uranium. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1433931.
Full text