Academic literature on the topic 'Concentration cell'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Concentration cell.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Concentration cell"
Kusuma, Riska Anggri, Linda Suyati, and Wasino Hadi Rahmanto. "Effect of Lactose Concentration as Lactobacillus bulgaricus Substrate on Potential Cells Produced in Microbial Fuel Cell Systems." Jurnal Kimia Sains dan Aplikasi 21, no. 3 (July 31, 2018): 144–48. http://dx.doi.org/10.14710/jksa.21.3.144-148.
Full textKisitu, Jaffar. "Chemical concentrations in cell culture compartments (C5) – concentration definitions." ALTEX 36, no. 1 (2019): 154–60. http://dx.doi.org/10.14573/altex.1901031.
Full textZ, Ding. "Concentration Polarization of Ox-LDL and Its Effect on Cell Proliferation and Apoptosis in Human Endothelial Cells." Journal of Cardiology and Cardiovascular Medicine 1, no. 1 (2016): 011–18. http://dx.doi.org/10.29328/journal.jccm.1001003.
Full textKamath, Meghana, Isaac Houston, Alexander Janovski, Xiang Zhu, Sivakumar Gowrisankar, Anil Jegga, and Rodney DeKoter. "Myeloid Gene Activation and T Cell/Natural Killer Cell Gene Repression in Cells Expressing Two Distinct PU.1 Concentrations." Blood 110, no. 11 (November 16, 2007): 1242. http://dx.doi.org/10.1182/blood.v110.11.1242.1242.
Full textKočí, Vladimír, Darek Dragoun, and Jaromír Lukavský. "Determination of algal cell culture (Desmodesmus subspicatus) concentration using a microplate reader." Algological Studies/Archiv für Hydrobiologie, Supplement Volumes 122 (December 1, 2006): 123–35. http://dx.doi.org/10.1127/1864-1318/2006/0122-0123.
Full textRowley, SD, WI Bensinger, TA Gooley, and CD Buckner. "Effect of cell concentration on bone marrow and peripheral blood stem cell cryopreservation." Blood 83, no. 9 (May 1, 1994): 2731–36. http://dx.doi.org/10.1182/blood.v83.9.2731.2731.
Full textRowley, SD, WI Bensinger, TA Gooley, and CD Buckner. "Effect of cell concentration on bone marrow and peripheral blood stem cell cryopreservation." Blood 83, no. 9 (May 1, 1994): 2731–36. http://dx.doi.org/10.1182/blood.v83.9.2731.bloodjournal8392731.
Full textGülden, M., S. Mörchel, and H. Seibert. "Factors influencing nominal effective concentrations of chemical compounds in vitro: cell concentration." Toxicology in Vitro 15, no. 3 (June 2001): 233–43. http://dx.doi.org/10.1016/s0887-2333(01)00008-x.
Full textTrifilio, Steven M., Paul R. Yarnold, Marc H. Scheetz, Judy Pi, Gennethel Pennick, and Jayesh Mehta. "Serial Plasma Voriconazole Concentrations after Allogeneic Hematopoietic Stem Cell Transplantation." Antimicrobial Agents and Chemotherapy 53, no. 5 (February 17, 2009): 1793–96. http://dx.doi.org/10.1128/aac.01316-08.
Full textJia, Chen, Abhyudai Singh, and Ramon Grima. "Concentration fluctuations in growing and dividing cells: Insights into the emergence of concentration homeostasis." PLOS Computational Biology 18, no. 10 (October 4, 2022): e1010574. http://dx.doi.org/10.1371/journal.pcbi.1010574.
Full textDissertations / Theses on the topic "Concentration cell"
Sarkar, Aniruddh. "Microfluidic concentration-enhanced single cell enzyme activity assay." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79325.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
Cells sense stimuli, process information and respond using signaling networks regulated by enzymatic activity of various proteins. Aberrations in signaling are associated with diseases such as cancer. Most current methods lack the sensitivity to measure enzymatic activity in single cells and instead measure the average of large cell populations. Cellular heterogeneity, overlooked in these methods, is widespread and relevant. Microfabricated tools are uniquely suited to single cell analysis due to the match in size scale which enables high sensitivity, high throughput measurements. In this thesis we develop a microfluidic platform for the direct measurement of enzyme activities from selected single cells without disrupting their extracellular context. We develop modules to: enhance enzyme assay sensitivity by microfluidic confinement, interface microfluidic devices with selected single cells, enable multiplexing and then integrate these modules to perform single cell assays. We first investigate electrokinetic trapping of charged biomolecules in a nanofluidic concentrator for enhancing enzyme assay sensitivity by simultaneously accumulating enzyme and substrate into a reaction plug. Non-linear enhancement of reaction kinetics in this device is predicted by a mathematical model and experimentally verified. A linear enhancement mode is developed where only the enzyme is accumulated and is reacted with substrate later in an enclosed volume defined by integrated pneumatic valves or by micro-droplets formed using an integrated droplet generator. This device is then used to perform high-throughput measurement of secreted cellular proteases. We then develop a nicrofluidic probe for lysis and capture of the contents of selected single adherent cells from standard tissue culture platforms by creating a small lysis zone at its tip using hydrodynamic confinement. The single cell lysate is then divided and mixed with different substrates and confined in small chambers for fluorimetric assays. An integrated nanofluidic concentrator enables further concentration-enhancement. We demonstrate the ability to measure, from selected single cells, the activity of kinases: Akt, MAPKAPK2, PKA and a metabolic enzyme, GAPDH - separately or simultaneously. This assay platform can correlate single cell phenotype or extracellular context to intracellular biochemical state. We present preliminary explorations of the correlation of cell morphology or local cell population density to kinase activity.
by Aniruddh Sarkar.
Ph.D.
Haas, Kathleen. "Modeling Blood Cell Concentration in a Dialysis Cartridge." Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-theses/425.
Full textAndrews, Arcadio Garcia de Castro. "Growth inhibitors and promoters from high concentration animal cell cultures." Thesis, University of Surrey, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259568.
Full textBajpayee, Anurag. "Concentration of Cryoprotectant in water-in-oil microdroplets for single cell vitrificaton." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/46055.
Full textThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.
"September 2008."
(cont.) Droplets with an initial concentration of IM were found to be concentrated to about 3-4M in 90s while droplets starting at 2M were concentrated to 6M in about the same time. The entire process takes place over a time scale of about one minute, fast enough to minimize exposure times but slow enough to be precisely controllable. This phenomenon is demonstrated to dynamically concentrate cryoprotectants within single cell-containing droplets. These droplets of sizes of about 30 micron diameter were concentrated to 3-4M from a starting concentration of IM in about 300s. The cells are tolerant to this concentration process and do not die when subjected to it. The process may be used in practice to innocuously concentrate cell encapsulating droplets which may then be vitrified before they are exposed to high temperatures for fatally long time scales. With appropriate characterization, the controllability of the process will allow for choosing exact cryoprotectant concentration levels used for vitrification. The demonstrated phenomenon has several other applications in cryobiology. Its controllability and speed may be used to dynamically modulate cryoprotectant concentrations in preservation protocols that require stepwise concentration or dilution. In addition, the process was found to be reversible and may thus be used for unloading cryoprotectants by controlled cooling as opposed to heating.
Among the several challenges associated with vitrification of cells, a major roadblock is the requirement of high concentrations of cryoprotectant chemicals and the damages caused by exposure of cells to these high concentrations at physiological temperatures. It is thus desirable to minimize the time of exposure of cells with high concentrations of cryoprotectants to physiological temperatures. In addition, vitrification requires very rapid cooling rates. As cooling rates of a sample are limited by its size, it becomes ideal to use the minimum sizes of the sample to be preserved. Certain organic oils, such as soybean oil, are made of triacylglycerols and are capable of dissolving small amounts of water due to the presence of ester groups, a property which enhances significantly with increasing temperature. This phenomenon was exploited to accomplish temperature controlled concentration of cryoprotectants in single water droplets with and without cells dispersed in the organic phase. The organic phase used in the present work is soybean oil while glycerol is used as the cryoprotectant. Glycerol was found to be comparatively insoluble in soybean oil at 35 'C for up to 10 minutes. The present work employed heating on a temperature controlling stage and temperature increases of about 10K. Solutions of glycerol in DI Water were mixed with soybean oil and emulsions made by vigorous agitation. The water to oil concentration was kept at 0.1% v/v to simulate an infinite dissolution medium and to prevent different droplets from affecting each other. To prevent premature dissolution, the oil is saturated with water at room temperature by incubating for 48 hours. Micro-liter-sized droplets of the emulsion are placed on a heating/ cooling stage and droplets of 15-20 micron diameter are visually selected from polydisperse emulsion for observation under a microscope. Upon increasing temperature, water dissolves into the oil rendering the droplet highly concentrated with the oil-insoluble cryoprotectant. The experiment involved heating to 35 °C from room temperature, so that all water eventually dissolved into the oil.
by Anurag Bajpayee.
S.M.
Barrett, E., and Phillip R. Scheuerman. "The Effect of Cell Inoculum Level and Substrate Concentration on p- cresol Degradation." Digital Commons @ East Tennessee State University, 1998. https://dc.etsu.edu/etsu-works/2914.
Full textNorcio, Lawrence P. "Effects of microcarrier concentration, agitation rate, and serum concentration on the specific growth rate of mouse L cells in batch cultures." Ohio : Ohio University, 1995. http://www.ohiolink.edu/etd/view.cgi?ohiou1179949129.
Full textMcQuinn, Chris. "Design of a mechanical device for fabricating protein concentration gradients to study cell adhesion." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=18728.
Full textL'interaction entre les protéines spécialisées qui sont dans la matrice extracellulaire (MEC) et les récepteurs à la limite de la membrane d'un organisme cellulaire est essentielle à la migration des cellules. Les méthodes actuelles pour étudier la migration impliquent l'utilisation d'appareils techniquement complexes, dispendieux et requérant une formation spécifique. De plus, ces méthodes ne sont pas applicables à l'échelle microscopique des organismes cellulaires ou sont inadéquates pour cultiver des cellules spécialisées. Ce mémoire de maîtrise introduit une méthode ayant un faible rapport coût-efficacité pour modeler les protéines avec une précision micrométrique et qui requiert peu de connaissances techniques. Il est possible de produire ces modèles avec une gamme de protéines et sur une multitude de surfaces de verre. La base de cette méthode est un appareil qui est nommé « la racle » qui utilise une barrière de polydimethyl siloxane (PDMS) pour contrôler précisément l'adsorption de protéine d'une solution sur une surface de verre. La méthode qui utilise la racle a permis de recréer des MEC sous forme de gradients de protéines, comprenant aussi bien des pentes continues que des marches d'escalier. Des cellules épithéliales de mammifères (CHO-K1) ont été cultivées sur une surface ayant un gradient de fibronectine en marche d'escalier, les cellules ont montré une augmentation dans leur étalement proportionnelle à la densité de surface de fibronectine.
Gordon, Christopher, and res cand@acu edu au. "Hydrostatic and thermal influences on intravascular volume determination during immersion: quantification of the f-cell ratio." Australian Catholic University. School of Exercise Science, 2001. http://dlibrary.acu.edu.au/digitaltheses/public/adt-acuvp4.14072005.
Full textTunggal, Jonathan Kurniadi. "Cell concentration and drug penetration, implications for the reversal of multidrug resistance in solid tumours." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0017/NQ45743.pdf.
Full textChornewich, Cristina. "Bacterial transport in granular porous media: the effects of cell concentration and media pre-coating." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=67039.
Full textDes expériences de transport par colonne ont été menées afin d'examiner les effets de la concentration des cellules et du pré-revêtement de média. Deux souches de bactéries ont été utilisées: E. coli K12 D12 et une souche mutante E. coli O157:H7. Les expériences par colonne ont été menées avec du sable propre et du sable qui a été préalablement enduit de bactéries. La concentration de l'influent en bactérie a été variée sur plusieurs ordres de grandeur pour examiner l'effet de la concentration cellulaire. Une dépendance du taux d'élimination à la concentration a été observée pour les deux souches de bactéries dans les deux types de sable. De plus, le pré-revêtement de média n'influence d'aucune façon le comportement du transport ni en réduit l'efficacité d'adhésion. Bien que des différences dans le transport ont été observées, celles-ci n'ont eu aucun effet significatif sur la prédiction de la distance à parcourir.
Books on the topic "Concentration cell"
Stocks, Stuart Michael. The flocculation of high concentration cell debris from E.coli. Birmingham: University of Birmingham, 1997.
Find full textTonkaboni, Madjid Mohseni. The influence of cell concentration and morphology on yielding properties of filamentous fermentation broths. Ottawa: National Library of Canada, 1994.
Find full textS, Aronson Peter, ed. Na⁺-H⁺ exchange, intracellular pH, and cell function. Orlando: Academic Press, 1986.
Find full textKomhyr, W. D. Operations handbook--ozone measurements to 40-km altitude with model 4A electrochemical concentration cell (ECC) ozonesondes (used with 1680-MHz radiosondes). Silver Spring, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Air Resources Laboratory, 1986.
Find full textKomhyr, W. D. Operations handbook--ozone measurements to 40-km altitude with model 4A electrochemical concentration cell (ECC) ozonesondes (used with 1680-MHz radiosondes). Silver Spring, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Air Resources Laboratory, 1986.
Find full textKomhyr, W. D. Operations handbook--ozone measurements to 40-km altitude with model 4A electrochemical concentration cell (ECC) ozonesondes (used with 1680-MHz radiosondes). Silver Spring, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Air Resources Laboratory, 1986.
Find full textKomhyr, W. D. Operations handbook--ozone measurements to 40-km altitude with model 4A electrochemical concentration cell (ECC) ozonesondes (used with 1680-MHz radiosondes). Silver Spring, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Air Resources Laboratory, 1986.
Find full textKomhyr, W. D. Operations handbook--ozone measurements to 40-km altitude with model 4A electrochemical concentration cell (ECC) ozonesondes (used with 1680-MHz radiosondes). Silver Spring, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Air Resources Laboratory, 1986.
Find full textKomhyr, W. D. Operations handbook--ozone measurements to 40-km altitude with model 4A electrochemical concentration cell (ECC) ozonesondes (used with 1680-MHz radiosondes). Silver Spring, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Air Resources Laboratory, 1986.
Find full textKomhyr, W. D. Operations handbook--ozone measurements to 40-km altitude with model 4A electrochemical concentration cell (ECC) ozonesondes (used with 1680-MHz radiosondes). Silver Spring, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Air Resources Laboratory, 1986.
Find full textBook chapters on the topic "Concentration cell"
Gooch, Jan W. "Concentration Cell." In Encyclopedic Dictionary of Polymers, 163–64. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2787.
Full textBüntemeyer, Heino, Sonja Siwiora, and Jürgen Lehmann. "Inhibitors of Cell Growth: Accumulation and Concentration." In Animal Cell Technology, 651–55. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5404-8_102.
Full textReardon, Kenneth F., and Thomas H. Scheper. "Determination of Cell Concentration and Characterization of Cells." In Biotechnology, 179–223. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2008. http://dx.doi.org/10.1002/9783527620852.ch6.
Full textWijnsma, R., R. Verpoorte, P. A. A. Harkes, F. van Iren, and H. J. G. ten Hoopen. "Conditioning of Media: An Elaborate Method of Optimizing Initial Growth Hormone Concentration." In Plant Cell Biotechnology, 297–303. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73157-0_30.
Full textMaruhashi, Fumio, Sei Murakami, and Kenji Baba. "Automated monitoring of cell concentration and viability using an image analysis system." In Cell Culture Engineering IV, 281–89. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0257-5_31.
Full textYoung, David B. "Vascular Cell Responses to Changes in Potassium Concentration." In Basic Science for the Cardiologist, 71–86. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1443-5_5.
Full textCiaccheri, L., A. G. Mignani, A. A. Mencaglia, and L. Giannelli. "Static Light Scattering for Measuring Biological Cell Concentration." In Lecture Notes in Electrical Engineering, 219–23. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0935-9_37.
Full textLudowise, Michael, and Lewis Fraas. "High-Concentration Cassegrainian Solar Cell Modules and Arrays." In Solar Cells and their Applications, 337–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470636886.ch15.
Full textMoreira, J. L., P. E. Cruz, P. C. Santana, and M. J. T. Carrondo. "BHK Aggregate Sedimentation: Cell Concentration and Downstream Processing." In Animal Cell Technology: Developments Towards the 21st Century, 799–803. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0437-1_127.
Full textRomein, B., A. K. Shrivastava, C. Hellinga, J. P. Van Dijken, and K. C. H. A. M. Luyben. "Control of Cell Concentration in Fedbatch Hybridoma Cultures." In Animal Cell Technology: Developments Towards the 21st Century, 851–54. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0437-1_136.
Full textConference papers on the topic "Concentration cell"
Selimović, Šeila, Woo Young Sim, Sang Bok Kim, Yun Ho Jang, Won Gu Lee, Masoud Khabiry, Hojae Bae, Sachin Jambovane, Jong Wook Hong, and Ali Khademhosseini. "Exponential Concentration Gradients in Microfluidic Devices for Cell Studies." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53529.
Full textMohan, Sujith, and S. O. Bade Shrestha. "Evaluation of the Performance Characteristics and Modeling of an Alkaline Fuel Cell." In ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85158.
Full textWang, Weiping, Chengxian Guan, Zhongqing Chen, and Lingxiang Huang. "HF-NQO-100 model oxygen concentration cell." In International Conference on Sensors and Control Techniques (ICSC2000), edited by Desheng Jiang and Anbo Wang. SPIE, 2000. http://dx.doi.org/10.1117/12.385596.
Full textKhan, Iftekhar, and Gary Rosengarten. "Simulation of an electrowetting solar concentration cell." In SPIE Optics + Photonics for Sustainable Energy, edited by Adam P. Plesniak and Andru J. Prescod. SPIE, 2015. http://dx.doi.org/10.1117/12.2186904.
Full textGray, Allison, Robert Boehm, and Kenneth W. Stone. "Modeling a Passive Cooling System for Photovoltaic Cells Under Concentration." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32693.
Full textAmontree, Jacob, Kangfu Chen, Jose Varillas, and Z. Hugh Fan. "Capillary Force Driven Single-Cell Spiking Apparatus for Studying Circulating Tumor Cells." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87109.
Full textDiaz, Gerardo C., Roland Winston, Alexander Ritschel, Sergio Pineda, and Pablo Benitez. "Analysis of Natural Convection Coupled With Thermal Radiation in Novel High-Concentration Nonimaging-Optics-Based System for Multi-Junction Solar Cells." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14178.
Full textXu, Heqi, Changxue Xu, and Zhengyi Zhang. "Sedimentation Study of Bioink Containing Living Cells." In ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2747.
Full textChen, Ming, Heather Michaud, Michael L. Lovett, David L. Kaplan, and Sankha Bhowmick. "Role of Nanofibrous Scaffold Geometry in Cellular Adhesion." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192946.
Full textLiu, Fan, Pawan K. C., Ge Zhang, and Jiang Zhe. "Target Cell Detection via Microfluidic Magnetic Beads Assay." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65088.
Full textReports on the topic "Concentration cell"
Kuhne, Wendy, Candace Langan, Lucas Angelette, and Lesleyann Hawthorne. Deuterium Concentration Effects on Cell Cycle Progression. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1651107.
Full textKUHNE, WENDY, and LUCAS ANGELETTE. DEUTERIUM CONCENTRATION EFFECTS ON CELL CYCLE PROGRESSION. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1827682.
Full textKUHNE, WENDY. DEUTERIUM CONCENTRATION EFFECTS ON CELL CYCLE PROGRESSION. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1827952.
Full textBlock, David L., and Ahmad Sleiti. Bachelor of Science-Engineering Technology Program and Fuel Cell Education Program Concentration. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1166983.
Full textCushing, Donish, Darshana Goakar, and Bomi Joseph. Higher bioactivity cannabidiol in greater concentration more greatly reduces valvular interstitial cell calcification. Peak Health Center, September 2018. http://dx.doi.org/10.31013/2001f.
Full textWally, Karl. Micropower chemical fuel-to-electric conversion : a "regenerative flip" hydrogen concentration cell promising near carnot efficiency. Office of Scientific and Technical Information (OSTI), May 2006. http://dx.doi.org/10.2172/966250.
Full textBarnard, M. R., H. Macgregor, A. D. Michelson, and C. R. Valeri. Effects of White Cell Filtration, ACD Concentration and Rotation During Collection, Storage and Cryopreservation of Platelet Concentrates. Fort Belvoir, VA: Defense Technical Information Center, May 1997. http://dx.doi.org/10.21236/ada360226.
Full textMoran, Nava, Richard Crain, and Wolf-Dieter Reiter. Regulation by Light of Plant Potassium Uptake through K Channels: Biochemical, Physiological and Biophysical Study. United States Department of Agriculture, September 1995. http://dx.doi.org/10.32747/1995.7571356.bard.
Full textOJI, LAWRENCE, and SAVIDRA LUCATERO. CHARACTERIZATION OF INFREQUENT SAMPLES FROM THE CONCENTRATION, STORAGE, AND TRANSFER FACILITY: LEAK DETECTION BOX (LDB) DRAIN CELL SAMPLE LIMS# 20195. Office of Scientific and Technical Information (OSTI), November 2020. http://dx.doi.org/10.2172/1734664.
Full textDEKARSKE, JOHN. CHARACTERIZATION OF INFREQUENT SAMPLES FROM THE CONCENTRATION, STORAGE, AND TRANSFER FACILITY: LEAK DETECTION BOX (LDB) DRAIN CELL SAMPLE: AUGUST 04, 2022SAMPLE. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1889236.
Full text