Dissertations / Theses on the topic 'Condition numbers of matrices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 34 dissertations / theses for your research on the topic 'Condition numbers of matrices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Edelman, Alan. "Eigenvalues and condition numbers of random matrices." Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/14322.
Full textUwamariya, Denise. "Large deviations of condition numbers of random matrices." Licentiate thesis, Linköpings universitet, Tillämpad matematik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-175751.
Full textBöttcher, A., and S. M. Grudsky. "Estimates for the condition numbers of large semi-definite Toeplitz matrices." Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801238.
Full textArslan, Bahar. "Functions of structured matrices." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/functions-of-structured-matrices(75511801-f8b8-4ac3-9434-35f88b1d0bb0).html.
Full textNagata, Munehiro. "Studies on Accurate Singular Value Decomposition for Bidiagonal Matrices." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215686.
Full textKyoto University (京都大学)
0048
新制・課程博士
博士(情報学)
甲第19859号
情博第610号
新制||情||106(附属図書館)
32895
京都大学大学院情報学研究科数理工学専攻
(主査)教授 中村 佳正, 教授 矢ケ崎 一幸, 教授 山下 信雄
学位規則第4条第1項該当
Meinke, Ashley Marie. "Fibonacci Numbers and Associated Matrices." Kent State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=kent1310588704.
Full textSegura, ugalde Esteban. "Computation of invariant pairs and matrix solvents." Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0045/document.
Full textIn this thesis, we study some symbolic-numeric aspects of the invariant pair problem for matrix polynomials. Invariant pairs extend the notion of eigenvalue-eigenvector pairs, providing a counterpart of invariant subspaces for the nonlinear case. They have applications in the numeric computation of several eigenvalues of a matrix polynomial; they also present an interest in the context of differential systems. Here, a contour integral formulation is applied to compute condition numbers and backward errors for invariant pairs. We then adapt the Sakurai-Sugiura moment method to the computation of invariant pairs, including some classes of problems that have multiple eigenvalues, and we analyze the behavior of the scalar and block versions of the method in presence of different multiplicity patterns. Results obtained via direct approaches may need to be refined numerically using an iterative method: here we study and compare two variants of Newton’s method applied to the invariant pair problem. The matrix solvent problem is closely related to invariant pairs. Therefore, we specialize our results on invariant pairs to the case of matrix solvents, thus obtaining formulations for the condition number and backward errors, and a moment-based computational approach. Furthermore, we investigate the relation between the matrix solvent problem and the triangularization of matrix polynomials
Fouchet, Karine. "Powers of Blaschke factors and products : Fourier coefficients and applications." Thesis, Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0647.
Full textIn this thesis we first compute asymptotic formulas for Fourier coefficients of the n th-power of a Blaschke factor as n gets large which extend and sharpen known estimates on those coefficients. To perform this study we use standard tools of asymptotic analysis: the so-called method of the stationary phase and the method of the steepest descent. Next as an application of our asymptotic formulas we construct strongly annular functions with Taylor coefficients satisfying sharp summation properties. This allows us to generalize and sharpen results by D.D. Bonar, F.W. Carroll and G. Piranian (1977). Making use of properties of flat polynomials, we also present another construction of such functions built on a theorem by E. Bombieri and J. Bourgain (2009). In another part of the thesis we obtain sharp upper bounds as n gets large, on the sequence (\widehat{B^{n}}(k))_{k\geq0} of the Fourier coefficients of the n th-power of an arbitrary finite Blaschke product B, which we apply in the last part of the thesis to a question raised by J.J. Schäffer (1970) in matrix analysis/operator theory. We also provide constructive examples of finite Blaschke products that achieve our upper bounds. The last chapter is dedicated to the study of the condition numbers of large matrices T\in\mathcal{M}_{n}(\mathbb{C}) with given spectrum acting on a Hilbert space or on a Banach space, espacially for some specific classes of matrices, the so-called Kreiss matrices. In the Banach case, we use our upper bound on (\widehat{B^{n}}(k))_{k\geq0} where B is arbitrary to exhibit matrices with arbitrary given spectrum refuting Schäffer's conjecture
Hofmann, B., and G. Fleischer. "Stability Rates for Linear Ill-Posed Problems with Convolution and Multiplication Operators." Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800987.
Full textNúñez, Araya Manuel A. (Manuel Adolfo) 1964. "Condition numbers and properties of central trajectories in convex programming." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10214.
Full textZlatos, Andrej Simon Barry. "Sum rules and the Szego condition for Jacobi matrices /." Diss., Pasadena, Calif. : California Institute of Technology, 2003. http://resolver.caltech.edu/CaltechETD:etd-05222003-114151.
Full textRelton, Samuel. "Algorithms for matrix functions and their Fréchet derivatives and condition numbers." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/algorithms-for-matrix-functions-and-their-frechet-derivatives-and-condition-numbers(f20e8144-1aa0-45fb-9411-ddc0dc7c2c31).html.
Full textOrdóñez, Fernando 1970. "On the explanatory value of condition numbers for convex optimization : theoretical issues and computational experience." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/29261.
Full textIncludes bibliographical references (p. 213-216).
The modern theory of condition numbers for convex optimization problems was developed for convex problems in conic format: ... The condition number C(d) for (CPd) has been shown in theory to provide upper and/or lower bounds on many behavioral and computational characteristics of (CPd), from sizes of feasible and optimal solutions to the complexity of algorithms for solving (CPd). However, it is not known to what extent these bounds might be reasonably close to their actual measures of interest. One difficulty in testing the practical relevance of such theoretical bounds is that most practical problems are not presented in conic format. While it is usually easy to transform convex optimization problems into conic format, such transformations are not unique and do not maintain the original data, making this strategy somewhat irrelevant for computational testing of the theory. The purpose of this thesis is to overcome the obstacles stated above. We introduce an extension of condition number theory to include convex optimization problems not in conic form, and is thus more amenable to computational evaluation. This extension considers problems of the form: ... where P is a closed convex set, no longer required to be a cone. We extend many results of condition number theory to problems of form (GPd), including bounds on optimal solution sizes, optimal objective function values, interior-point algorithm complexity, etc.
(cont.) We also test the practical relevance of condition number bounds on quantities of interest for linear optimization problems. We use the NETLIB suite of linear optimization problems as a test-bed for condition number computation and analysis. Our computational results indicate that: (i) most of the NETLIB suite problems have infinite condition number (prior to pre-processing heuristics) (ii) there exists a positive linear relationship between the IPM iterations and log C(d) for the post-processed problem instances, which accounts for 42% of the variation in IPM iterations, (iii) condition numbers provide fairly tight upper bounds on the sizes of minimum-norm feasible solutions, and (iv) condition numbers provide fairly poor upper bounds on the sizes of optimal solutions and optimal objective function values.
by Fernando Ordóñez.
Ph.D.
Pielaszkiewicz, Jolanta Maria. "Contributions to High–Dimensional Analysis under Kolmogorov Condition." Doctoral thesis, Linköpings universitet, Matematisk statistik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122610.
Full textNguyen, Viet anh. "Contributions to tensor models, Hurwitz numbers and Macdonald-Koornwinder polynomials." Thesis, Angers, 2017. http://www.theses.fr/2017ANGE0052/document.
Full textIn this thesis, I study three related subjects: tensor models, Hurwitz numbers and Macdonald-Koornwinder polynomials. Tensor models are generalizations of matrix models as an approach to quantum gravity in arbitrary dimensions (matrix models give a 2D version). I study a specific model called the quartic melonic tensor model. Its specialty is that it can be transformed into a multi-matrix model which is very interesting by itself. With the help of well-established tools, I am able to compute the first two leading orders of their 1=N expansion. Among many interpretations, Hurwitz numbers count the number of weighted ramified coverings of Riemann surfaces. They are connected to many subjects of contemporary mathematics such as matrix models, integrable equations and moduli spaces of complex curves. My main contribution is an explicit formula for one-part double Hurwitz numbers with completed 3-cycles. This explicit formula also allows me to prove many interesting properties of these numbers. The final subject of my study is Macdonald-Koornwinder polynomials, in particular their Littlewood identities. These polynomials form important bases of the algebra of symmetric polynomials. One of the most important problems in symmetric function theory is to decompose a symmetric polynomial into the Macdonald basis. The obtained decomposition (in particular, if the coefficients are explicit and reasonably compact) is called a Littlewood identity. In this thesis, I study many recent Littlewood identities of Rains and Warnaar. My own contributions include a proof of an extension of one of their identities and partial progress towards generalization of one another
Nunez, Manuel A., and Robert M. Freund. "Condition-Measure Bounds on the Behavior of the Central Trajectory of a Semi-Definete Program." Massachusetts Institute of Technology, Operations Research Center, 1999. http://hdl.handle.net/1721.1/5132.
Full textSushma, Kumari. "Topics in random matrices and statistical machine learning." Kyoto University, 2018. http://hdl.handle.net/2433/235047.
Full textLogins, Andris. "High speed milling technological regimes, process condition and technological equipment condition influence on surface quality parameters of difficult to cut materials." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/164122.
Full text[CA] La qualitat superficial en les peces mecanitzades depèn de l'acabat superficial, resultat de les marques deixades per l'eina durant el procés de tall. Les aproximacions teòriques tradicionals indiquen que aquestes marques estan relacionades amb els paràmetres de tall (velocitat de tall, avanç, profunditat de tall...), el tipus de màquina, el material de la peça, la geometria de l'eina, etc. Però no tots els tipus de mecanitzat i selecció de materials poden donar un resultat ambigu. Avui en dia, de manera progressiva, s'estan utilitzant les tècniques de fresat d'Alta Velocitat sobre materials de difícil mecanització cada vegada més. El fresat d'Alta Velocitat implica un considerable nombre de paràmetres del procés que poden afectar la formació topogràfica 3D de la superfície. La hipòtesi que els paràmetres de rugositat superficial depenen de les empremtes deixades per l'eina, determinades per les condicions de treball i les propietats de l'entorn, va conduir al desenvolupament d'una metodologia d'investigació personalitzada. Aquest treball de recerca mostra com la combinació dels paràmetres, inclinació de l'eix de l'eina, deflexió geomètrica de l'eina i comportament vibracional de l'entorn, influencien sobre el paràmetre de rugositat superficial 3D, Sz. El model general va ser dividit en diverses parts, on s'ha descrit la influència de paràmetres addicionals del procés, sent inclosos en el model general proposat. El procés incremental seguit permet a l'autor desenvolupar un model matemàtic general, pas a pas, testejant i afegint els components que més afecten a la formació de la topografia de la superfície. En la primera part de la investigació es va seleccionar un procés de fresat amb eines de punta plana. Primer, s'analitza la geometria de l'eina, combinada amb múltiples avanços, per distingir els principals paràmetres que afecten la rugositat superficial. S'introdueix un model de predicció amb un component bàsic per a l'altura de la rugositat, obtinguda a través de la geometria de l'eina de tall. A continuació, es duen a terme experiments més específicament dissenyats, variant paràmetres tecnològics. Això comença amb l'anàlisi de la inclinació de l'eix de l'eina contra la taula de fresat. Els espècimens d'anàlisi són mostres amb quatre recorreguts de tall rectes amb tall en sentit contrari. Les trajectòries lineals amb diferents direccions donen l'oportunitat d'analitzar la inclinació del fus de fresat en la màquina. Una anàlisi visual revelà diferències entre direccions de tall oposades, així com marques deixades pel tall posterior de l'eina. Considerant les desviacions de les marques de tall observades en les imatges de rugositat superficial obtingudes a partir de les mesures, es va introduir una anàlisi sobre el comportament dinàmic de l'equip i de l'eina de tall. Les vibracions produeixen desviacions en la taula de fresat i en l'eina de tall. Aquestes desviacions van ser detectades i incloses en el model matemàtic per completar la precisió en la predicció de el model. Finalment, el model de predicció de el paràmetre de rugositat Sz va ser comprovat amb un major nombre de paràmetres del procés. Els valors de Sz mesurats i predits, van ser comparats i analitzats estadísticament. Els resultats van revelar una major desviació de la rugositat predita en les mostres fabricades amb diferents màquines i amb diferents avanços. Importants conclusions sobre la precisió de l'equip de fabricació han estat extretes i d'elles es desprèn que l'empremta de l'eina de tall està directament relacionada amb els paràmetres de la topografia de la superfície. A més, la influència de la empremta està afectada per la geometria de l'eina de tall, la rigidesa de l'eina i la precisió de l'equip. La geometria de l'eina conforma la base del paràmetre Sz, desviació de l'altura de la superfície. Les conclusions assolides són la base per recomanacions pràctiques, aplicables en la indústria.
[EN] Surface quality of machined parts highly depends on the surface texture that reflects the marks, left by the tool during the cutting process. The traditional theoretical approaches indicate that these marks are related to the cutting parameters (cutting speed, feed, depths of cut...), the machining type, the part material, the tool geometry, etc. But, different machining type and material selection can give a variable result. In nowadays, more progressively, High Speed milling techniques have been applied on hard-to-cut materials more and more extensively. High-speed milling involves a considerable number of process parameters that may affect the 3D surface topography formation. The hypothesis that surface topography parameters depends on the traces left by the tool, determined by working conditions and environmental properties, led to the development of a custom research methodology. This research work shows how the parameters combination, tool axis inclination, tool geometric deflection, cutting tool geometry and environment vibrational behavior, influence on 3D surface topography parameter Sz. The general model was divided in multiple parts, where additional process parameters influence has been described and included in general model proposed. The incremental process followed allows the author to develop a general mathematical model, step by step, testing and adding the components that affect surface topography formation the most. In the first part of the research a milling procedure with flat end milling tools was selected. First, tool geometry, combined with multiple cutting feed rates, is analyzed to distinguish the main parameters that affect surface topography. A prediction model is introduced with a basic topography height component, performed by cutting tool geometry. Next, specifically designed experiments were conducted, varying technological parameters. That starts with cutting tool axis inclination against the milling table analysis. The specimens of analysis are samples with 4 contrary aimed straight cutting paths. Linear paths in different directions give a chance to analyze milling machine spindle axis topography, as well as marks left from cutting tool back cutting edge. Considering the deviations of cutting marks observed in the images of the surface topography obtained through the measurements, the milling equipment and cutting tool dynamical behavior analysis were introduced. Vibrations produce deviations in the milling table and cutting tool. These deviations were detected and included in the mathematical model to complete the prediction model accuracy. Finally, the prediction model of the topography parameter SZ was tested with increased number of process parameters. Measured and predicted SZ values were compared and analyzed statistically. Results revealed high predicted topography deviation on samples manufactured with different machines and with different feed rates. Relevant conclusions about the manufacturing equipment accuracy have been drawn and they state that cutting tool's footprint is directly related with surface topography parameters. Besides, footprint influence is affected by cutting tool geometry, tool stiffness and equipment accuracy.
Logins, A. (2021). High speed milling technological regimes, process condition and technological equipment condition influence on surface quality parameters of difficult to cut materials [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/164122
TESIS
Zhan, Cheng Juan. "An Alternative Approach to Visualizing Stock Market Correlation Matrices- An Empirical study of forming portfolios that contain only small numbers of stocks using both existing and newly discovered visualization methods." Thesis, University of Canterbury. Economics and Finance, 2014. http://hdl.handle.net/10092/9649.
Full textLechner, Gandalf. "On the construction of quantum field theories with factorizing S-matrices." Doctoral thesis, [S.l.] : [s.n.], 2006. http://webdoc.sub.gwdg.de/diss/2006/lechner.
Full textGomes, Márcio Roberto. "Explorando o tratamento matricial para uma introdução aos números complexos." Universidade Federal de Viçosa, 2013. http://locus.ufv.br/handle/123456789/5883.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The objective of this work is to give a more geometric approach in the introduction of complex numbers in order to make them more compreenssíveis and eliminating the idea of strange numbers and difficult to understand. To achieve this far will be a study of the properties of matrices 2x2 operative type [ a −b b a ] ,with a, b ϵR, reaching the result that these matrices form one body. Then associated with such matrices to points on the plane R2. From the result of this association gets to multiply a vector by a matrix of this type corresponds to a spin efeturar and multiply it by a scalar. From then makes two-way matching between the matrices and complex numbers so that all properties studied in the previous section remain true. As a result of this correspondence we obtain that multiplying by i2 corresponds to a spin 180o , I.e., keep the direction and reverse direction which corresponds to multiplying by (−1), I.e., i2 = −1 . Thus one arrives at a result which is usually presented to students in the introduction of complex numbers but with a meaning that once lacked. Then did a study of compliance and deformation of transformations of variables through functions complexas.Com this approach is facilitated understanding by students of their same concepts and the same function, to conclude we present a practical situation in which it uses the complexs numbers.
O objetivo deste trabalho é dar um enfoque mais geométrico na introdução dos números complexos, de forma a torná-los mais compreensíveis e eliminando a ideia de números estranhos e de difícil compreensão.Para alcançar tal objetivo far-se-á um estudo das propriedades operatórias das matrizes 2x2 do tipo [ a −b b a ] , com a, b ϵR, chegando ao resultado de que tais matrizes formam um corpo. Em seguida associa-se tais matrizes a pontos do plano R2. A partir desta associação obtém o resultado que multiplicar um vetor por uma matriz deste tipo corresponde a efeturar um giro e multiplicá-lo por um escalar. A partir daí faz a correspondência biunívoca entre as matrizes e os números complexos de forma que todas as propriedades estudadas no item anterior permanecem verdadeiras. Como resultado desta correspondência obtemos que multiplicar por i2 corresponde a um giro de 180o , isto é, manter a direção e inverter o sentido o que corresponde a multiplicar por (−1), ou seja que i2 = −1. Desta forma chega-se ao resultado que normalmente é apresentado aos alunos na introdução dos números complexos porém com um significado que outrora não possuía. A seguir fez um estudo da conformidade e deformação das transformações através de funçõeoes de variáveis complexas.Com esta abordagem fica facilitada a compreensão por parte dos alunos dos seus conceitos e mesmo a função dos mesmos, para concluir apresentamos uma situação prática em que se utiliza os números complexos.
Borot, Gaëtan. "Quelques problèmes de géométrie énumérative, de matrices aléatoires, d'intégrabilité, étudiés via la géométrie des surfaces de Riemann." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112092/document.
Full textComplex analysis is a powerful tool to study classical integrable systems, statistical physics on the random lattice, random matrix theory, topological string theory, … All these topics share certain relations, called "loop equations" or "Virasoro constraints". In the simplest case, the complete solution of those equations was found recently : it can be expressed in the framework of differential geometry over a certain Riemann surface which depends on the problem : the "spectral curve". This thesis is a contribution to the development of these techniques, and to their applications.First, we consider all order large N asymptotics in some N-dimensional integrals coming from random matrix theory, or more generally from "log gases" problems. We shall explain how to use loop equations to establish those asymptotics in beta matrix models within a one cut regime. This can be applied in the study of large fluctuations of the maximum eigenvalue in beta matrix models, and lead us to heuristic predictions about the asymptotics of Tracy-Widom beta law to all order, and for all positive beta. Second, we study the interplay between integrability and loop equations. As a corollary, we are able to prove the previous prediction about the asymptotics to all order of Tracy-Widom law for hermitian matrices.We move on with the solution of some combinatorial problems in all topologies. In topological string theory, a conjecture from Bouchard, Klemm, Mariño and Pasquetti states that certain generating series of Gromov-Witten invariants in toric Calabi-Yau threefolds, are solutions of loop equations. We have proved this conjecture in the simplest case, where those invariants coincide with the "simple Hurwitz numbers". We also explain recent progress towards the general conjecture, in relation with our work. In statistical physics on the random lattice, we have solved the trivalent O(n) model introduced by Kostov, and we explain the method to solve more general statistical models.Throughout the thesis, the computation of some "generalized matrices integrals" appears to be increasingly important for future applications, and this appeals for a general theory of loop equations
Santos, Marcus Vinicio de Jesus. "Transformação de Möbius." Universidade Federal de Sergipe, 2016. https://ri.ufs.br/handle/riufs/6499.
Full textO objetivo deste trabalho é estudar transformações de Möbius arbitrárias por meio de transformações complexas mais simples, a saber: a Translação, a Rotação, a Homotetia (Contração e Dilatação) e a Inversão. Os resultados obtidos foram aplicados em círculos e retas. No final, damos a alternativa de estudar transformações de Möbius via matrizes.
Chen, Zhangchi. "Differential invariants of parabolic surfaces and of CR hypersurfaces; Directed harmonic currents near non-hyperbolic linearized singularities; Hartogs’ type extension of holomorphic line bundles; (Non-)invertible circulant matrices On differential invariants of parabolic surfaces A counterexample to Hartogs’ type extension of holomorphic line bundles Directed harmonic currents near non-hyperbolic linearized singularities Affine Homogeneous Surfaces with Hessian rank 2 and Algebras of Differential Invariants On nonsingularity of circulant matrices." Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASM005.
Full textThe thesis consists of 6 papers. (1) We calculate the generators of SA₃(ℝ)-invariants for parabolic surfaces. (2) We calculate rigid relative invariants for rigid constant Levi-rank 1 and 2-non-degenerate hypersurfaces in ℂ³: V₀, I₀, Q₀ having 11, 52, 824 monomials in their numerators. (3) We organize all affinely homogeneous nondegenerate surfaces in ℂ³ in inequivalent branches. (4) For a directed harmonic current near a non-hyperbolic linearized singularity which does not give mass to any of the trivial separatrices and whose trivial extension across 0 is ddc-closed, we show that the Lelong number at 0 is: 4.1) strictly positive if the eigenvalue λ>0; 4.2) zero if λ is a negative rational number; 4.3) zero if λ<0 and if T is invariant under the action of some cofinite subgroup of the monodromy group. (5) We construct non-extendable, in the sense of Hartogs, holomorphic line bundles in any dimension n>=2. (6) We show that circulant matrices having k ones and k+1 zeros in the first row are always nonsingular when 2k+1 is either a power of a prime, or a product of two distinct primes. For any other integer 2k+1 we exhibit a singular circulant matrix
Silva, Roberto da. "Distribuição de autovalores de matrizes aleatórias." Universidade de São Paulo, 2000. http://www.teses.usp.br/teses/disponiveis/43/43133/tde-11062002-103116/.
Full textIn a detailed review we obtain a semi-circle law for the density of states in theWigners Gaussian Ensemble. Also we talk about Dysons Analogy, seeing the eigenvalues like charges that repulse themselves in the unitary circle, showing that this case the density of states is uniform. In a more general context we obtain the semi-circle law, proving the Glivenko-Cantelli Theorem to strongly correlated variables, using a combinatorial method of Paths' Counting. Thus we are showing the stability of the semi-circle Law. Also, in this dissertation we study the correlation functions in the Gaussian and Circular ensembles showing that using the Gram's Method in the case that eigenvalues are limited in a interval. In these ensembles we computed the density of states. More precisely, in a Chebychev ensemble the results were obtained analytically. In this ensemble, we also obtain graphics of the truncated correlation function.
Ferreira, candido Renato markele. "Analyse d’atteignabilité de systèmes max-plus incertains." Thesis, Angers, 2017. http://www.theses.fr/2017ANGE0014.
Full textDiscrete Event Dynamic Systems (DEDS) are discrete-state systems whose dynamics areentirely driven by the occurrence of asynchronous events over time. Linear equations in themax-plus algebra can be used to describe DEDS subjected to synchronization and time delayphenomena. The reachability analysis concerns the computation of all states that can bereached by a dynamical system from an initial set of states. The reachability analysis problemof Max Plus Linear (MPL) systems has been properly solved by characterizing the MPLsystems as a combination of Piece-Wise Affine (PWA) systems and then representing eachcomponent of the PWA system as Difference-Bound Matrices (DBM). The main contributionof this thesis is to present a similar procedure to solve the reachability analysis problemof MPL systems subjected to bounded noise, disturbances and/or modeling errors, calleduncertain MPL (uMPL) systems. First, we present a procedure to partition the state spaceof an uMPL system into components that can be completely represented by DBM. Then weextend the reachability analysis of MPL systems to uMPL systems. Moreover, the results onreachability analysis of uMPL systems are used to solve the conditional reachability problem,which is closely related to the support calculation of the probability density function involvedin the stochastic filtering problem
Os Sistemas a Eventos Discretos (SEDs) constituem uma classe de sistemas caracterizada por apresentar espaço de estados discreto e dinâmica dirigida única e exclusivamente pela ocorrência de eventos. SEDs sujeitos aos problemas de sincronização e de temporização podem ser descritos em termos de equações lineares usando a álgebra max-plus. A análise de alcançabilidade visa o cálculo do conjunto de todos os estados que podem ser alcançados a partir de um conjunto de estados iniciais através do modelo do sistema. A análise de alcançabilidade de sistemas Max Plus Lineares (MPL) pode ser tratada por meio da decomposição do sistema MPL em sistemas PWA (Piece-Wise Affine) e de sua correspondente representação por DBM (Difference-Bound Matrices). A principal contribuição desta tese é a proposta de uma metodologia similar para resolver o problema de análise de alcançabilidade em sistemas MPL sujeitos a ruídos limitados, chamados de sistemas MPL incertos ou sistemas uMPL (uncertain Max Plus Linear Systems). Primeiramente, apresentamos uma metodologia para particionar o espaço de estados de um sistema uMPL em componentes que podem ser completamente representados por DBM. Em seguida, estendemos a análise de alcançabilidade de sistemas MPL para sistemas uMPL. Além disso, a metodologia desenvolvida é usada para resolver o problema de análise de alcançabilidade condicional, o qual esta estritamente relacionado ao cálculo do suporte da função de probabilidade de densidade envolvida o problema de filtragem estocástica
Nagel, Dominik. "The condition number of Vandermonde matrices and its application to the stability analysis of a subspace method." Doctoral thesis, 2021. https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-202103194121.
Full textLee, Hsin-Yi, and 李信儀. "Gau-Wu numbers of certain matrices." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/21170930288056246071.
Full text國立交通大學
應用數學系所
102
ABSTRACT For any n-"by" -n matrix" " A, let k(A) stand for the maximal number of orthonormal vectors x_j such that the scalar products ⟨Ax_j,├ x_j ⟩┤ lie in the boundary of the numerical range W(A). This number k(A) is called the Gau-Wu number of the matrix A. If A is a normal or a quadratic matrix, then the exact value of k(A) can be computed. For a matrix A of the form B⊕C, we show that k(A)=2 if and only if the numerical range of one summand, say, B, is contained in the interior of the numerical range of the other summand C and k(C)=2. For an irreducible matrix A, we can determine exactly when the value of k(A) equals the size of A. These are then applied to determine k(A) for a reducible matrix A of size 4 in terms of the shape of W(A). Moreover, if A is an n-"by" -n (n ≥2) nonnegative matrix of the form [■(0&;A_1&;&;0@&;0&;⋱&;@&;&;⋱&;A_(m-1)@0&;&;&;0)], where m ≥3 and the diagonal zeros are zero square matrices, with irreducible real part, then k(A) has an upper bound m-1. In addition, we also obtain necessary and sufficient conditions for k(A)=m-1 for such a matrix A. The other class of nonnegative matrices we study is the doubly stochastic ones. We prove that the value of k(A) is equal to 3 for any 3-by-3 doubly stochastic matrix A. Next, for any 4-by-4 doubly stochastic matrix, we also determine its numerical range. This result can be applied to find the value of k(A) for any doubly stochastic matrix A of size 4 in terms of the shape of W(A). Furthermore, the lower bound of k(A) is also found for a general n-"by" -n (n ≥5) doubly stochastic matrix A via the possible shapes of W(A).
Zlatoš, Andrej. "Sum Rules and the Szegö Condition for Jacobi Matrices." Thesis, 2003. https://thesis.library.caltech.edu/1936/1/thesis.pdf.
Full textWe consider Jacobi matrices J with real b_n on the diagonal, positive a_n on the next two diagonals, and with u'(x) the density of the absolutely continuous part of the spectral measure. In particular, we are interested in compact perturbations of the free matrix J_0, that is, such that the a_n go to 1 and b_n go to 0. We study the Case sum rules for such matrices. These are trace formulae relating sums involving the a_n's and b_n's on one side and certain quantities in terms of the spectral measure on the other. We establish situations where the sum rules are valid, extending results of Case and Killip-Simon.
The matrix J is said to satisfy the Szego condition whenever the integral
int_{0}^{pi} log [u'(2 cos t)] dt,
which appears in the sum rules, is finite. Applications of our results include an extension of Shohat's classification of certain Jacobi matrices satisfying the Szego condition to cases with an infinite point spectrum, and a proof that if n(a_n - 1) go to a, nb_n go to b, and 2a < |b|, then the Szego condition fails. Related to this, we resolve a conjecture by Askey on the Szego condition for Jacobi matrices which are Coulomb perturbations of J_0. More generally, we prove that if
a_n = 1 + a/n^c + O(n^{-1-eps}) and b_n = b/n^c + O(n^{-1-eps})
with 0 < γ ≤ 1 and eps > 0, then the Szego condition is satisfied if and only if 2a ≥|b|
Ordónez, Fernando, and Robert M. Freund. "Computational Experience and the Explanatory Value of Condition Numbers for Linear Optimization." 2003. http://hdl.handle.net/1721.1/3547.
Full text"Computational experience and the explanatory value of condition numbers for linear optimization." Massachusetts Institute of Technology, Operations Research Center, 2002. http://hdl.handle.net/1721.1/5408.
Full textFernando Ordonez [and] Robert M. Freund.
Abstract in HTML and working paper for download in PDF available via World Wide Web at the Social Science Research Network.
Title from cover. "January 2002."
Includes bibliographical references (leaves 32-34).
Mokrani, Youcef. "Generalizations of monsky matrices for elliptic curves in legendre form." Thesis, 2020. http://hdl.handle.net/1866/24347.
Full textA positive integer n is said to be congruent if it is the area of a right triangle whose sides are all of rational length. The task of finding which integers are congruent is an old and famous yet still open question in arithmetic geometry called the congruent number problem. It is linked to the theory of elliptic curves as the integer n is congruent if and only if the elliptic curve y²=x³-n²x has a rational point of infinite order. The link between congruent numbers and elliptic curves enables the application of techniques from algebraic geometry to study the problem. One of these methods is the concept of Monsky matrices that can be used to calculate the size of the 2-Selmer group of the elliptic curve y²=x³-n²x. One can use these matrices in order to find new infinite families of non-congruent numbers. The connection to elliptic curves also introduces generalizations to the congruent number problem. For example, one may consider the θ-congruent number problem which studies triangles with a fixed angle of θ instead of only right triangles. This problem is also related to elliptic curves and the concept of Monsky matrices can be generalized to it. In fact, Monsky matrices can be generalized to any elliptic curve that has a Legendre form over the rationals. The goal of this thesis is to construct such a generalization and then to apply it to relevant problems in arithmetic geometry to efficiently reprove old results and find new ones.
Mc, Duling Johannes Jacobus. "Towards the development of transition probability matrices in the Markovian model for the predicted service life of buildings." Thesis, 2006. http://hdl.handle.net/2263/27669.
Full textThesis (PhD(Civil Engineering))--University of Pretoria, 2007.
Civil Engineering
unrestricted
Ferreira, Cândido Renato Markele. "Analyse d’atteignabilité de systèmes max-plus incertains." Thesis, 2017. http://www.theses.fr/2017ANGE0014/document.
Full textDiscrete Event Dynamic Systems (DEDS) are discrete-state systems whose dynamics areentirely driven by the occurrence of asynchronous events over time. Linear equations in themax-plus algebra can be used to describe DEDS subjected to synchronization and time delayphenomena. The reachability analysis concerns the computation of all states that can bereached by a dynamical system from an initial set of states. The reachability analysis problemof Max Plus Linear (MPL) systems has been properly solved by characterizing the MPLsystems as a combination of Piece-Wise Affine (PWA) systems and then representing eachcomponent of the PWA system as Difference-Bound Matrices (DBM). The main contributionof this thesis is to present a similar procedure to solve the reachability analysis problemof MPL systems subjected to bounded noise, disturbances and/or modeling errors, calleduncertain MPL (uMPL) systems. First, we present a procedure to partition the state spaceof an uMPL system into components that can be completely represented by DBM. Then weextend the reachability analysis of MPL systems to uMPL systems. Moreover, the results onreachability analysis of uMPL systems are used to solve the conditional reachability problem,which is closely related to the support calculation of the probability density function involvedin the stochastic filtering problem
Os Sistemas a Eventos Discretos (SEDs) constituem uma classe de sistemas caracterizada por apresentar espaço de estados discreto e dinâmica dirigida única e exclusivamente pela ocorrência de eventos. SEDs sujeitos aos problemas de sincronização e de temporização podem ser descritos em termos de equações lineares usando a álgebra max-plus. A análise de alcançabilidade visa o cálculo do conjunto de todos os estados que podem ser alcançados a partir de um conjunto de estados iniciais através do modelo do sistema. A análise de alcançabilidade de sistemas Max Plus Lineares (MPL) pode ser tratada por meio da decomposição do sistema MPL em sistemas PWA (Piece-Wise Affine) e de sua correspondente representação por DBM (Difference-Bound Matrices). A principal contribuição desta tese é a proposta de uma metodologia similar para resolver o problema de análise de alcançabilidade em sistemas MPL sujeitos a ruídos limitados, chamados de sistemas MPL incertos ou sistemas uMPL (uncertain Max Plus Linear Systems). Primeiramente, apresentamos uma metodologia para particionar o espaço de estados de um sistema uMPL em componentes que podem ser completamente representados por DBM. Em seguida, estendemos a análise de alcançabilidade de sistemas MPL para sistemas uMPL. Além disso, a metodologia desenvolvida é usada para resolver o problema de análise de alcançabilidade condicional, o qual esta estritamente relacionado ao cálculo do suporte da função de probabilidade de densidade envolvida o problema de filtragem estocástica