Academic literature on the topic 'Conducting Polymer Nanotubes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Conducting Polymer Nanotubes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Conducting Polymer Nanotubes"
Rivière, Pauline, Tiina E. Nypelö, Michael Obersriebnig, Henry Bock, Marcus Müller, Norbert Mundigler, and Rupert Wimmer. "Unmodified multi-wall carbon nanotubes in polylactic acid for electrically conductive injection-moulded composites." Journal of Thermoplastic Composite Materials 30, no. 12 (May 23, 2016): 1615–38. http://dx.doi.org/10.1177/0892705716649651.
Full textZakaria, Mohd Yusuf, Hendra Suherman, Jaafar Sahari, and Abu Bakar Sulong. "Effect of Mixing Parameter on Electrical Conductivity of Carbon Black/Graphite/Epoxy Nanocomposite Using Taguchi Method." Applied Mechanics and Materials 393 (September 2013): 68–73. http://dx.doi.org/10.4028/www.scientific.net/amm.393.68.
Full textMoheimani, Reza, and M. Hasansade. "A closed-form model for estimating the effective thermal conductivities of carbon nanotube–polymer nanocomposites." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 8 (August 31, 2018): 2909–19. http://dx.doi.org/10.1177/0954406218797967.
Full textAbidian, M. R., D. H. Kim, and D. C. Martin. "Conducting-Polymer Nanotubes for Controlled Drug Release." Advanced Materials 18, no. 4 (February 17, 2006): 405–9. http://dx.doi.org/10.1002/adma.200501726.
Full textSa'aya, Nurul Syahirah Nasuha, Siti Zulaikha Ngah Demon, Norli Abdullah, and Norhana Abdul Halim. "Morphology Studies of SWCNT Dispersed in Conducting Polymer as Potential Sensing Materials." Solid State Phenomena 317 (May 2021): 189–94. http://dx.doi.org/10.4028/www.scientific.net/ssp.317.189.
Full textKIM, CHEOL, and XINYUN LIU. "ELECTROMECHANICAL BEHAVIOR OF CARBON NANOTUBES-CONDUCTING POLYMER FILMS." International Journal of Modern Physics B 20, no. 25n27 (October 30, 2006): 3727–32. http://dx.doi.org/10.1142/s0217979206040271.
Full textLiu, Yang, John H. Xin, Xinyu Zhang, and Chao Zhang. "Morphological Evolvement of Carbon Nanotubes Synthesized by Using Conducting Polymer Nanofibers." International Journal of Polymer Science 2020 (March 2, 2020): 1–8. http://dx.doi.org/10.1155/2020/4953652.
Full textBiswas, Sourav, Tanyaradzwa S. Muzata, Beate Krause, Piotr Rzeczkowski, Petra Pötschke, and Suryasarathi Bose. "Does the Type of Polymer and Carbon Nanotube Structure Control the Electromagnetic Shielding in Melt-Mixed Polymer Nanocomposites?" Journal of Composites Science 4, no. 1 (January 15, 2020): 9. http://dx.doi.org/10.3390/jcs4010009.
Full textKIM, B. H., D. H. PARK, Y. K. GU, J. JOO, K. G. KIM, and J. I. JIN. "ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES OF π-CONJUGATED POLYMER NANOTUBES AND NANOWIRES." Journal of Nonlinear Optical Physics & Materials 13, no. 03n04 (December 2004): 547–51. http://dx.doi.org/10.1142/s0218863504002249.
Full textTrchová, Miroslava, and Jaroslav Stejskal. "Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report)." Pure and Applied Chemistry 83, no. 10 (June 10, 2011): 1803–17. http://dx.doi.org/10.1351/pac-rep-10-02-01.
Full textDissertations / Theses on the topic "Conducting Polymer Nanotubes"
Tahhan, May. "Carbon nanotubes and conducting polymer composites." Intelligent Polymers Research Institute - Faculty of Science, 2004. http://ro.uow.edu.au/theses/407.
Full textXi, Binbin. "Novel conducting polymer structures for electrochemical actuators." Access electronically, 2005. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20060517.100903/index.html.
Full textLi, Jing. "Electrical conducting polymer nanocomposites containing graphite nanoplatelets and carbon nanotubes /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20LI.
Full textKeng, Yenmei. "The effects of temperature and carbon nanotubes on conducting polymer actuator performance." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61879.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 102-103).
Conducting polymers serve as electrically conductive actuators via ion diffusion in and out of the polymer when voltages are applied. Their actuation performance can be largely affected by deposition setup, post-deposition processing, type of electrolyte, applied voltage for actuation, and temperature. It was shown that increasing temperature caused higher active stress in polypyrrole, an attractive conducting polymer actuator material. However, detailed characterizations were lacking to determine whether the improved active stress was caused by structural change in the polymer and/or charging effect. A temperature-controlled solvent bath was integrated with a custom-built electrochemical dynamic mechanical analyzer to conduct isometric and isotonic tests on polypyrrole under elevated temperature. Experimental results showed that heating increased the charge transport through the polymer and thermal expansion in the polymer allowed more room for charge uptake. As a result, increase in ion movement largely contributed to improvements in actuation stress (rate) and strain (rate), while the decrease in stiffness due to heating had limited effect. Moreover, actuation performance was further improved by choosing large active ion type, BMIM. Although the active stress and strain increased via heating, creep limits the reversibility of conducting polymer actuators. To reduce creep rate, functionalized multi-walled carbon nanotubes (fCNTs) were introduced to fabricate composites with polypyrrole and with PEDOT. Out of four attempted fabrication techniques, drop-casted multilayer structure demonstrated that increasing the amount of fCNTs reduced creep rate, but also decreased active strain, stiffness, and conductivity. Applying higher preload (up to 3 MPa) improved active strain in the composites by providing more space for charge uptake. The amount of sCNTs that provided optimal performance was approximately 20-30% by weight.
by Yenmei (Kerri) Keng.
S.M.
Oh, Jungmin. "Preparation and application of conducting polymer-carbon nanotube composite." [Johnson City, Tenn. : East Tennessee State University], 2004. https://dc.etsu.edu/etd/960.
Full textTitle from electronic submission form. ETSU ETD database URN: etd-1110104-211520 Includes bibliographical references. Also available via Internet at the UMI web site.
Chiguma, Jasper. "Conducting polymer nanocomposites loaded with nanotubes and fibers for electrical and thermal applications." Diss., Online access via UMI:, 2009.
Find full textWasem, Klein Felipe. "Photoactive polymer – carbon nanotubes hybrid nanostructures." Thesis, Strasbourg, 2021. http://www.theses.fr/2021STRAE004.
Full textThe objective of this thesis is the preparation of conjugated polymers (P3HT and a derivated copolymer) – carbon nanotubes hybrid materials and their characterization through different spectroscopies and transmission electron microscopy. Non-covalent nanohybrids can be obtained by sonicating both components together in THF. The interaction between both components leads to the wrapping of the polymer around the carbon nanotubes as well as the formation of polymer aggregates on the surface of the nanotubes. The effect of different parameters such as the polymer chain length are described. Covalent nanohybrids can be obtained using a specially designed copolymer bearing an aniline at the end of its side chain. Optical and Raman spectroscopies indicate a low level of functionalization, and suggest that the polymer chains are in a more disordered state compared to non-covalent nanohybrids. Preliminary studies show that the obtained copolymer can be used for functionalizing carbon nanotube based devices. Modification of electrical properties of the devices were small and compatible with the low functionalization degree, but the induced defects allow observation of a photocurrent
Islam, Md Mazharul. "Printed transparent conducting electrodes based on carbon nanotubes (CNTs), reduced graphene oxide (rGO), and a polymer matrix." Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-156366.
Full textVignal, Thomas. "Développement d’électrodes utilisant un PCE déposé sur VACNT/Al selon un procédé continu et leur utilisation dans des pseudosupercondensateurs." Thesis, Cergy-Pontoise, 2019. http://www.theses.fr/2019CERG1044.
Full textThe work carried out focused on the development of composite electrodes by electrochemically deposition of conductive polymer onto carbon nanotube vertically aligned on aluminum substrate (VACNT/Al). These new VACNT / Al have a very high nanotube density (10^11 - 10^12 CNT/cm²) and offer a very interesting nanometric architecture for the elaboration of electrodes in energy storage devices as supercapacitor. The deposition of polymer on these electrodes allows the increase of the supercapacitors’ specific energies. In addition, this work has also been dedicated to the development of a continuous deposition process for scaling syntheses of the composite. In a first part, the materials used in the composite electrodes have been characterized individually. Thus, ionic liquid medium deposits of poly (3-methylthiophene) (P3MT) and polypyrrole (PPy) polymers at the surface of planar electrodes were made and VACNT were characterized. The second part of this work was devoted to the optimization of electrochemical synthesis by a pulsed chronoamperometric method in ionic liquid medium. P3MT/VACNT/Al nanocomposites with mass proportions of P3MT in the electrode ranging from 10 to 90%. These composites have subsequently been used as electrodes in symmetric and asymmetric supercapacitors in coin-cell devices allowing specifics energies and powers of 52 Wh/kg and 12 kW/kg, respectively. In the third part, a P3MT deposition process onto moving VACNT was developed to study the continuous elaboration of composite electrodes and to allow the preparation of larger electrodes, 80 cm² in this study. These composites showed specific capacitances equivalent to the composites obtained with static deposits. In addition, the 80 cm2 strips were used for the realization of symmetric and asymmetric zig-zag supercapacitors and also showed specific energies and power very similar to those of coin-cells. In a last part, a transfer of method was realized for the synthesis of composite PPy / VACNT, in static then continuous process
Lay, Makara. "Conductive nanopaper from cellulose nanofibers and conductive polymers and/or carbon nanotubes." Doctoral thesis, Universitat de Girona, 2017. http://hdl.handle.net/10803/401711.
Full textLes nanofibres de cel·lulosa són un dels materials del futur, gràcies al seu origen natural i renovable, i per les seves propietats físico-químiques, i mecàniques. Recentment, s’està estudiant el seu ús en elèctrodes flexibles, biosensors o supercapacitants. L’objectiu central de la tesis és produir nanopapers conductors a partir de nanofibres de cel·lulosa (CNF) o de cel·lulosa bacteriana (BC), i tres tipus de càrrega conductora, el polipirrol (PPy), el poli(3-4-etilendioxitiofè):poliestirè sulfonat (POEDOT:PSS) i els nanotubs de carboni de paret múltiple (MWCNT). S’ha avaluat l’estructura i morfologia dels materials nanocompòsits, així com les seves propietats tèrmiques, mecàniques i elèctriques. Els resultats mostren el caràcter semiconductor o conductor dels nanocompòsits obtinguts, amb capacitàncies específiques de més de 300 F·g-1 per als nanocompòsits de CNF-PPy i CNF-PEDOT:PSS-PPy. Es demostra la viabilitat de l’ús de nanofibres de cel·lulosa per la fabricació de productes electrònics flexibles, biosensors, o com a dispositius d’emmagatzematge d’energia
Books on the topic "Conducting Polymer Nanotubes"
Roth, S. One-dimensional metals: Conjugated polymers, organic crystals, carbon nanotubes. 2nd ed. Weinheim: Wiley-VCH, 2004.
Find full textChandrasekhar, Prasanna. Conducting polymers, fundamentals and applications: A practical approach. Boston: Kluwer Academic, 1999.
Find full textChandrasekhar, Prasanna. Conducting polymers, fundamentals and applications: A practical approach. Boston: Kluwer Academic, 1999.
Find full textCarroll, David, and Siegmar Roth. One-Dimensional Metals: Conjugated Polymers, Organic Crystals, Carbon Nanotubes. Wiley & Sons, Incorporated, John, 2006.
Find full textCarroll, David, and Siegmar Roth. One-Dimensional Metals: Conjugated Polymers, Organic Crystals, Carbon Nanotubes. Wiley & Sons, Limited, John, 2005.
Find full textChandrasekhar, Prasanna. Conducting Polymers, Fundamentals and Applications: Including Carbon Nanotubes and Graphene. Springer, 2018.
Find full textChandrasekhar, Prasanna. Conducting Polymers, Fundamentals and Applications: Including Carbon Nanotubes and Graphene. Springer, 2019.
Find full textCarroll, David, and Siegmar Roth. One-Dimensional Metals: Conjugated Polymers, Organic Crystals, Carbon Nanotubes and Graphene. Wiley & Sons, Incorporated, John, 2015.
Find full textChandrasekhar, Prasanna. Conducting Polymers, Fundamentals and Applications: A Practical Approach. Springer London, Limited, 2013.
Find full textChandrasekhar, Prasanna. Conducting Polymers, Fundamentals and Applications: A Practical Approach. Springer, 1999.
Find full textBook chapters on the topic "Conducting Polymer Nanotubes"
Rawat, Neha Kanwar, P. K. Panda, and Anujit Ghosal. "Conducting Polymer/CNT-Based Nanocomposites As Smart Emerging Materials." In Carbon Nanotubes and Nanoparticles, 107–26. Toronto; New Jersey : Apple Academic Press, 2019.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429463877-6.
Full textIqbal, Sajid, Rangnath Ravi, Anujit Ghosal, Jaydeep Bhattacharya, and Sharif Ahmad. "Advances in Carbon Nanotube-Based Conducting Polymer Composites." In Engineered Carbon Nanotubes and Nanofibrous Materials, 127–41. Toronto ; New Jersey : Apple Academic Press, 2019. | Series: AAP research notes on nanoscience and nanotechnology: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9781351048125-6.
Full textSingh, Paramjit. "Composites Based on Conducting Polymers and Carbon Nanotubes for Supercapacitors." In Springer Series on Polymer and Composite Materials, 305–36. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46458-9_10.
Full textChandrasekhar, Prasanna. "Introducing Carbon Nanotubes (CNTs)." In Conducting Polymers, Fundamentals and Applications, 3–10. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69378-1_1.
Full textBaibarac, M., I. Baltog, and S. Lefrant. "Composites Based on Conducting Polymers and Carbon Nanotubes." In Nanostructured Conductive Polymers, 209–60. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470661338.ch5.
Full textHwang, Sang-ha, Jeong-Min Seo, In-Yup Jeon, Young-Bin Park*, and Jong-Beom Baek*. "Chapter 1. Conducting Polymer-based Carbon Nanotube Composites: Preparation and Applications." In Carbon Nanotube-Polymer Composites, 1–21. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849736817-00001.
Full textAnderson, Ankoma, Fushen Lu*, Mohammed J. Meziani*, and Ya-Ping Sun*. "Chapter 6. Metallic Single-walled Carbon Nanotubes for Electrically Conductive Materials and Devices." In Carbon Nanotube-Polymer Composites, 182–211. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849736817-00182.
Full textZhao, Hang, Delong He, and Jinbo Bai. "Chapter 4. Graphite Nanoplatelet–Carbon Nanotube Hybrids for Electrical Conducting Polymer Composites." In Two-dimensional Inorganic Nanomaterials for Conductive Polymer Nanocomposites, 129–203. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839162596-00129.
Full textDai, Liming. "From Conducting Polymers to Carbon Nanotubes: New Horizons in Plastic Microelectronics and Carbon Nanoelectronics." In Perspectives of Fullerene Nanotechnology, 93–111. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-9598-3_9.
Full textBok Lee, Sang, and Seung Cho. "Conducting Polymer Nanotubes." In Dekker Encyclopedia of Nanoscience and Nanotechnology, Second Edition - Six Volume Set (Print Version). CRC Press, 2004. http://dx.doi.org/10.1201/9781439834398.ch342.
Full textConference papers on the topic "Conducting Polymer Nanotubes"
Khorrami, Milad, and Mohammad Reza Abidian. "Aligned Conducting Polymer Nanotubes for Neural Prostheses." In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018. http://dx.doi.org/10.1109/embc.2018.8513649.
Full textTai-Jin Kim, Si-Dong Kim, Nam-Ki Min, James Jungho Pak, Cheol-Jin Lee, and Soo-Won Kim. "NH3 sensitive chemiresistor sensors using plasma functionalized multiwall carbon nanotubes/conducting polymer composites." In 2008 IEEE Sensors. IEEE, 2008. http://dx.doi.org/10.1109/icsens.2008.4716419.
Full textWei-Chao Chen, Hsiang-Ting Lien, Tzu-Wei Cheng, Kuei-Hsien Chen, and Li-Chyong Chen. "Polymer-assisted dispersion of single-wall carbon nanotubes for transparent conducting film fabrication." In 8th International Vacuum Electron Sources Conference and Nanocarbon (2010 IVESC). IEEE, 2010. http://dx.doi.org/10.1109/ivesc.2010.5644274.
Full textKim, Jaehwan, Zoubeida Ounaies, Sung-Ryul Yun, Yukeun Kang, and Seung-Hun Bae. "Electroactive Paper Materials Coated With Carbon Nanotubes and Conducting Polymers." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79579.
Full textDatta, Kunal, Arti Rushi, Prasanta Ghosh, and Mahendra Shirsat. "Comparative VOCs sensing performance for conducting polymer and porphyrin functionalized carbon nanotubes based sensors." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032333.
Full textCastagna, R., C. Sciascia, A. R. Srimath Kandada, M. Meneghetti, G. Lanzani, and C. Bertarelli. "Light-triggered conducting properties of a random carbon nanotubes network in a photochromic polymer matrix." In SPIE NanoScience + Engineering, edited by Didier Pribat, Young-Hee Lee, and Manijeh Razeghi. SPIE, 2011. http://dx.doi.org/10.1117/12.893958.
Full textSoldano, Caterina, Swastik Kar, Yung Joon Jung, and Pulikel M. Ajayan. "Electro-Mechanically Robust, Flexible Carbon Nanotube-PDMS Composite for High Performance Field Emission." In ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17034.
Full textBougher, Thomas L., Virendra Singh, and Baratunde A. Cola. "Thermal Interface Materials From Vertically Aligned Polymer Nanotube Arrays." In ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/mnhmt2013-22226.
Full textPham, Giang T., Young-Bin Park, and Ben Wang. "Development of Carbon-Nanotube-Based Nanocomposite Strain Sensor." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82309.
Full textLee, S. W., D. Katz, H. Grebel, D. Lopez, and A. Kornblit. "Carbon Nanotube/Conducting Polymer Addressable Interconnects." In CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452712.
Full textReports on the topic "Conducting Polymer Nanotubes"
Yang, Arnold C. Dispersion and Reinforcement of Nanotubes in High Temperature Polymers for Ultrahigh Strength and Thermally Conductive Nanocomposites. Fort Belvoir, VA: Defense Technical Information Center, October 2007. http://dx.doi.org/10.21236/ada472590.
Full text