Journal articles on the topic 'Conductance quantization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Conductance quantization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Batra, Inder P. "Origin of conductance quantization." Surface Science 395, no. 1 (January 1998): 43–45. http://dx.doi.org/10.1016/s0039-6028(97)00601-8.
Full textSorée, Bart, Wim Magnus, and Wim Schoenmaker. "Conductance quantization and dissipation." Physics Letters A 310, no. 4 (April 2003): 322–28. http://dx.doi.org/10.1016/s0375-9601(03)00351-7.
Full textNöckel, J. U. "Conductance quantization and backscattering." Physical Review B 45, no. 24 (June 15, 1992): 14225–30. http://dx.doi.org/10.1103/physrevb.45.14225.
Full textCosby, Ronald M., Dustin R. Humm, and Yong S. Joe. "Nanoelectronics using conductance quantization." Journal of Applied Physics 83, no. 7 (April 1998): 3914–16. http://dx.doi.org/10.1063/1.366626.
Full textSARMA, S. DAS, and SONG HE. "THEORY OF ELECTRON TRANSPORT THROUGH QUANTUM CONSTRICTIONS IN SEMICONDUCTOR NANOSTRUCTURES." International Journal of Modern Physics B 07, no. 19 (August 30, 1993): 3375–404. http://dx.doi.org/10.1142/s0217979293003279.
Full textTakayanagi, Kunio, Yukihito Kondo, and Hideo Ohnishi. "Conductance Quantization of Gold Nanowire." Materia Japan 40, no. 12 (2001): 1000. http://dx.doi.org/10.2320/materia.40.1000.
Full textBascones, E., G. Gómez-Santos, and J. J. Sáenz. "Statistical significance of conductance quantization." Physical Review B 57, no. 4 (January 15, 1998): 2541–44. http://dx.doi.org/10.1103/physrevb.57.2541.
Full textKrompiewski, S. "Conductance quantization in ferromagnetic nanowires." Journal of Physics: Condensed Matter 12, no. 7 (February 3, 2000): 1323–28. http://dx.doi.org/10.1088/0953-8984/12/7/315.
Full textKivelson, S., and S. A. Trugman. "Quantization of the Hall conductance from density quantization alone." Physical Review B 33, no. 6 (March 15, 1986): 3629–35. http://dx.doi.org/10.1103/physrevb.33.3629.
Full textOoka, Yutaka, Teruo Ono, and Hideki Miyajima. "Conductance quantization in ferromagnetic Ni nanowire." Journal of Magnetism and Magnetic Materials 226-230 (May 2001): 1848–49. http://dx.doi.org/10.1016/s0304-8853(00)00881-7.
Full textYacoby, A., H. L. Stormer, Ned S. Wingreen, L. N. Pfeiffer, K. W. Baldwin, and K. W. West. "Nonuniversal Conductance Quantization in Quantum Wires." Physical Review Letters 77, no. 22 (November 25, 1996): 4612–15. http://dx.doi.org/10.1103/physrevlett.77.4612.
Full textLehmann, H., T. Benter, I. von Ahnen, J. Jacob, T. Matsuyama, U. Merkt, U. Kunze, et al. "Spin-resolved conductance quantization in InAs." Semiconductor Science and Technology 29, no. 7 (May 12, 2014): 075010. http://dx.doi.org/10.1088/0268-1242/29/7/075010.
Full textPoncharal, Ph, St Frank, Z. L. Wang, and W. A. de Heer. "Conductance quantization in multiwalled carbon nanotubes." European Physical Journal D 9, no. 1 (December 1999): 77–79. http://dx.doi.org/10.1007/s100530050402.
Full textNawrocki, Waldemar. "Electrical and thermal conductance quantization in nanostructures." Journal of Physics: Conference Series 129 (October 1, 2008): 012023. http://dx.doi.org/10.1088/1742-6596/129/1/012023.
Full textSorée, Bart, Wim Magnus, and Wim Schoenmaker. "Nonequilibrium mesoscopic quantum transport and conductance quantization." Semiconductor Science and Technology 19, no. 4 (March 8, 2004): S235—S237. http://dx.doi.org/10.1088/0268-1242/19/4/079.
Full textHickmott, T. W. "Fractional Quantization in ac Conductance ofAlxGa1−xAsCapacitors." Physical Review Letters 57, no. 6 (August 11, 1986): 751–54. http://dx.doi.org/10.1103/physrevlett.57.751.
Full textKaufman, D., Y. Berk, B. Dwir, A. Rudra, A. Palevski, and E. Kapon. "Conductance quantization in V-groove quantum wires." Physical Review B 59, no. 16 (April 15, 1999): R10433—R10436. http://dx.doi.org/10.1103/physrevb.59.r10433.
Full textShimizu, Masayoshi, Eiji Saitoh, Hideki Miyajima, and Yoshichika Otani. "Conductance quantization in ferromagnetic Ni nano-constriction." Journal of Magnetism and Magnetic Materials 239, no. 1-3 (February 2002): 243–45. http://dx.doi.org/10.1016/s0304-8853(01)00544-3.
Full textYosefin, M., and M. Kaveh. "Conductance quantization in a general confining potential." Physical Review B 44, no. 7 (August 15, 1991): 3355–58. http://dx.doi.org/10.1103/physrevb.44.3355.
Full textZwolak, Michael, James Wilson, and Massimiliano Di Ventra. "Dehydration and ionic conductance quantization in nanopores." Journal of Physics: Condensed Matter 22, no. 45 (October 29, 2010): 454126. http://dx.doi.org/10.1088/0953-8984/22/45/454126.
Full textLeng, Manhua, and Craig S. Lent. "Conductance quantization in a periodically modulated channel." Physical Review B 50, no. 15 (October 15, 1994): 10823–33. http://dx.doi.org/10.1103/physrevb.50.10823.
Full textMagnus, Wim, and Wim Schoenmaker. "Quantized conductance, circuit topology, and flux quantization." Physical Review B 61, no. 16 (April 15, 2000): 10883–89. http://dx.doi.org/10.1103/physrevb.61.10883.
Full textKatsnelson, M. I. "Conductance quantization in graphene nanoribbons: adiabatic approximation." European Physical Journal B 57, no. 3 (June 2007): 225–28. http://dx.doi.org/10.1140/epjb/e2007-00168-5.
Full textZwolak, Michael, James Wilson, Johan Lagerqvist, and Massimiliano Di Ventra. "Dehydration and Ionic Conductance Quantization in Nanopores." Biophysical Journal 100, no. 3 (February 2011): 471a. http://dx.doi.org/10.1016/j.bpj.2010.12.2761.
Full textBachmann, Sven, Alex Bols, Wojciech De Roeck, and Martin Fraas. "Quantization of Conductance in Gapped Interacting Systems." Annales Henri Poincaré 19, no. 3 (February 20, 2018): 695–708. http://dx.doi.org/10.1007/s00023-018-0651-0.
Full textBezák, Viktor. "Conductance quantization of an ideal Sharvin contact." Annals of Physics 322, no. 11 (November 2007): 2603–17. http://dx.doi.org/10.1016/j.aop.2007.06.002.
Full textFaist, J., P. Guéret, and H. Rothuizen. "Observation of impurity effects on conductance quantization." Superlattices and Microstructures 7, no. 4 (January 1990): 349–51. http://dx.doi.org/10.1016/0749-6036(90)90224-u.
Full textBracken, Paul. "Topological invariance of the Hall conductance and quantization." Modern Physics Letters B 29, no. 24 (September 3, 2015): 1550135. http://dx.doi.org/10.1142/s0217984915501353.
Full textSrivastav, Saurabh Kumar, Manas Ranjan Sahu, K. Watanabe, T. Taniguchi, Sumilan Banerjee, and Anindya Das. "Universal quantized thermal conductance in graphene." Science Advances 5, no. 7 (July 2019): eaaw5798. http://dx.doi.org/10.1126/sciadv.aaw5798.
Full textFadaly, Elham M. T., Hao Zhang, Sonia Conesa-Boj, Diana Car, Önder Gül, Sébastien R. Plissard, Roy L. M. Op het Veld, Sebastian Kölling, Leo P. Kouwenhoven, and Erik P. A. M. Bakkers. "Observation of Conductance Quantization in InSb Nanowire Networks." Nano Letters 17, no. 11 (July 14, 2017): 6511–15. http://dx.doi.org/10.1021/acs.nanolett.7b00797.
Full textAgraït, N., J. G. Rodrigo, and S. Vieira. "Conductance steps and quantization in atomic-size contacts." Physical Review B 47, no. 18 (May 1, 1993): 12345–48. http://dx.doi.org/10.1103/physrevb.47.12345.
Full textAlekseev, Anton Yu, and Vadim V. Cheianov. "Nonuniversal conductance quantization in high-quality quantum wires." Physical Review B 57, no. 12 (March 15, 1998): R6834—R6837. http://dx.doi.org/10.1103/physrevb.57.r6834.
Full textElhoussine, F., S. Mátéfi-Tempfli, A. Encinas, and L. Piraux. "Conductance quantization in magnetic nanowires electrodeposited in nanopores." Applied Physics Letters 81, no. 9 (August 26, 2002): 1681–83. http://dx.doi.org/10.1063/1.1503400.
Full textCosta-Krämer, J. L., N. García, and H. Olin. "Conductance Quantization in Bismuth Nanowires at 4 K." Physical Review Letters 78, no. 26 (June 30, 1997): 4990–93. http://dx.doi.org/10.1103/physrevlett.78.4990.
Full textYanson, A. I., and J. M. van Ruitenbeek. "Do Histograms Constitute a Proof for Conductance Quantization?" Physical Review Letters 79, no. 11 (September 15, 1997): 2157. http://dx.doi.org/10.1103/physrevlett.79.2157.
Full textTaboryski, R., A. Kristensen, C. B. So/rensen, and P. E. Lindelof. "Conductance-quantization broadening mechanisms in quantum point contacts." Physical Review B 51, no. 4 (January 15, 1995): 2282–86. http://dx.doi.org/10.1103/physrevb.51.2282.
Full textLi, C. Z., H. X. He, A. Bogozi, J. S. Bunch, and N. J. Tao. "Molecular detection based on conductance quantization of nanowires." Applied Physics Letters 76, no. 10 (March 6, 2000): 1333–35. http://dx.doi.org/10.1063/1.126025.
Full textKiesslich, G., A. Wacker, and E. Sch�ll. "Geometry Effects at Conductance Quantization in Quantum Wires." physica status solidi (b) 216, no. 2 (December 1999): R5—R6. http://dx.doi.org/10.1002/(sici)1521-3951(199912)216:2
Oshima, Hirotaka, and Kenjiro Miyano. "Spin-dependent conductance quantization in nickel point contacts." Applied Physics Letters 73, no. 15 (October 12, 1998): 2203–5. http://dx.doi.org/10.1063/1.122423.
Full textYounis, Adnan, Dewei Chu, and Sean Li. "Voltage sweep modulated conductance quantization in oxide nanocomposites." J. Mater. Chem. C 2, no. 48 (October 10, 2014): 10291–97. http://dx.doi.org/10.1039/c4tc01984a.
Full textImamura, Hiroshi, Nobuhiko Kobayashi, Saburo Takahashi, and Sadamichi Maekawa. "Conductance Quantization and Magnetoresistance in Magnetic Point Contacts." Physical Review Letters 84, no. 5 (January 31, 2000): 1003–6. http://dx.doi.org/10.1103/physrevlett.84.1003.
Full textLi, Jingze, Taisuke Kanzaki, Kei Murakoshi, and Yoshihiro Nakato. "Metal-dependent conductance quantization of nanocontacts in solution." Applied Physics Letters 81, no. 1 (July 2002): 123–25. http://dx.doi.org/10.1063/1.1491015.
Full textXu, Ying, Xingqiang Shi, Zhi Zeng, Zhao Yang Zeng, and Baowen Li. "Conductance oscillation and quantization in monatomic Al wires." Journal of Physics: Condensed Matter 19, no. 5 (January 16, 2007): 056010. http://dx.doi.org/10.1088/0953-8984/19/5/056010.
Full textFaist, J., P. Guéret, and H. Rothuizen. "Possible observation of impurity effects on conductance quantization." Physical Review B 42, no. 5 (August 15, 1990): 3217–19. http://dx.doi.org/10.1103/physrevb.42.3217.
Full textLi, C. Z., H. Sha, and N. J. Tao. "Adsorbate effect on conductance quantization in metallic nanowires." Physical Review B 58, no. 11 (September 15, 1998): 6775–78. http://dx.doi.org/10.1103/physrevb.58.6775.
Full textKoma, Tohru, Toru Morishita, and Taro Shuya. "Quantization of Conductance in Quasi-periodic Quantum Wires." Journal of Statistical Physics 174, no. 5 (January 16, 2019): 1137–60. http://dx.doi.org/10.1007/s10955-019-02227-1.
Full textKrinner, Sebastian, Martin Lebrat, Dominik Husmann, Charles Grenier, Jean-Philippe Brantut, and Tilman Esslinger. "Mapping out spin and particle conductances in a quantum point contact." Proceedings of the National Academy of Sciences 113, no. 29 (June 29, 2016): 8144–49. http://dx.doi.org/10.1073/pnas.1601812113.
Full textLESOVICK, G. B. "THERMOPOWER IN BALLISTIC 2D MICROJUNCTION WITH QUANTIZED RESISTANCE." Modern Physics Letters B 03, no. 08 (May 20, 1989): 611–13. http://dx.doi.org/10.1142/s0217984989000960.
Full textDanneau, R., W. R. Clarke, O. Klochan, A. P. Micolich, A. R. Hamilton, M. Y. Simmons, M. Pepper, and D. A. Ritchie. "Conductance quantization and the 0.7×2e2∕h conductance anomaly in one-dimensional hole systems." Applied Physics Letters 88, no. 1 (January 2, 2006): 012107. http://dx.doi.org/10.1063/1.2161814.
Full textSimanullang, Marolop Dapot Krisman, G. Bimananda M. Wisna, Koichi Usami, and Shunri Oda. "Synthesis and characterization of Ge-core/a-Si-shell nanowires with conformal shell thickness deposited after gold removal for high-mobility p-channel field-effect transistors." Nanoscale Advances 2, no. 4 (2020): 1465–72. http://dx.doi.org/10.1039/d0na00023j.
Full text