To see the other types of publications on this topic, follow the link: Concentrated Solar Power Technology.

Dissertations / Theses on the topic 'Concentrated Solar Power Technology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Concentrated Solar Power Technology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Miranda, Gilda. "Dispatch Optimizer for Concentrated Solar Power Plants." Thesis, Uppsala universitet, Byggteknik och byggd miljö, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-402436.

Full text
Abstract:
Concentrating solar power (CSP) plant is a promising technology that exploits direct normal irradiation (DNI) from the sun to be converted into thermal energy in the solar field. One of the advantages of CSP technology is the possibility to store thermal energy in thermal energy storage (TES) for later production of electricity. The integration of thermal storage allows the CSP plant to be a dispatchable system which is defined as having a capability to schedule its operation using an innovative dispatch planning tool. Considering weather forecast and electricity price profile in the market, dispatch planning tool uses an optimization algorithm. It aims to shift the schedule of electricity delivery to the hours with high electricity price. These hours are usually reflected by the high demand periods. The implementation of dispatch optimizer can benefit the CSP plants economically from the received financial revenues. This study proposes an optimization of dispatch planning strategies for the parabolic trough CSP plant under two dispatch approaches: solar driven and storage driven. The performed simulation improves the generation of electricity which reflects to the increase of financial revenue from the electricity sale in both solar and storage driven approaches. Moreover, the optimization also proves to reduce the amount of dumped thermal energy from the solar field.
APA, Harvard, Vancouver, ISO, and other styles
2

Oggioni, Niccolò. "Modelling of microgrid energy systems with concentrated solar power." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264345.

Full text
Abstract:
This master’s thesis presents the work performed during a four-month long internship at Azelio AB in Gothenburg. Energy performance models for common energy technologies in microgrid energy systems were developed and validated. The investigated technologies are traditional and bifacial PV modules, wind turbines, Li-ion battery energy storage systems and diesel generators. Subsequently, they were utilised to simulate the energy supply of two remote communities in Queensland, Australia. Azelio’s CSP technology, which combines heliostats, thermal energy storage with phase change materials and Stirling engine, was introduced as well. By means of scenarios and key performance indicators, the possibility of disconnecting such towns from the local electricity distribution network was investigated. Both technical and economic aspects were analysed. This led to the conclusion that 10 MW CSP system would be sufficient to achieve grid independence if extra backup capacity, e.g. diesel generators, or demandside control strategies, are introduced. Sensitivity analysis performed on the possibility of dividing the CSP park into two clusters, the smaller one being subject to a power threshold, was investigated as well. In terms of economic feasibility, off-grid systems resulted more expensive than maintaining the grid connection.
Denna master’s uppsats presenterar alla resultat från examensarbetet hos Azelio AB i Göteborg. Energy performance models för de vanligaste energiteknologerna i microgrid energisystemen designades och validerades. De forskade energiteknologerna var traditionella och bifacial solpaneler, vindkraft, energilagring genom Liion batterier och dieselgeneratorer. Modellerna användes för att simulera energiförsörjning av olika energisystem som representerar två isolerade byar i Queensland, Australia. Azelio’s CSP teknologi, som består av heliostater, värmenergilagring med phase change material och en Stirlingmotor, introducerades också. Genom att designa olika scenarier och key perfomance indicators, möjligheten att koppla av byarna ifrån det lokala kraftnätsystemet utforskades. Båda tekniska och ekonomiska synpunkter värderades. Det beslutades att 10 MW CSP kapacitet kan vara nog mycket för att nå energisjälvständighet om ytterligare backupkapacitet, t.ex. en dieselgenerator, eller demand side control strategies introducerades. Känslighetsanalys utforskade möjligheten att dela CSP systemet i två olika delar, där den med lägre kapacitet kunde avkopplas för att undvika onödig energiförsörjning. Om ekonomiska utförbarhet, off-grid system verkade dyrare än sådana system där byarna var fortfarande kopplat till det lokala kraftnätet.
APA, Harvard, Vancouver, ISO, and other styles
3

Strand, Anna. "Optimization of energy dispatch in concentrated solar power systems : Design of dispatch algorithm in concentrated solar power tower system with thermal energy storage for maximized operational revenue." Thesis, KTH, Kraft- och värmeteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264410.

Full text
Abstract:
Concentrated solar power (CSP) is a fast-growing technology for electricity production. With mirrors (heliostats) irradiation of the sun is concentrated onto a receiver run through by a heat transfer fluid (HTF). The fluid by that reaches high temperatures and is used to drive a steam turbine for electricity production. A CSP power plant is most often coupled with an energy storage unit, where the HTF is stored before it is dispatched and used to generate electricity. Electricity is most often sold at an open market with a fluctuating spot-prices. It is therefore of high importance to generate and sell the electricity at the highest paid hours, increasingly important also since the governmental support mechanisms aimed to support renewable energy production is faded out since the technology is starting to be seen as mature enough to compete by itself on the market. A solar power plant thus has an operational protocol determining when energy is dispatched, and electricity is sold. These protocols are often pre-defined which means an optimal production is not achieved since irradiation and electricity selling price vary. In this master thesis, an optimization algorithm for electricity sales is designed (in MATLAB). The optimization algorithm is designed by for a given timeframe solve an optimization problem where the objective is maximized revenue from electricity sales from the solar power plant. The function takes into consideration hourly varying electricity spot price, hourly varying solar field efficiency, energy flows in the solar power plant, start-up costs (from on to off) plus conditions for the logic governing the operational modes. Two regular pre-defined protocols were designed to be able to compare performance in a solar power plant with the optimized dispatch protocol. These three operational protocols were evaluated in three different markets; one with fluctuating spot price, one regulated market of three fixed price levels and one in spot market but with zero-prices during sunny hours. It was found that the optimized dispatch protocol gave both bigger electricity production and revenue in all markets, but with biggest differences in the spot markets. To evaluate in what type of powerplant the optimizer performs best, a parametric analysis was made where size of storage and power block, the time-horizon of optimizer and the cost of start-up were varied. For size of storage and power block it was found that revenue increased with increased size, but only up to the level where the optimizer can dispatch at optimal hours. After that there is no increase in revenue. Increased time horizon gives increased revenue since it then has more information. With a 24-hour time horizon, morning price-peaks will be missed for example. To change start-up costs makes the power plant less flexible and with fewer cycles, without affect income much.
Koncentrerad solkraft (CSP) är en snabbt växande teknologi för elektricitets-produktion. Med speglar (heliostater) koncentreras solstrålar på en mottagare som genomflödas av en värmetransporteringsvätska. Denna uppnår därmed höga temperaturer vilket används för att driva en ångturbin för att generera el. Ett CSP kraftverk är oftast kopplat till en energilagringstank, där värmelagringsvätskan lagras innan den används för att generera el. El säljs i de flesta fall på en öppen elmarknad, där spotpriset fluktuerar. Det är därför av stor vikt att generera elen och sälja den vid de timmar med högst elpris, vilket också är av ökande betydelse då supportmekanismerna för att finansiellt stödja förnybar energiproduktion används i allt mindre grad för denna teknologi då den börjar anses mogen att konkurrera utan. Ett solkraftverk har således ett driftsprotokoll som bestämmer när el ska genereras. Dessa protokoll är oftast förutbestämda, vilket innebär att en optimal produktion inte fås då exempelvis elspotpriset och solinstrålningen varierar. I detta examensarbete har en optimeringsalgoritm för elförsäljning designats (i MATLAB). Optimeringsscriptet är designat genom att för en given tidsperiod lösa ett optimeringsproblem där objektivet är maximerad vinst från såld elektricitet från solkraftverket. Funktionen tar hänsyn till timvist varierande elpris, timvist varierande solfältseffektivitet, energiflöden i solkraftverket, kostnader för uppstart (on till off) samt villkor för att logiskt styra de olika driftlägena. För att jämföra prestanda hos ett solkraftverk med det optimerade driftsprotokollet skapades även två traditionella förutbestämda driftprotokoll. Dessa tre driftsstrategier utvärderades i tre olika marknader, en med ett varierande el-spotpris, en i en reglerad elmarknad med tre prisnivåer och en i en marknad med spotpris men noll-pris under de soliga timmarna. Det fanns att det optimerade driftsprotokollet gav både större elproduktion och högre vinst i alla marknader, men störst skillnad fanns i de öppna spotprismarknaderna. För att undersöka i vilket slags kraftverk som protokollet levererar mest förbättring i gjordes en parametrisk analys där storlek på lagringstank och generator varierades, samt optimerarens tidshorisont och kostnad för uppstart. För lagringstank och generator fanns att vinst ökar med ökande storlek upp tills den storlek optimeraren har möjlighet att fördela produktion på dyrast timmar. Ökande storlek efter det ger inte ökad vinst. Ökande tidshorisont ger ökande vinst eftersom optimeraren då har mer information. Att ändra uppstartkostnaden gör att solkraftverket uppträder mindre flexibelt och har färre cykler, dock utan så stor påverkan på inkomst.
APA, Harvard, Vancouver, ISO, and other styles
4

Ertl, Felix. "Exergoeconomic Analysis and Benchmark of a Solar Power Tower with Open Air Receiver Technology." Thesis, KTH, Kraft- och värmeteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-101320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pragada, Gandhi, and Nitish Perisetla. "Utility-Scale Solar Power Plants with Storage : Cost Comparison and Growth Forecast Analysis." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301838.

Full text
Abstract:
Renewable energy for energy production, like Solar, is turning out to be very pertinent in today's world [1]. It is very clear that Solar Energy is going to emerge as one of the key sources of energy in future. Moreover, the storage option is going to play an essential role to the future deployment of solar power plants. Concentrated solar power plants with thermal storage, photovoltaic plants integrated with battery energy storage, and hybrid plants are attractive solutions to obtain a stable and dispatchable energy production. Investors or policymakers usually find it challenging to come up with the most feasible solar storage technology because they need to consider techno-economic feasibility, and at the same time, from a market or administrative perspective as well. So, this thesis study will address the key problem which is aimed at investors or policymakers since there is a need to choose the best solar storage technology at a utility level in future based on so many attributes. The thesis project was carried out in two phases which includes forecast modelling & estimations and techno-economic assessment of virtual plants. These two phases helped to address various questions in relation to the problem statement of this study. The entire thesis study broadly covered seven countries spanning across four major regions around the world. The first phase of the thesis, forecast modelling estimations shows how the seven countries will look in future (2020 – 2050) with respect to installed capacity and costs for PV, CSP, and BESS technologies. Some major results from phase 1 include, in low-cost estimates, China will remain to be the market leader in PV & CSP by 2050. In U.S.A and India, the installed costs of PV are projected to decline by 70% by 2050. By 2050, the installed costs of Solar Tower technology are estimated to drop by about 65% in China and Spain. In U.S.A, the prices of BESS technology are likely to fall by around 58 – 60 % by 2050. In the second phase of thesis study, a techno-economic evaluation of virtual plants addressed the aspects which are to be considered for a solar project if it is deployed in future across seven specific countries. Results from this analysis helps investors or policymakers to choose the cheapest solar storage technology at a utility level across seven specific countries in future (2020 – 2050). Key results from this analysis show that, in the U.S.A, by 2050, PV+BESS will be the cheapest storage technology for 4 – 10 storage hours. Addition of another renewable technology will add up more viability to the comparison. In China, Hybrid will be the cheapest storage technology for 4 – 8 hrs by 2050. There is huge potential for deployment of CSP & hybrid plants in future than PV. In South Africa, CSP will be the cheapest storage technology by 2050 for 4 – 10 hours of storage. It is assumed that deployment of BESS projects at utility level starts from 2025 in South Africa. Beyond this, market forces analysis was carried out which offers insights especially for the policymakers of how various drivers and constraints are influencing each solar technology across the specific countries in future. Overall, the entire thesis study provides guidelines/insights to investors or policy makers for choosing the best solar storage technology in future at a utility scale for a particular country.
Förnybar energi för energiproduktion, liksom Solar, visar sig vara mycket relevant i dagens värld [1]. Det är mycket tydligt att solenergi kommer att framstå som en av de viktigaste energikällorna i framtiden. Dessutom kommer lagringsalternativet att spela en väsentlig roll för den framtida distributionen av solkraftverk. Koncentrerade solkraftverk med värmelagring, solcellsanläggningar integrerade med batterilagring och hybridanläggningar är attraktiva lösningar för att få en stabil och skickbar energiproduktion. Investerare eller beslutsfattare brukar tycka att det är utmanande att komma på den mest genomförbara solcellstekniken eftersom de måste överväga teknikekonomisk genomförbarhet, och samtidigt, ur ett marknads- eller administrativt perspektiv också. Så denna avhandlingsstudie kommer att ta itu med nyckelproblemet som riktar sig till investerare eller beslutsfattare eftersom det finns ett behov av att välja den bästa solenergilagringstekniken på en användningsnivå i framtiden baserat på så många attribut. Avhandlingsprojektet genomfördes i två faser som inkluderar prognosmodellering och uppskattningar och teknikekonomisk bedömning av virtuella anläggningar. Dessa två faser hjälpte till att ta itu med olika frågor i samband med problemstudien i denna studie. Hela avhandlingsstudien omfattade i stort sju länder som sträcker sig över fyra stora regioner runt om i världen. Den första fasen i avhandlingen, prognosmodelleringsuppskattningar visar hur de sju länderna kommer att se ut i framtiden (2020 - 2050) med avseende på installerad kapacitet och kostnader för PV-, CSP- och BESS -teknik. Några viktiga resultat från fas 1 inkluderar, i lågkostnadsuppskattningar, att Kina kommer att vara marknadsledande inom PV och CSP år 2050. I USA och Indien beräknas de installerade kostnaderna för PV minska med 70% år 2050. Av 2050 beräknas de installerade kostnaderna för Solar Tower -teknik sjunka med cirka 65% i Kina och Spanien. I USA kommer priserna på BESS -teknik sannolikt att sjunka med cirka 58 - 60 % år 2050. I den andra fasen av avhandlingsstudien behandlade en teknikekonomisk utvärdering av virtuella anläggningar de aspekter som ska övervägas för ett solprojekt om det används i framtiden i sju specifika länder. Resultaten från denna analys hjälper investerare eller beslutsfattare att välja den billigaste solenergilagringstekniken på en användningsnivå i sju specifika länder i framtiden (2020 - 2050). Viktiga resultat från denna analys visar att i USA, år 2050, kommer PV+BESS att vara den billigaste lagringstekniken på 4 - 10 lagringstimmar. Tillägg av en annan förnybar teknik kommer att öka jämförbarheten. I Kina kommer Hybrid att vara den billigaste lagringstekniken i 4-8 timmar fram till 2050. Det finns en enorm potential för distribution av CSP & hybridanläggningar i framtiden än PV. I Sydafrika kommer CSP att vara den billigaste lagringstekniken år 2050 för 4 - 10 timmars lagring. Det antas att distributionen av BESS -projekt på verktygsnivå börjar från 2025 i Sydafrika. Utöver detta genomfördes marknadskravsanalys som ger insikter speciellt för beslutsfattarna om hur olika drivkrafter och begränsningar påverkar varje solteknik i de specifika länderna i framtiden. Sammantaget ger hela avhandlingsstudien riktlinjer/insikter till investerare eller beslutsfattare för att välja den bästa solenergitekniken i framtiden i en nyttoskala för ett visst land.
APA, Harvard, Vancouver, ISO, and other styles
6

Boissière, Benjamin. "Étude hydrodynamique et thermique d'un nouveau concept de récepteur solaire à suspensions denses gazparticules." Phd thesis, Toulouse, INPT, 2015. http://oatao.univ-toulouse.fr/13944/1/boissiere.pdf.

Full text
Abstract:
Parmi les centrales solaires thermiques à concentration, la technologie des centrales à tour offre l'un des rendements les plus importants de production d'énergie. Néanmoins, l'efficacité et la sécurité de ces centrales sont améliorables. En effet, les sels fondus, généralement utilisés comme fluide de transfert thermique, présentent une plage limitée d'utilisation (200-550°C), à l'origine des limites d'efficacité de la conversion thermique-électrique, ainsi que de consommations parasites d'énergie de chauffage. De plus, leurs caractères corrosif et comburant sont à l'origine de sévères contraintes de sécurité. Un nouveau concept de récepteur solaire, dont les caractéristiques permettent de s'affranchir des contraintes associées aux sels fondus, est présenté dans ce manuscrit. Il utilise des suspensions denses de particules fluidisées par un gaz comme fluide de transfert et de stockage de l'énergie thermique. Ce concept, et la technologie de récepteur associée, a été brevetée par Flamant et Hemati dans le cadre d'une collaboration entre le Laboratoire CNRS-PROMES d'Odeillo, et l'Institut National Polytechnique de Toulouse. Son développement a reçu le soutien financier du CNRS, puis de la Commission Européenne. Les propriétés thermiques du carbure de silicium ont déterminé le choix de ce solide. Le diamètre moyen des particules utilisées avoisine 60 micromètres (groupe A). Ces particules présentent d'excellentes propriétés de fluidisation pour des vitesses de gaz faibles. La construction et l'exploitation d'une maquette froide transparente ont permis de démontrer la faisabilité hydrodynamique du concept. Cette maquette est un échangeur à deux passes. Chaque passe est constituée de deux tubes verticaux en parallèle. L'une est traversée par un débit vertical ascendant de solide, l'autre descendant. Un débit de solide continu, stable et équitablement réparti a été obtenu à l'intérieur des tubes. La caractérisation hydrodynamique détaillée de l'écoulement, et du comportement globale de la maquette, en fonction des conditions opératoires, a été effectué sur la partie ascendante de l'écoulement dans l'échangeur. La construction et l'exploitation d'une maquette chaude, constituée d'un seul tube traversé par une suspension dense en écoulement ascendant, chauffé par 3 fours d'une puissance totale de 5,6 kW, a permis d'estimer la capacité de transfert thermique de ce nouveau type d'échangeur. Le contrôle et la stabilité des conditions opératoires a permis d'évaluer l'effet de ces dernières sur le transfert thermique entre l'échangeur et la suspension dense de fines particules le traversant. La modélisation par 3 approches du transport ascendant de la suspension dense a également été réalisée. Une approche corrélative 1D basée sur le formalisme du modèle Bulle-Emulsion, adapté afin de tenir compte de l'entraînement des particules dans le sillage des bulles. Ce modèle permet de représenter la structure diphasique de l'écoulement. Une autre approche 1D a été utilisée. Elle repose sur la résolution des équations locales de conservation de masse et de quantité de mouvement sur chaque phase gaz et solide. Cette méthode permet de s'affranchir des hypothèses du modèle Bulle-Emulsion. Enfin, la simulation numérique 3D a été réalisée sur un maillage complet du système, de telle sorte que les conditions aux bornes imposées son identiques à celle imposée par l'opérateur (débit de fluidisation, débit d'aération, débit de solide, pression de la nourrice). Cette dernière apporte des informations sur la structure locale de l'écoulement, dont les caractéristiques permettent d'expliquer l'efficacité du transfert thermique entre la suspension et la paroi observé expérimentalement.
APA, Harvard, Vancouver, ISO, and other styles
7

Codd, Daniel Shawn. "Concentrated solar power on demand." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67579.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 207-215).
This thesis describes a new concentrating solar power central receiver system with integral thermal storage. Hillside mounted heliostats direct sunlight into a volumetric absorption molten salt pool, which also functions as a single tank assisted thermocline storage system. Concentrated light penetrates the molten salt and is absorbed over a depth of several meters; the molten salt free surface tolerates high irradiance levels, yet remains insensitive to the passage of clouds. Thermal losses to the environment are reduced with a refractory-lined domed roof and a small, closeable aperture. The molten salt and cover provide high and low temperature heat sources that can be optimally used to maximize energy production throughout the day, even when the sun is not shining. Hot salt is extracted from the upper region of the tank and sent through a steam generator, then returned to the bottom of the tank. An insulated barrier plate is positioned vertically within the tank to enhance the natural thermocline which forms and maintain hot and cold salt volumes required for operation. As a result, continuous, high temperature heat extraction is possible even as the average temperature of the salt is declining. Experimental results are presented for sodium-potassium nitrate salt volumetric receivers optically heated with a 10.5 kilowatt, 60-sun solar simulator. Designs, construction details and performance models used to estimate efficiency are presented for megawatt-scale molten salt volumetric receivers capable of operating with low cost nitrate or chloride salt eutectics at temperatures approaching 600 'C and 1000 'C, respectively. The integral storage capabilities of the receiver can be sized according to local needs, thereby enabling power generation on demand.
by Daniel Shawn Codd.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
8

Abiose, Kabir. "Improving the concentrated solar power plant through connecting the modular parabolic solar trough." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105718.

Full text
Abstract:
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.
Cataloged from PDF version of thesis.
Concentrating solar power (CSP) stands as a promising renewable energy technology with the ability to contribute towards global reduction of carbon emissions. A major obstacle to increased adoption of CSP plants has to do with their high initial investment cost; consequently, there is a powerful desire to find improvements that decrease the initial capital investment for a CSP plant. One such improvement involves connecting modularized parabolic trough segments, each with the same dimensions, decreasing the overall amount of actuators required along with greatly simplifying system control architecture. This thesis is concerned with the extent to which parabolic solar trough modules can be connected together while still being able to operate to desired accuracy under expected load. Accuracy requirements are calculated, along with expected loads resulting in frictional torque on the trough. These expected loads are combined with a model for the effect of connecting multiple trough modules to generate a relationship between number of chained modules and required torsional stiffness. To verify said model, an experimental setup was designed and constructed to simulate loads due to both trough weight and wind loads.
by Kabir Abiose.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
9

Amba, Harsha Vardhan. "Operation and Monitoring of Parabolic Trough Concentrated Solar Power Plant." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5891.

Full text
Abstract:
The majority of the power generated today is produced using fossil fuels,emitting carbon dioxide and other pollutants every second. Also, fossil fuels will eventually run out. For the increasing worldwide energy demand, the use f reliable and environmentally beneficial natural energy sources is one of the biggest challenges. Alongside wind and water, the solar energy which is clean, CO2-neutral and limitless, is our most valuable resource. Concentrated solar power (CSP) is becoming one of the excellent alternative sources for the power industry. The successful implementation of this technology requires the efficient design of tracking and operation system of the CSP solar plants. A detailed analysis of components needed for the design of cost-effective and optimum tracker for CSP solar systems is required for the power plant modeling, which is the primary subject of this thesis. A comprehensive tracking and operating system of a parabolic trough solar power plant was developed focusing primarily on obtaining optimum and cost effective design through the simplified methodology of this work. This new model was implemented for a 50 kWe parabolic trough solar power plant at University of South Florida, Tampa.
APA, Harvard, Vancouver, ISO, and other styles
10

Wilk, Gregory. "Liquid metal based high temperature concentrated solar power: Cost considerations." Thesis, Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54937.

Full text
Abstract:
Current concentrated solar power plants (CSP) use molten salt at 565°C as a heat transfer and energy storage fluid. Due to thermal energy storage (TES), these solar plants can deliver dispatachable electricity to the grid; however, the levelized cost of electricity (LCOE) for these plants is 12-15 c/kWh, about 2.5 times as high as fossil fuel electricity generation. Molten salt technology limits peak operating temperatures to 565°C and a heat engine efficiency of 40%. Liquid metal (LM), however, can reach >1350°C, and potentially utilize a more efficient (60%) heat engine and realize cost reductions. A 1350 °C LM-CSP plant would require ceramic containment, inert atmosphere containment, additional solar flux concentration, and redesigned internal receiver. It was initially unclear if these changes and additions for LM-CSP were technically feasible and could lower the LCOE compared to LS-CSP. To answer this question, a LM-CSP plant was designed with the same thermal input as a published LS-CSP plant. A graphite internal cavity receiver with secondary concentration heated liquid Sn to 1400°C and transferred heat to a 2-phase Al-Si fluid for 9 hours of thermal energy storage. Input heat to the combined power cycle was 1350°C and had 60% thermal efficiency for a gross output of 168 MW. The cost of this LM-CSP was estimated by applying material cost factors to the designed geometry and scaling construction costs from published LS-CSP estimates. Furthermore, graphite was experimentally tested for reactivity with liquid Sn, successful reaction bonds, and successful mechanical seals. The result is switching to molten metal can reduce CSP costs by 30% and graphite pipes, valves, and seals are possible at least at 400°C.
APA, Harvard, Vancouver, ISO, and other styles
11

Avapak, Sukunta. "Failure mode analysis on concentrated solar power (CSP) plants : a case study on solar tower power plant." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/102375/1/Sukunta_Avapak_Thesis.pdf.

Full text
Abstract:
This thesis is an investigation of critical failure modes of solar tower power system in concentrated solar power (CSP) technology. The thesis evaluated the causes and impacts of failure on the major components and apply the failure Mode and Effect Analysis (FMEA) to CSP solar tower system. This research proposed an alternative method to overcome the limitations of Risk Priority Number (RPN) from traditional FMEA. A case study applies the proposed approach to CSP solar tower system for a better prioritization of failure mode in order to reduce the risk of failures.
APA, Harvard, Vancouver, ISO, and other styles
12

Mostaghim, Besarati Saeb. "Analysis of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrated Solar Power Applications." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5431.

Full text
Abstract:
Solar power tower technology can achieve higher temperatures than the most common commercial technology using parabolic troughs. In order to take advantage of higher temperatures, new power cycles are needed for generating power at higher efficiencies. Supercritical carbon dioxide (S-CO2) power cycle is one of the alternatives that have been proposed for the future concentrated solar power (CSP) plants due to its high efficiency. On the other hand, carbon dioxide can also be a replacement for current heat transfer fluids (HTFs), i.e. oil, molten salt, and steam. The main disadvantages of the current HTFs are maximum operating temperature limit, required freeze protection units, and complex control systems. However, the main challenge about utilizing s-CO2 as the HTF is to design a receiver that can operate at high operating pressure (about 20 MPa) while maintaining excellent thermal performance. The existing tubular and windowed receivers are not suitable for this application; therefore, an innovative design is required to provide appropriate performance as well as mechanical strength. This research investigates the application of s-CO2 in solar power tower plants. First, a computationally efficient method is developed for designing the heliostat field in a solar power tower plant. Then, an innovative numerical approach is introduced to distribute the heat flux uniformly on the receiver surface. Next, different power cycles utilizing s-CO2 as the working fluid are analyzed. It is shown that including an appropriate bottoming cycle can further increase the power cycle efficiency. In the next step, a thermal receiver is designed based on compact heat exchanger (CHE) technology utilizing s-CO2 as the HTF. Finally, a 3MWth cavity receiver is designed using the CHE receivers as individual panels receiving solar flux from the heliostat field. Convective and radiative heat transfer models are employed to calculate bulk fluid and surface temperatures. The receiver efficiency is obtained as 80%, which can be further improved by optimizing the geometry of the cavity.
APA, Harvard, Vancouver, ISO, and other styles
13

Guerreiro, Luís. "Energy optimization of a concentrated solar power plant with thermal storage." Doctoral thesis, Universidade de Évora, 2016. http://hdl.handle.net/10174/25594.

Full text
Abstract:
One of the most relevant problems to solve at a planetary scale is the access to an affordable clean source of energy as CO2 equivalent emissions should be reduced significantly. Some authors aim for a zero emissions target for 2050. Renewable energies will play a leading role in this energy transition, and solar energy with storage is a promising technology exploring a renewable and worldwide available resource. Within the present thesis component development like a new thermal storage thermocline tank design or having latent heat storage capability are technological developments that have been pursued and analyzed on a system perspective basis, focusing on reducing the LCOE value of a commercial STE plant using TRNSYS software. Material research with molten salts mixtures and cement based materials has been performed at lab scale. A fully validation should occur through a 13 partners pan-European H2020 project called NEWSOL which has been developed supported on the laboratory data obtained. Moreover, incorporation of local available material, “modern slag” from an old mine of Alentejo region, was also studied. The material could be used as an aggregate incorporated into calcium aluminate cement (CAC) or as filler. This would help to solve a local environmental complex problem related to soil, air and water pollution due to heavy metals and mining activity in Mina de São Domingos, Southeast of Portugal. The integration of these results underlies a broad energy transition model, a proposal is presented in this thesis, with the aim to foster development towards a sustainable usage of resources and promote clean technologies especially in the energy sector. This model can be locally adapted depending on the pattern of existing industries. The goal is to achieve a smooth transition into a clean tech energy society in line with the target of achieving zero emissions for 2050; Optimização Energética de uma Central de Concentração Solar com Armazenamento de Energia Resumo: Um dos problemas mais relevantes a resolver a uma escala planetária é o acesso, com um custo moderado, a fontes limpas de energia considerando que as emissões equivalentes de CO2 derão ser reduzidas drasticamente. Alguns autores ambicionam mesmo um objetivo de zero emissões em 2050. As energias renováveis irão desempenhar um papel preponderante nesta transição energética, sendo que a energia solar com armazenamento é uma tecnologia promissora que aproveita um recurso renovável e disponível em boa parte do Planeta. Na presente tese foi realizado o desenvolvimento de componentes nomeadamente o design que um novo tanque do tipo termocline, ou de novos elementos recorrendo ao calor latente, desenvolvimentos tecnológicos que foram analizados de uma perspectiva de sistema, dando o enfoque na redução do custo nivelado da electricidade (LCOE) para uma planta Termosolar usando o software TRNSYS. Foi também realizada investigação em laboratório ao nível dos materiais com várias misturas de sais fundidos inclusivé em contacto directo com materiais de base cimenticia. Uma validação completa deverá ocorrer no projeto NEWSOL do programa H2020 que reúne um consórcio de 13 parceiros europeus e que foi preparado e submetido tendo por base os resultados laboratoriais obtidos. Adicionalmente, incorporação de material disponível (escória de minério) de uma mina abandonada da região do Alentejo foi outro dos aspectos estudados. Verificou-se que este material poderá ser utilizado como agregado num ligante do tipo cimento de aluminato de cálcio (CAC) ou como “filler”. Este re-aproveitamento resolveria um problema ambiental complexo derivado do elevado conteúdo de metais pesados resultantes da actividade de mineração e que actualamente provocam poluição do solo, água e ar na área da Mina de São Domingos, Sudeste de Portugal. Estes progressos deverão ser integrados num modelo de transição energética mais amplo. Na presente tese, uma proposta concreta é apresentada, com o objectivo de incentivar o desenvolvimento na direção de uma utilização sustentável dos recursos e a promoção de tecnologias limpas nomeadamente no sector da energia. Este modelo poderá ser adaptado localmente dependendo do padrão de indústrias existente. O objectivo é atingir uma transição suave para uma sociedade de energias limpas em linha com o objectivo de atingir zero emissões de CO2 equivalente em 2050.
APA, Harvard, Vancouver, ISO, and other styles
14

Bester, Johan Jochemus Gildenhuys. "Carbon black nanofluid synthesis for use in concentrated solar power applications." Diss., University of Pretoria, 2016. http://hdl.handle.net/2263/61346.

Full text
Abstract:
Direct absorption solar collectors offer possible improvement in efficiency over traditional surface absorbing collectors, because they have fewer heat transfer steps and has the ability to utilise higher radiation fluxes. Carbon black based nanofluids, in a base fluid of salt water, were synthesised by a two-step method where the carbon black nanoparticles were treated with a surfactant, TWEEN-20, in a 1:2 mass ratio and sonicated for 60 minutes to break up agglomerates. The synthesised nanofluids showed stability for over 31 days. The different carbon black concentration nanofluids' solar irradiation absorption properties were compared with each other and with the base fluid of salt water in a concentrating, as well as non-concentration scenario. It was found that the carbon black nanofluids showed excellent absorption properties over the entire solar radiation spectrum. A 1 m2 concentrating unit using a two-axis tracking system, with two mirrors and a 1 m diameter circular Fresnel lens, was used to concentrate solar radiation on a direct absorption solar collector flow cell with a 10 cm2 collection area. An optimum concentration of 0.001 volume % carbon black was found to show a 42 % increase in heating rate, compared to that of salt water. The collector was, however, hampered by high energy losses and the maximum collector efficiency achieved was only 46 %, 23 % higher than that of salt water. The overall system efficiency was only 22 %. This low efficiency can be attributed to the high optical concentration losses (50 % - 70 %) present in the concentrating unit.
Dissertation (MEng)--University of Pretoria, 2016.
Chemical Engineering
MEng
Unrestricted
APA, Harvard, Vancouver, ISO, and other styles
15

Khader, M. A. "Development of a micro gas turbine for concentrated solar power applications." Thesis, City, University of London, 2017. http://openaccess.city.ac.uk/19156/.

Full text
Abstract:
The main objective of this research is to enhance the performance of a solar powered Micro Gas Turbine (MGT) by exploring suitable methods to be applied to the turbomachinery components to increase their efficiency and improve the predictability of their performance over the operating range of the MGT. A novel idea of reducing turbine rotor friction losses through adding riblets to the rotor hub was explored thoroughly. Computational Fluid Dynamics (CFD) has been used to study the effects of those features at design point conditions of the MGT. Riblets with different height and spacing have been examined to determine the riblet geometry where the maximum drag reduction is achieved. To improve the predictability of performance of the turbomachinery components of the MGT over the operating envelope, a prediction methodology was developed during this research which used a combination of CFD and empirical correlations to account for losses that are not included in the CFD model. It was found that riblets reduce the cross-stream motion of the low momentum fluid flow near the hub surface of the rotor passage, and separate the streamwise vortex from interaction with the hub surface. The maximum drag reduction was found to occur with riblets of a relative height of 2.5% with respect to the rotor inlet blade height. The performance prediction method was successfully applied to a radial turbine and centrifugal compressor designed for a 6 kWe solar powered MGT. A purpose-built test rig was built and the actual performance map for the turbine was achieved while running it using warm compressed air from an external air supply. The comparison between the actual and the predicted data revealed a good match between both results, which indicates the validity of the demonstrated performance prediction method.
APA, Harvard, Vancouver, ISO, and other styles
16

Tefera, Misrak A. "Electricity Production from Concentrated Solar Power and PV System in Ethiopia." Thesis, Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-40426.

Full text
Abstract:
Ethiopia has been facing problems regarding power generation, distribution, balancingbetween demand and supply and access to modern energy service. About 92.4% of energysupply is from biomass (mostly in traditional) 5.7% oil which is not friendly with theenvironment and about 1.6% of energy supply is from renewable energy resource,hydropower plants.Being dependent on hydropower plant causes the country to face many challenges indistribution and balancing demand and supply. This thesis provides another way ofconsidering and implementing renewable energy resource (solar energy resource) throughtechnologies like grid-connected roof mounted solar PV system and CSP plant with the helpof PVGIS, PVWatt and SAM software.This thesis aims to come up with an idea that will work out for current engineering, socialand political issue that is seen in the country. Considering new way in planting PV system onthe roof is strongly recommended and increasing the alternative sites for power generationalong with the appropriate technology is recommended as another way. The possibility andpower generating efficiency is checked through each application.Based on the demonstration in all software’s used, it is clearly visible that the country couldhave been satisfied the needed demand and become the hub of east Africa as mentioned inthe policy and strategy. However, this dependency causes the country to insufficiently supplythe need. Apart from the possibilities and estimation, ideas that might help the country tocome over these challenges are provided in recommendation section.
APA, Harvard, Vancouver, ISO, and other styles
17

Ghavami, M. "Cycle analysis and optimisation of micro gas turbines for concentrated solar power." Thesis, City, University of London, 2017. http://openaccess.city.ac.uk/19227/.

Full text
Abstract:
In recent years there has been an increasing interest in power generation using small-scale concentrated solar power units. Currently, photovoltaics are the main commercialised technology thanks to their low capital cost. However, their relatively low efficiency and power density has motivated research on the application of thermal engines. Dish-Stirling systems achieve reasonable efficiencies, but are relatively expensive and unreliable because of their technical complexity. The reliability of micro gas turbines and their potentially lower costs has motivated the current research, which is part of the EU funded OMSoP project, to study the thermo-economic performance of a micro gas turbine (MGT) engine coupled with dish concentrators in order to achieve suitable efficiency at low cost. To achieve this goal a system design, which takes into account the state of the art technology, is required to achieve an acceptable efficiency with minimised capital cost to promote dish-MGT systems in the market. An important issue to be addressed is to consider the effect of system design parameters on dish-MGT performance under the considerable variations of the solar irradiance. A computational model for pure solar dish-MGT systems has been developed, which combines the cycle analysis of the MGT with component models to perform design point performance simulation, generate component performance maps and perform off-design performance simulation. The method has been proven to be quick and effective, particularly in terms of using minimal data and providing the component performance maps for off-design simulation. Different strategies which can be applied to pure solar dish-MGT systems are examined and novel concepts have been proposed to increase the generated electricity. The computational model has been coupled with an up to date economic model which was specifically developed through the OMSoP project for dish-MGT systems. The integrated model is coupled to an optimisation platform to find system designs which lead to optimal thermo-economic performance for a 5kWe system. Then the optimisation has been extended over the rated power of 5-30kWe to find the power rating which results in the minimum cost of generated electricity by the dish-MGT systems. The proposed concepts for the control and operation of the dish-MGT systems are shown to be advantageous for increasing electricity production and dealing with the variations of power demand. The results demonstrate the potential of pure solar dish-MGT systems to achieve economically competitive electricity when the economy of scale of these systems is taken into account.
APA, Harvard, Vancouver, ISO, and other styles
18

Balakrishnan, Sruthy. "High-temperature Materials for Thermochemical Energy Storage in Concentrated Solar Power Plants." Thesis, Curtin University, 2022. http://hdl.handle.net/20.500.11937/88828.

Full text
Abstract:
The research focused on renewable energy storage using hydrogen-rich materials. These materials can store thermochemical heat energy used as thermal batteries in concentrated solar power plants. High-temperature metal hydrides have been identified as the next-generation thermal batteries for concentrated solar power plants. They have higher energy densities than conventional energy storage materials such as molten salts. I believe our research's innovative and multifaceted approach can provide enhanced green energy production and hence reduce CO2 emissions.
APA, Harvard, Vancouver, ISO, and other styles
19

Contino, Alessandro Patrizio. "Solar mirrors characterization for concentrating solar power technology." Doctoral thesis, Università di Catania, 2012. http://hdl.handle.net/10761/993.

Full text
Abstract:
The increasing availability on the market of different types of solar reflectors such as: polymeric film mirrors, aluminum mirrors and thin glass mirrors, together with: the lack of available norms in this area, and a valid methodology to compare the performances of the candidate reflectors; highlights the necessity to conduct a more detailed analysis on these new technologies. The objective of the present work is to suggest a valuable method to compare the reflectance performance of mirrors, evaluating also their performances in order to assess: - the most durable to ageing and weathering effects; - the different reflectance behavior with the variation of the solar incident angle. .For these reasons the work here proposed was carried out with an experimental apparatus composed by: - An Agilent Cary 5000 UV/Vis/NIR spectrophotometer to test the different performance of the mirrors at different characterization steps; - An integrating sphere of 150 mm in diameter (DRA ¡V Diffuse Reflectance Accessory); - A VASRA (Variable Angle Specular Reflection Accessory); - A UV chamber to accelerate the ageing process; - A £gScan SMS Scatterometer for RMS Roughness and BDSF measurement; - An outdoor bench The work was completed with two modeling tools: - An engineering equation solver (Mathcad) to dynamically evaluate the behavior; - A ray tracing software (Soltrace) to evaluate the system¡¦s optical efficiency. The analysis indicates that the candidate reflectors can be accurately characterized with five fundamental parameters: a) £lSWH, the solar-weighted hemispherical reflectance; b) £lSWS, the solar-weighted specular reflectance; c) £lSWS( á), the solar weighted specular reflectance function of the variable angle of incidence; d) BDSF, Bi Directional Scattering Function; e) RMS Roughness This evaluation will provide a valuable tool, for the companies who want to invest in concentrating solar power technology, to decide whether or not using a candidate reflectors to realize new plants, assessing their performances, their costs, and their durability.
APA, Harvard, Vancouver, ISO, and other styles
20

Alsagri, Ali Sulaiman. "Thermoeconomic and Optimization Analysis of Advanced Supercritical Carbon Dioxide Power Cycles in Concentrated Solar Power Application." University of Dayton / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1528816504089412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Wagner, Sharon J. "Environmental and Economic Implications of Thermal Energy Storage for Concentrated Solar Power Plants." Research Showcase @ CMU, 2011. http://repository.cmu.edu/dissertations/682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ehtiwesh, Ismael Alagili Sassi. "Exergetic, energetic, economic and environmental evaluation of concentrated solar power plants in Libya." Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/15882.

Full text
Abstract:
Doutoramento em Engenharia Mecânica
The PhD project addresses the potential of using concentrating solar power (CSP) plants as a viable alternative energy producing system in Libya. Exergetic, energetic, economic and environmental analyses are carried out for a particular type of CSP plants. The study, although it aims a particular type of CSP plant – 50 MW parabolic trough-CSP plant, it is sufficiently general to be applied to other configurations. The novelty of the study, in addition to modeling and analyzing the selected configuration, lies in the use of a state-of-the-art exergetic analysis combined with the Life Cycle Assessment (LCA). The modeling and simulation of the plant is carried out in chapter three and they are conducted into two parts, namely: power cycle and solar field. The computer model developed for the analysis of the plant is based on algebraic equations describing the power cycle and the solar field. The model was solved using the Engineering Equation Solver (EES) software; and is designed to define the properties at each state point of the plant and then, sequentially, to determine energy, efficiency and irreversibility for each component. The developed model has the potential of using in the preliminary design of CSPs and, in particular, for the configuration of the solar field based on existing commercial plants. Moreover, it has the ability of analyzing the energetic, economic and environmental feasibility of using CSPs in different regions of the world, which is illustrated for the Libyan region in this study. The overall feasibility scenario is completed through an hourly analysis on an annual basis in chapter Four. This analysis allows the comparison of different systems and, eventually, a particular selection, and it includes both the economic and energetic components using the “greenius” software. The analysis also examined the impact of project financing and incentives on the cost of energy. The main technological finding of this analysis is higher performance and lower levelized cost of electricity (LCE) for Libya as compared to Southern Europe (Spain). Therefore, Libya has the potential of becoming attractive for the establishment of CSPs in its territory and, in this way, to facilitate the target of several European initiatives that aim to import electricity generated by renewable sources from North African and Middle East countries. The analysis is presented a brief review of the current cost of energy and the potential of reducing the cost from parabolic trough- CSP plant. Exergetic and environmental life cycle assessment analyses are conducted for the selected plant in chapter Five; the objectives are 1) to assess the environmental impact and cost, in terms of exergy of the life cycle of the plant; 2) to find out the points of weakness in terms of irreversibility of the process; and 3) to verify whether solar power plants can reduce environmental impact and the cost of electricity generation by comparing them with fossil fuel plants, in particular, Natural Gas Combined Cycle (NGCC) plant and oil thermal power plant. The analysis also targets a thermoeconomic analysis using the specific exergy costing (SPECO) method to evaluate the level of the cost caused by exergy destruction. The main technological findings are that the most important contribution impact lies with the solar field, which reports a value of 79%; and the materials with the vi highest impact are: steel (47%), molten salt (25%) and synthetic oil (21%). The “Human Health” damage category presents the highest impact (69%) followed by the “Resource” damage category (24%). In addition, the highest exergy demand is linked to the steel (47%); and there is a considerable exergetic demand related to the molten salt and synthetic oil with values of 25% and 19%, respectively. Finally, in the comparison with fossil fuel power plants (NGCC and Oil), the CSP plant presents the lowest environmental impact, while the worst environmental performance is reported to the oil power plant followed by NGCC plant. The solar field presents the largest value of cost rate, where the boiler is a component with the highest cost rate among the power cycle components. The thermal storage allows the CSP plants to overcome solar irradiation transients, to respond to electricity demand independent of weather conditions, and to extend electricity production beyond the availability of daylight. Numerical analysis of the thermal transient response of a thermocline storage tank is carried out for the charging phase. The system of equations describing the numerical model is solved by using time-implicit and space-backward finite differences and which encoded within the Matlab environment. The analysis presented the following findings: the predictions agree well with the experiments for the time evolution of the thermocline region, particularly for the regions away from the top-inlet. The deviations observed in the near-region of the inlet are most likely due to the high-level of turbulence in this region due to the localized level of mixing resulting; a simple analytical model to take into consideration this increased turbulence level was developed and it leads to some improvement of the predictions; this approach requires practically no additional computational effort and it relates the effective thermal diffusivity to the mean effective velocity of the fluid at each particular height of the system. Altogether the study indicates that the selected parabolic trough-CSP plant has the edge over alternative competing technologies for locations where DNI is high and where land usage is not an issue, such as the shoreline of Libya.
O projeto de Doutoramento aborda o potencial de usar centrais de energia solar concentrada (CSP) como um sistema de produção de energia alternativa disponível na Líbia. Uma análise nas vertentes exergética, energética, económica e ambiental foi realizada para um tipo particular destas centrais – um sistema de 50 MW com receção parabólica, porém ela é suficientemente geral para ser aplicada a outras configurações. A originalidade do estudo, para além da modelação e análise da configuração selecionada encontra-se na utilização do estado da arte em termos da análise exergética combinada com a avaliação do ciclo de vida (LCA). A modelação e simulação da central CSP selecionada são efetuadas no terceiro capítulo tendo em consideração as duas componentes: ciclo de potência e campo de coletores solar. O modelo computacional para a análise do sistema foi desenvolvido com base em equações algébricas que descrevem o sistema, e que são resolvidas usando o software EES. Deste modo, são definidas as propriedades em cada ponto de interesse para os diferentes elementos do sistema, o que assim permite determinar as energias, eficiências e irreversibilidades desses elementos. O modelo desenvolvido tem o potencial de se tornar uma ferramenta de grande utilidade para o projeto preliminar de engenharia de centrais CSP, e também para a avaliação da eventual reconfiguração de centrais elétricas solares comerciais em operação. Além disso, o modelo pode ser utilizado no estudo de viabilidade da operação de centrais CSP, através da análise energética, económica e ambiental, para regiões diferentes da que foi escolhida no presente estudo -Trípoli (Líbia). O cenário total da viabilidade da operação da central CSP é completado através da análise horária com base anual apresentada no quarto capítulo. Esta análise permite a comparação de diferentes sistemas e, eventualmente permite fazer a seleção com base nas componentes económicas e energéticas, que são determinadas dentro do contexto do software greenius. A análise também toma em conta o impacto de financiamento e incentivos dados aos projetos no custo da produção de energia. O principal resultado desta análise é a verificação que o desempenho é mais elevado, com o consequente menor custo nivelado da eletricidade, para a Líbia em comparação com o Sul da Europa (Espanha). Assim a Líbia tem o potencial de se tornar um candidato atrativo para o estabelecimento de centrais CSP com o objetivo, como foi considerado em várias iniciativas europeias, de exportar eletricidade gerada através de fontes de energia renováveis de países do Norte de África e Médio Oriente para a Europa. A análise apresenta uma breve revisão do custo corrente da eletricidade e o potencial para reduzir o custo da energia a partir da tecnologia de receção parabólica de centrais CSP. A avaliação do ciclo de vida com base exergética (ELCA) e a avaliação do ciclo de vida convencional são realizadas para a centrais CSP específicas no quinto capítulo. Os objetivos são 1) avaliar o impacto ambiental e custo, em termos de do ciclo iv de vida exergético do sistema; 2) identificar pontos fracos em termos da irreversibilidade dos processos; e 3) verificar se as centrais CSP podem reduzir o impacto ambiental e o custo de geração de eletricidade em comparação com centrais que consomem combustível fóssil. O capítulo ainda apresenta uma análise termoeconómica com base na metodologia do custo específico da exergia (SPECO), que avalia o custo relacionado com a destruição de exergia. A análise verificou que o impacto mais importante é a contribuição apresentada pelo campo solar (79%), e os materiais com maior impacto são: aço (47%), sal fundido (25%) e óleo sintético (21%). A análise ELCA mostra que a maior demanda de exergia é devida ao aço (47%); a análise existe uma considerável demanda de exergia relacionada com o sal fundido e ainda o óleo sintético. Em comparação com as centrais que consomem combustível fóssil (NGCC e óleo) a central sistema CSP apresenta menor impacto ambiental, enquanto o pior desempenho ambiental é o da central com queima de óleo seguida pela central a gás natural (NGCC). Na central CSP, o campo solar apresenta o custo mais elevado, enquanto o gerador de vapor, entre os componentes do ciclo de potência, apresenta o maior custo. O armazenamento de energia térmica permite que as centrais CSP superem a intermitência de radiação solar para responder à procura de energia elétrica independentemente das condições climáticas, e também possam estender a produção de eletricidade para além da disponibilidade da radiação solar diária. A análise numérica do transiente térmico de um sistema de armazenamento de gradiente térmico é realizada durante a fase de carregamento. O sistema de equações que descreve o modelo numérico é resolvido através da utilização de diferenças finitas implícitas no tempo usando o software Matlab. Os resultados da análise indicam que as previsões estão em boa concordância com os dados experimentais para a evolução no tempo da região de gradiente térmico, em particular para regiões mais afastadas da entrada. Nesta região os desvios observados são provavelmente causados pelo alto nível de turbulência devido à penetração do jato no seio do tanque de armazenamento. O modelo analítico simples para simular a turbulência que foi desenvolvido melhora os resultados. Esta abordagem não requer esforço computacional adicional e determina a difusidade térmica efetiva ao longo do tanque.
APA, Harvard, Vancouver, ISO, and other styles
23

Ferruzza, Davide. "Thermocline storage for concentrated solar power : Techno-economic performance evaluation of a multi-layered single tank storage for Solar Tower Power Plant." Thesis, KTH, Kraft- och värmeteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172456.

Full text
Abstract:
Solar Tower Power Plants with thermal energy storage are a promising technology for dispatchable renewable energy in the near future. Storage integration makes possible to shift the electricity production to more profitable peak hours. Usually two tanks are used to store cold and hot fluids, but this means both higher related investment costs and difficulties during the operation of the variable volume tanks. Another solution can be a single tank thermocline storage in a multi-layered configuration. In such tank both latent and sensible fillers are employed to decrease the related cost by up to 30% and maintain high efficiencies.  The Master thesis hereby presented describes the modelling and implementation of a thermocline-like multi-layered single tank storage in a STPP. The research work presents a comprehensive methodology to determine under which market structures such devices can outperform the more conventional two tank storage systems. As a first step the single tank is modelled by means of differential energy conservation equations. Secondly the tank geometrical design parameters and materials are taken accordingly with the applications taken into consideration. Both the steady state and dynamic models have been implemented in an existing techno-economic tool developed in KTH, in the CSP division (DYESOPT). The results show that under current cost estimates and technical limitations the multi-layered solid PCM storage concept is a better solution when peaking operating strategies are desired, as it is the case for the two-tier South African tariff scheme. In this case the IRR of an optimal designed power plant can be decreased by 2.1%. However, if a continuous operation is considered, the technology is not always preferred over the two tank solution, yet is a cheaper alternative with optimized power plants. As a result the obtained LCOE can be decreased by 2.4%.
APA, Harvard, Vancouver, ISO, and other styles
24

Onigbajumo, Adetunji. "Integration of concentrated solar thermal energy for industrial hydrogen production." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/235889/1/Adetunji%2BOnigbajumo_Thesis%281%29.pdf.

Full text
Abstract:
The research demonstrated a balanced process, energy, and techno-economic argument for the utilisation of concentrated solar thermal energy, essentially, for hydrogen production and other industrial process systems. The representative case studies undertaken in the research addressed process and solar thermal energy modelling, energy integration, process optimisation, exergy assessment, and techno-economic evaluation as it relates to renewable hydrogen and hydrogen-based fuel production. The research established that economic assessment studies, process-energy configuration, choice of renewable energy, and mixed energy options are key to the shift from fossil fuel to green energy and industrial production to significantly reduce the impact of climate change.
APA, Harvard, Vancouver, ISO, and other styles
25

Mahdavi, Mahboobe. "NUMERICAL AND EXPERIMENTAL ANALYSIS OF HEAT PIPES WITH APPLICATION IN CONCENTRATED SOLAR POWER SYSTEMS." Diss., Temple University Libraries, 2016. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/400193.

Full text
Abstract:
Mechanical Engineering
Ph.D.
Thermal energy storage systems as an integral part of concentrated solar power plants improve the performance of the system by mitigating the mismatch between the energy supply and the energy demand. Using a phase change material (PCM) to store energy increases the energy density, hence, reduces the size and cost of the system. However, the performance is limited by the low thermal conductivity of the PCM, which decreases the heat transfer rate between the heat source and PCM, which therefore prolongs the melting, or solidification process, and results in overheating the interface wall. To address this issue, heat pipes are embedded in the PCM to enhance the heat transfer from the receiver to the PCM, and from the PCM to the heat sink during charging and discharging processes, respectively. In the current study, the thermal-fluid phenomenon inside a heat pipe was investigated. The heat pipe network is specifically configured to be implemented in a thermal energy storage unit for a concentrated solar power system. The configuration allows for simultaneous power generation and energy storage for later use. The network is composed of a main heat pipe and an array of secondary heat pipes. The primary heat pipe has a disk-shaped evaporator and a disk-shaped condenser, which are connected via an adiabatic section. The secondary heat pipes are attached to the condenser of the primary heat pipe and they are surrounded by PCM. The other side of the condenser is connected to a heat engine and serves as its heat acceptor. The applied thermal energy to the disk-shaped evaporator changes the phase of working fluid in the wick structure from liquid to vapor. The vapor pressure drives it through the adiabatic section to the condenser where the vapor condenses and releases its heat to a heat engine. It should be noted that the condensed working fluid is returned to the evaporator by the capillary forces of the wick. The extra heat is then delivered to the phase change material through the secondary heat pipes. During the discharging process, secondary heat pipes serve as evaporators and transfer the stored energy to the heat engine. Due to the different geometry of the heat pipe network, a new numerical procedure was developed. The model is axisymmetric and accounts for the compressible vapor flow in the vapor chamber as well as heat conduction in the wall and wick regions. Because of the large expansion ratio from the adiabatic section to the primary condenser, the vapor flow leaving the adiabatic pipe section of the primary heat pipe to the disk-shaped condenser behaves similarly to a confined jet impingement. Therefore, the condensation is not uniform over the main condenser. The feature that makes the numerical procedure distinguished from other available techniques is its ability to simulate non-uniform condensation of the working fluid in the condenser section. The vapor jet impingement on the condenser surface along with condensation is modeled by attaching a porous layer adjacent to the condenser wall. This porous layer acts as a wall, lets the vapor flow to impinge on it, and spread out radially while it allows mass transfer through it. The heat rejection via the vapor condensation is estimated from the mass flux by energy balance at the vapor-liquid interface. This method of simulating heat pipe is proposed and developed in the current work for the first time. Laboratory cylindrical and complex heat pipes and an experimental test rig were designed and fabricated. The measured data from cylindrical heat pipe were used to evaluate the accuracy of the numerical results. The effects of the operating conditions of the heat pipe, heat input, and portion of heat transferred to the phase change material, main condenser geometry, primary heat pipe adiabatic radius and its location as well as secondary heat pipe configurations have been investigated on heat pipe performance. The results showed that in the case with a tubular adiabatic section in the center, the complex interaction of convective and viscous forces in the main condenser chamber, caused several recirculation zones to form in this region, which made the performance of the heat pipe convoluted. The recirculation zone shapes and locations affected by the geometrical features and the heat input, play an important role in the condenser temperature distributions. The temperature distributions of the primary condenser and secondary heat pipe highly depend on the secondary heat pipe configurations and main condenser spacing, especially for the cases with higher heat inputs and higher percentages of heat transfer to the PCM via secondary heat pipes. It was found that changing the entrance shape of the primary condenser and the secondary heat pipes as well as the location and quantity of the secondary heat pipes does not diminish the recirculation zone effects. It was also concluded that changing the location of the adiabatic section reduces the jetting effect of the vapor flow and curtails the recirculation zones, leading to higher average temperature in the main condenser and secondary heat pipes. The experimental results of the conventional heat pipe are presented, however the data for the heat pipe network is not included in this dissertation. The results obtained from the experimental analyses revealed that for the transient operation, as the heat input to the system increases and the conditions at the condenser remains constant, the heat pipe operating temperature increases until it reaches another steady state condition. In addition, the effects of the working fluid and the inclination angle were studied on the performance of a heat pipe. The results showed that in gravity-assisted orientations, the inclination angle has negligible effect on the performance of the heat pipe. However, for gravity-opposed orientations, as the inclination angle increases, the temperature difference between the evaporator and condensation increases which results in higher thermal resistance. It was also found that if the heat pipe is under-filled with the working fluid, the capillary limit of the heat pipe decreases dramatically. However, overfilling of the heat pipe with working fluid degrades the heat pipe performance due to interfering with the evaporation-condensation mechanism.
Temple University--Theses
APA, Harvard, Vancouver, ISO, and other styles
26

Mathew, Arun. "Analysis and Optimization of High Temperature Thermochemical Energy Storage Systems for Concentrated Solar Power." Thesis, Curtin University, 2021. http://hdl.handle.net/20.500.11937/87894.

Full text
Abstract:
This thesis presents a research investigation examining the thermal performance of thermochemical energy storage reactors suitable for applications in high temperature concentrated solar systems. An advanced numerical model was successfully developed for simulating the reactor packed bed thermal behaviour using both single-phase and (multi-phase) flow boiling mechanisms for heat exchange in the reactor. Two types of thermochemical storage media, namely magnesium hydride and calcium carbonate, were analysed for performance comparison providing different reaction kinetics.
APA, Harvard, Vancouver, ISO, and other styles
27

Rehn, Alexander W. (Alexander William). "Nanoengineered surfaces for improvements in energy systems : application to concentrated solar and geothermal power plants." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76971.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 140-148).
The main drawback to renewable energy systems is the higher cost of production compared to competitors such as fossil fuels. Thus, there is a need to increase the efficiency of renewable energy systems in an effort to make them more cost competitive. In this study, the use of nanosurfaces is evaluated for its benefits in improving the efficiency of a concentrated solar tower power system by increasing the energy retained by the receiver surface, and for reducing the fouling on geothermal heat exchangers. The samples tested for the solar receiver application were Inconel 617, Inconel 617 with a 150 nm layer of platinum, Inconel 617 with a 150 nm layer of platinum and a 550 nm layer of nickel oxide, oxidized nickel, and silicon carbide. The experimental results indicated that the platinum was an ineffective diffusion barrier, nickel oxide displays solar selective properties, and silicon carbide would be the best choice for a surface among the samples tested. This indicates that at the operating temperatures for this receiver at 700 °C, a black body surface is more effective than a practical solar selective surface. The nanosurfaces tested for the antifouling application in geothermal systems were subjected to chemistry conditions similar to that in a Dry Cooling Tower at a geothermal plant in Larderello, Italy. Each sample's performance was measured by determining each samples weight change and surface characterization after exposure in an experimental loop. The best performing coatings, all of which showed negligible weight gain, were the Curran 1000 coating from Curran International, the Curran 1000 coating with nanographene, and the Curralon coating with PTFE. Upon further analysis, the Curran 1000 with nanographene was identified as the most promising coating option.
by Alexander W. Rehn.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
28

Zhang, Yi Zhong. "Experimental investigations on a two-axis sun-tracking concentrated photovoltaic-thermal system cooled by phase change material." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3950058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Reoyo-Prats, Reine. "Etude du vieillissement de récepteurs solaires : estimation de propriétés thermophysiques par méthode photothermique associée aux outils issus de l'intelligence artificielle." Thesis, Perpignan, 2020. http://www.theses.fr/2020PERP0017.

Full text
Abstract:
L’augmentation de la consommation énergétique et la prise de conscience du dérèglement climatique induit par l’augmentation des émissions de gaz à effet de serre engendrent un changement progressif du modèle énergétique. Les technologies faisant appel à des ressources renouvelables se développent depuis plusieurs décennies ; c’est notamment le cas des centrales solaires à concentration. La problématique de leur durabilité se pose donc. Cette thèse participe en premier lieu à la réflexion concernant la méthodologie de vieillissement accéléré des matériaux employés dans les récepteurs de ces centrales, partie soumise au rayonnement solaire concentré. Pour cela, plusieurs protocoles expérimentaux sont réalisés. Leur efficacité est principalement jugée au vue de l’évolution des propriétés radiatives des matériaux (absorptivité, émissivité). En parallèle, les propriétés thermophysiques que sont la conductivité thermique et la diffusivité sont étudiées sur un panel plus large de matériaux. Compte tenu des limites et des contraintes de caractérisation avec les méthodes actuelles, une nouvelle méthode d’estimation de ces propriétés est développée. Celle-ci est basée sur les réseaux de neurones artificiels et s’appuie sur des données expérimentales issues d’expériences photothermiques
The increasing energy consumption and the awareness of climate change induced by the increasing greenhouse gas emissions result in a progressive change of the energy model. Technologies based on renewable resources have been developing for several decades, such as concentrated solar power plants (CSP). So the issue of their sustainability is studied in many research programs. This thesis contributes to the development of a methodology for the accelerated ageing of the materials used in CSP receivers, which is the component submitted to concentrated solar radiation. For this purpose, several experimental protocols are carried out. Their efficiency is examined in light of the evolution of the radiative properties of the materials (absorptivity, emissivity). On another hand, the thermophysical properties such as the thermal conductivity and diffusivity are studied on a wider range of materials. Considering the limits of the current characterization methods, a new method for estimating these properties is developed. This is based on artificial neural networks and relies on photothermal experimental data
APA, Harvard, Vancouver, ISO, and other styles
30

Desai, Ranjit. "Thermo-Economic Analysis of a Solar Thermal Power Plant with a Central Tower Receiver for Direct Steam Generation." Thesis, KTH, Kraft- och värmeteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-131764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ruiz-Cabañas, F. Javier. "Corrosion evaluation of molten salts thermal energy storage (TES) systems in concentrated solar power plants (CSP)." Doctoral thesis, Universitat de Lleida, 2020. http://hdl.handle.net/10803/671680.

Full text
Abstract:
El protagonisme creixent de la tecnologia solar termoelèctrica entre el ventall de les energies renovables es centra en la seva capacitat d’adaptar la seva producció a la demanda energètica exigida. La gestionabilitat d’aquest tipus de centrals s’ha aconseguit amb la integració de sistemes d’emmagatzematge tèrmic en les mateixes. La major part dels sistemes d’emmagatzematge tèrmic, ja sigui els que s’utilitzen a nivell comercial com aquells que es troben en fase de desenvolupament proposen l’ús de sals inorgàniques foses com a medi d’emmagatzematge. Aquestes sals presenten l’inconvenient de la seva alta corrosivitat a altes temperatures. Per un costat, s’han analitzat els fenòmens de corrosió associats a les sals solars utilitzades a la planta pilot TES-PS10 mitjançant la instal·lació de racks de testimonis de corrosió als tancs de sals. A més, al finalitzar l’operació de la instal·lació pilot s’ha dut a terme un estudi post-mortem dels seus. Finalment, amb l’objectiu d’abaratir el cost de l’inventari de sals, s’ha analitzat a nivell de laboratori la corrosivitat de diferents mescles de nitrats de baixa puresa. El segon bloc de la tesi es centra en els sistemes d’emmagatzematge tèrmic en calor latent. Concretament, s’analitza la corrosió associada a la mescla peritèctica 46% LiOH-54% KOH proposta com a material de canvi de fase en un mòdul d’evaporació d’instal·lacions termoelèctriques de generació directa de vapor. D’aquesta forma, s’han dut a terme una sèrie d’assajos a nivell de laboratori amb l’objectiu d’avaluar el comportament envers la corrosió de diferents materials en contacte amb aquests hidròxids.
El creciente protagonismo de la tecnología solar se centra en su capacidad para adaptar su producción a la demanda energética exigida. La gestionabilidad de este tipo de centrales se ha conseguido mediante la integración de sistemas de almacenamiento térmico en sales fundidas. El uso de sales fundidas en sistemas de almacenamiento térmico presenta el hándicap de su corrosividad a alta temperatura. El primer bloque de la Tesis analiza los fenómenos de corrosión asociados a las sales solares en la planta piloto TES-PS10 mediante la instalación de racks de corrosión en los tanques de sales. Además, se ha llevado a cabo un estudio post-mortem de componentes de la instalación. Finalmente, se ha analizado a nivel de laboratorio la corrosividad de distintas mezclas de nitrato de baja pureza. El segundo bloque de la tesis se centra en los sistemas de almacenamiento en calor latente. En concreto, se analiza la corrosión asociada a la mezcla peritéctica 46% LiOH-54% KOH propuesta como material de cambio de fase en el módulo de evaporación en plantas de generación directa de vapor. De este modo, se han llevado a cabo ensayos de corrosión a nivel de laboratorio para evaluar el comportamiento a corrosión de distintos materiales en contacto con los hidróxidos.
The growing of concentrated solar power (CSP) within the different renewable energies is due to its ability to adapt the production to the required energy demand. The dispatchability of this type of plants has been achieved through the integration of molten salts thermal storage systems (TES). Molten salts have a handicap associated to their corrosiveness at high temperature. First block of this Thesis analyzes the corrosion phenomena associated with solar salts used in TES-PS10 pilot plant by installing corrosion racks in the salt tanks. Moreover, a postmortem study of different components was performed after facility shut down. Finally, in order to reduce the cost of the salt inventory in TES systems, the corrosivity of different low purity nitrates mixtures has been analyzed at laboratory scale. The second block of the Thesis focuses on latent heat storage systems. Specifically, it has been analyzed the corrosion associated with the proposed 46% LiOH-54% KOH peritectic mixture as a phase change material in the evaporation module of direct steam generation (DSG) CSP plants. Thus, corrosion tests have been performed at laboratory level to evaluate the corrosion performance of several materials in contact with such hydroxides.
APA, Harvard, Vancouver, ISO, and other styles
32

Knott, Ryan Christopher. "High temperature durability of metals for use in a particle heating receiver for concentrated solar power." Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53117.

Full text
Abstract:
An experimental investigation is presented on a novel High Temperature Falling Particle Receiver for Concentrated Solar Power (CSP) to quantify the extent of erosion of the receiver structural materials by the flowing particulate matter. The current receiver design uses a series of metal wire mesh screens to slow down the particulate flow through the receiver in order to increase their residence time thereby achieving the desired temperature rise within the receiver without the need for particulate recirculation. The solid particulates are gravity fed through the receiver where they absorb the incident thermal energy before flowing to a high temperature storage bin upstream of a heat exchanger where the heat stored in the particulate material is transferred to the working fluid for the power cycle. To assess the effective life of the receiver, this experimental investigation is undertaken. This thesis includes the development of an apparatus to test wire meshes under high temperature and particle abrasion conditions, and the presentation and analysis of these results.
APA, Harvard, Vancouver, ISO, and other styles
33

Maaza, Malik. "Latent and thermal energy storage enhancement of silver nanowires-nitrate molten salt for concentrated solar power." University of Western Cape, 2020. http://hdl.handle.net/11394/8038.

Full text
Abstract:
>Magister Scientiae - MSc
Phase change material (PCM) through latent heat of molten salt, is a convincing way for thermal energy storage in CSP applications due to its high volume density. Molten salt, with (60% NaNO3 and 40% KNO3) has been used extensively for energy storage however; the low thermal conductivity and specific heat have limited its large implementation in solar applications. For that, molten salt with the additive of silver nanowires (AgNWs) was synthesized and characterized. This research project aims to investigate the thermophysical properties enhancement of nanosalt (Mixture of molten salt and silver nanowires). The results obtained showed that by simply adjusting the temperature, Silver nanowires with high aspect ratio have been synthesized through the enhanced PVP polyol process method. SEM results revealed a network of silver nanowires and TEM results confirmed the presence of silver nanowires with an average diameter of 129 nm and 16 μm in length.
APA, Harvard, Vancouver, ISO, and other styles
34

González, García-Mon José-Luis. "Short-term operation planning of a CSP plant in the Spanish day-ahead electricity market : Viability study of various backup systems." Thesis, KTH, Elektriska energisystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Mey, Hennie. "Carbon black : enhancing phase change materials for direct solar application." Diss., University of Pretoria, 2016. http://hdl.handle.net/2263/61312.

Full text
Abstract:
A solar simulator was used to test whether a carbon black additive could increase the solar absorption of a low temperature organic PCM (consisting of a eutectic mixture of palmitic acid and stearic acid). Various PCM and carbon black composites (0.01 % to 6 %) were tested, with the 0.06 % carbon black composites showing the fastest temperature increase, reaching 75 °C much quicker (350 % faster) than the pure PCM. All of the tested PCM composites reached 75 °C in less than half the time it took the pure PCM. It can therefore be seen that carbon black is very effective at increasing the solar absorption of the PCM. The carbon black did not have a negative impact on the melting/solidifying onset temperature or the latent heat of the PCM. This proves that at these low concentrations carbon black can help reduce the shortcomings of the PCM without adversely affecting its energy storage properties. The optimal carbon black concentration changes with the size of the PCM: a shallow PCM layer (2 cm) showed the fastest temperature increase at higher concentrations (between 0.06 % and 0.5 % carbon black), while the deep PCM layer (9 cm) showed the fastest temperature increase at lower concentrations (between 0.01 % and 0.08 % carbon black). The poor optical properties of the PCM were vastly improved by the carbon black, making the composite an effective direct solar absorber. The carbon black, however, does not provide meaningful thermal conductivity enhancements. Therefore additional heat transfer enhancements (like graphite) are needed if this novel PCM composite is to be used in a combined system (direct solar absorber, heat transfer fluid and energy storage system).
Dissertation (MEng)--University of Pretoria, 2016.
Chemical Engineering
MEng
Unrestricted
APA, Harvard, Vancouver, ISO, and other styles
36

Prinsloo, Gerhardus Johannes. "Automatic positioner and control system for a motorized parabolic solar reflector." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/96137.

Full text
Abstract:
Thesis (MEng)--Stellenbosch University, 2014.
ENGLISH ABSTRACT: Most rural African villages enjoy high levels of sunlight, but rolling out solar power generation technology to tap into this renewable energy resource at remote rural sites in Africa pose a number of design challenges. To meet these challenges, a project has been initiated to design, build and test/evaluate a knock down 3 kW peak electrical stand-alone self-tracking dual-axis concentrating solar power system. This study focusses on the mechatronic engineering aspects in the design and development of a dynamic mechatronic platform and digital electronic control system for the stand-alone concentrating solar power system. Design specifications require an accurate automatic positioner and control system for a motorized parabolic solar reflector with an optical solar harnessing capacity of 12 kWt at solar noon. It must be suitable for stand-alone rural power generation. This study presents a conceptual design and engineering prototype of a balanced cantilever tilt-and-swing dual-axis slew drive actuation means as mechatronic solar tracking mobility platform for a ∼12 m2 lightweight parabolic solar concentrator. Digital automation of the concentrated solar platform is implemented using an industrial Siemens S7-1200 programmable logic controller (PLC) with digital remote control interfacing, pulse width modulated direct current driving, and electronic open loop/closed loop solar tracking control. The design and prototype incorporates off-the-shelf components to support local manufacturing at reduced cost and generally meets the goal of delivering a dynamic mechatronic platform for a concentrating solar power system that is easy to transport, assemble and install at remote rural sites in Africa. Real-time experiments, conducted in the summer of South Africa, validated and established the accuracy of the engineering prototype positioning system. It shows that the as-designed and -built continuous solar tracking performs to an optical accuracy of better than 1.0◦ on both the azimuth and elevation tracking axes; and which is also in compliance with the pre-defined design specifications. Structural aspects of the prototype parabolic dish are evaluated and optimized by other researchers while the Stirling and power handling units are under development in parallel projects. Ultimately, these joint research projects aim to produce a locally manufactured knock down do-it-yourself concentrated solar power generation kit, suitable for deployment into Africa.
AFRIKAANSE OPSOMMING: Landelike gebiede in Afrika geniet hoë vlakke van sonskyn, maar die ontwerp van betroubare sonkrag tegnologie vir die benutting van hierdie hernubare energie hulpbron by afgeleë gebiede in Afrika bied verskeie uitdagings. Om hierdie uitdagings te oorkom, is ’n projek van stapel gestuur om ’n afbreekbare 3 kW piek elektriese alleenstaande selfaangedrewe dubbel-as son-konsentreeder te ontwerp, bou en te toets. Hierdie studies fokus op die megatroniese ingenieurs-aspekte in die ontwerp en ontwikkeling van ’n dinamiese megatroniese platform en ’n digitale elektroniese beheerstelsel vir die alleenstaande gekonsentreerde sonkrag stelsel. Ontwerp spesifikasies vereis ’n akkurate outomatiese posisionering en beheer stelsel vir ’n motor aangedrewe paraboliese son reflekteerder met ’n optiesekollekteer- kapasiteit van 12 kWt by maksimum sonhoogte, en veral geskik wees vir afgeleë sonkrag opwekking. Hierdie studie lewer ’n konsepsuele ontwerp en ingenieurs-prototipe van ’n gebalanseerde dubbelas swaai-en-kantel swenkrat aandrywingsmeganisme as megatroniese sonvolg platform vir ’n ∼12 m2 liggewig paraboliese son konsentreerder. Digitale outomatisering van die son konsentreerder platform is geimplementeer op ’n industriële Siemens S7-1200 programmeerbare logiese beheerder (PLB) met ’n digitale afstandbeheer koppelvlak, puls-wydte-gemoduleerde gelykstroom aandrywing en elektroniese ooplus en geslote-lus sonvolg beheer. Die ontwerp en prototipe maak gebruik van beskikbare komponente om lae-koste plaaslike vervaardiging te ondersteun en slaag in die algemeen in die doel om ’n dinamiese megatroniese platform vir ’n gekonsentreerde sonkrag stelsel te lewer wat maklik vervoer, gebou en opgerig kan word op afgeleë persele in Afrika. Intydse eksperimente is gedurende die somer uitgevoer om die akkuraatheid van die prototipe posisionering sisteem te evalueer. Dit toon dat die sisteem die son deurlopend volg met ’n akkuraatheid beter as 1.0◦ op beide die azimut en elevasie sonvolg asse, wat voldoen aan die ontwerp spesifikasies. Strukturele aspekte van die prototipe paraboliese skottel word deur ander navorsers geëvalueer en verbeter terwyl die Stirling-eenheid en elektriese sisteme in parallelle projekte ontwikkel word. Die uiteindelike doel met hierdie groepnavorsing is om ’n plaaslik vervaardigde doen-dit-self sonkrag eenheid te ontwikkel wat in Afrika ontplooi kan word.
APA, Harvard, Vancouver, ISO, and other styles
37

Sheline, William Robert. "Concentrated solar chemistry: design stage theoretical thermodynamic analysis of an iron-ethylene production process." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/51757.

Full text
Abstract:
Although concentrated solar power can be used to produce power using traditional electricity generation, energy storage has become a problem due to the intermittent supply of solar energy. By using solar energy in chemical production processes, the solar energy can be stored in a useful chemical product. The purpose of this thesis will be to examine the possibilities of a new solar chemical cycle the produces iron and ethylene from hematite (a form of iron oxide) and ethane using concentrated solar power. These two products are important stepping stones in the production of steel and polymers. This process could allow for the current process of steel production to move away from processes using coal and towards a more sustainable process using the hydrogen formed from the ethane cracking process and solar energy. The thesis will include: (1) the development of a new solar powered iron and ethylene combined cycle, (2) a feasibility study of a Concentrated Solar Heat Supply System (CSHSS) being developed at Georgia Tech, and (3) an assessment of the proposed cycle. The assessment will include an estimate of production including a thermodynamic ASPEN model, assessment of research to realize actualization of the theoretical cycle, an exergy analysis, and a heat exchanger analysis for the exchange of heat between the CSHSS and the chemical process.
APA, Harvard, Vancouver, ISO, and other styles
38

Ahmed, Omar. "Corrosion behaviour of AISI 304 stainless steel in contact with eutectic salt for concentrated solar power plant applications." Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5901.

Full text
Abstract:
In response to the extensive energy demands on national and global levels, concentrated solar power (CSP) plants are designed to harness and convert solar energy to electricity. For such green energy application, robust, reliable and durable materials for CSP constructions are required. The corrosion resistance is among many parameters to consider in these thermal-electrical stations such as for pipes and storage tanks in CSP. In this investigation, the corrosion behavior of AISI 304 stainless steel (18 wt. % Cr, 8 wt. % Ni) with the heat transfer fluid, also known as solar salt, has been examined. The ternary eutectic salt mixture with the composition, 53 wt. % KNO3, 40 wt. % NaNO2, and 7 wt. % NaNO3, that melts at 142°C, has a potential use in CSP as a heat transfer fluid. The solar salt was prepared for this corrosion study from reagent grades of high purity nitrites and nitrates. Samples of AISI 304 stainless steel were sectioned from a sheet stock of the alloy and exposed to solar salt at 530°C in air at 1 atmospheric pressure. After test intervals of 250, 500, and 750 hours in total immersion condition, AISI 304 stainless steel samples have developed a scale of corrosion products made up of multiple oxides. X-ray diffraction and scanning electron microscopy with X-ray energy-dispersive spectroscopy were employed to examine the extent of corrosion and identify the corrosion products. Transmission electron microscopy was used to verify the corrosion products identity via electron diffraction patterns. Oxides of iron were found to be the primary corrosion products in the presence of the molten alkali nitrates-nitrite salt mixture because of the dissolution of the protective chromium oxide (Cr2O3) scale formed on AISI 304 stainless steel coupons. The corrosion scale was uniform in thickness and made up of sodium iron oxide (NaFeO2), iron oxide, hematite (Fe2O3), and chromium-iron oxide (Cr,Fe)2O3 solid solution. The latter was found near the AISI 304 stainless steel. This indicates that the scale formed, particularly on the upper layers with presence of sodium iron oxide and iron oxide, hematite, is protective, and forms an effective barrier against penetration of fused solar salt. At the alloy interface with the bulk corrosion scale, the corrosion process induced a compositional modification in the grains located at the interface. There are iron rich and iron depleted grains at the interface if compared to the nominal iron content of the alloy. The mode of attack is identified as uniform at the test temperature of 530°C, showing a parabolic behavior with a parabolic rate constant (Kp) equals to 1.08&"215;10^(-17)(m2/sec). By extrapolation, annual corrosion rate is estimated to reach 0.784 mils per year. Corrosion behavior of AISI 304 stainless steel is discussed in terms of thermodynamics and reaction paths.
M.S.M.S.E.
Masters
Materials Science Engineering
Engineering and Computer Science
Materials Science and Engineering
APA, Harvard, Vancouver, ISO, and other styles
39

Hoenes, Michael. "Potential of harvesting solar neutrinos to power electric cars." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264284.

Full text
Abstract:
Imminent penalties for excess emissions force the automotive industry to radically rethink how to power vehicles. Novel concepts are needed to facilitate these changes, which might be found by scouting patents of emerging and established companies. During their patent search, Daimler AG has come across a patent of the startup Neutrino Energy GmbH, which reveals a device designed to harvest solar neutrinos for electricity generation purposes. From here the question arises: Is it possible to harvest solar neutrinos to power electric consumers, such as cars? To answer this question, this study analyzes the solar neutrino flux on Earth’s surface and the state-of-the-art solar neutrino technology (including solar neutrino detectors used in research and the solar neutrino converter proposed by Neutrino Energy GmbH). The energy inherent to the solar neutrino flux is computed based on the solar neutrino spectrum found in literature. Solar neutrino detectors are analyzed on their ability to harvest solar neutrinos by consulting literature and by estimating their power output. In case of the graphene based converter by Neutrino Energy GmbH, the threshold energies of neutrino-graphene interactions are compared to the energies of incoming neutrinos to estimate an upper limit for the power output. Results from the analysis of the solar neutrino flux show that the energy inherent to solar neutrinos is too low to power an electric vehicle, even if it could be fully exploited. In fact, only a tiny fraction of the solar neutrino energy flux can be converted into electricity as neutrinos barely interact with matter. The analysis of the state-of-the-art solar neutrino research shows that detectors with a weight of several tonnes are constructed to capture signals from solar neutrinos. Still, the power output of such detectors is several orders of magnitude lower than the demand of an electric vehicle. Analyzing the concept developed by Neutrino Energy GmbH shows that only a small part of the solar neutrino flux can be harvested, insufficient to generate a significant amount of electricity. Hence, the conclusion is drawn, that solar neutrino conversion technology is no suitable candidate to enable sustainable mobility.
APA, Harvard, Vancouver, ISO, and other styles
40

Rogol, Michael G. "Why did the solar power sector develop quickly in Japan?" Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/39335.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2007.
Includes bibliographical references (leaves 175-181).
The solar power sector grew quickly in Japan during the decade 1994 to 2003. During this period, annual installations increased 32-fold from 7MW in 1994 to 223MW in 2003, and annual production increased 22-fold, from 16MW in 1994 to 364MW in 2003. Over these years, the growth of Japan's solar power sector outpaced the global industry's growth, which is puzzling because Japan was in a recession during this period. At the same time, the U.S. was experiencing considerable economic expansion, yet the U.S. solar industry's growth was significantly slower than Japan's. This thesis focuses on the rapid development of Japan's solar power sector in order to address the central question, "Why did the solar power sector develop quickly in Japan?" To address this question, this thesis develops two comparative case studies: (1) Japan's solar power sector: 1994 to 2003 and (2) U.S. solar power sector: 1994 to 2003. These case studies provide detailed descriptions of the historical development of the solar power sectors in Japan and the U.S. based on data collected from International Energy Agency's PVPS program, Japan's New Energy Development Organization and the U.S. Energy Information Administration, among other sources.
(cont.) A comparative analysis of these cases suggests that the rapid growth of Japan's solar power sector was enabled by interplay among (a) decreasing gross system prices price, (b) increasing installations, (c) increasing production and (d) decreasing costs. The second-order explanation for this interplay is that a mosaic of factors led to (a) decreasing prices, (b) increasing installations, (c) increasing production and (d) decreasing costs. This mosaic included the extrinsic setting (solar resource, interest rate, grid price), industrial organization (including the structure of the electric power sector and the structure within the solar power sector), demand-side incentives that drove down the "gap" with and provided a "trigger" for supply-side growth, and supply-side expansion that enabled significant cost reductions and price reductions that more than offset the decline in demand-side incentives. Within this complex interplay of numerous factors, roadmapping and industry coordination efforts played an important role by shaping the direction of Japan's solar power sector. This thesis concludes with "lessons learned" from Japan's solar power sector development, how these lessons may be applicable in a U.S. context and open questions for further research.
by Michael G. Rogol.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
41

McNally, Ian J. "Orbital and rotational dynamics of solar power satellites in geosynchronous orbits." Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/30628/.

Full text
Abstract:
Designs for geostationary (GEO) solar power satellites (SPS) are extremely large in scale, more than one order of magnitude larger than the International Space Station. In this thesis a detailed study of the orbit dynamics of SPS is performed. Analytical equations, derived by the process of averaging of the SPS equations of motion, are used to determine the long-term orbital evolution. Previous SPS studies have simply assumed a GEO as the operational orbit, and then designed control systems for maintaining the orbit within acceptable nominal values. It is found that an alternative SPS orbital location known as the geosynchronous Laplace plane orbit (GLPO) is superior to GEO in many aspects. An SPS in GLPO requires virtually no fuel to maintain its orbit, minimises the risk of debris creation at geosynchronous altitude, and is extremely robust operationally, i.e. loss of control is inconsequential. The GLPO SPS requires approximately 10^5 kg less fuel per year compared to a GEO SPS while providing near equivalent power delivery. Although savings in orbit control are achieved, depending on the mass distribution of the SPS, attitude control costs may be incurred by placing an SPS in GLPO. Consideration of the attitude dynamics of SPS has motivated the development of a model for the rotational dynamics of a body which includes energy dissipation and the effects of external torques. Multiple spring-damper masses are used to provide a mechanism for energy dissipation. This rotational dynamics model is used to assess the naturally stable attitude configurations of a SPS design in geosynchronous orbit subject to gravity gradient torque. It is found that for a large planar array, a dynamically stable configuration requiring nominal orbit-attitude control is possible. This involves rotating around the maximum axis of inertia at the orbit rate, with the minimal axis aligned in the radial direction. It will be shown that a SPS in this configuration while in GLPO requires virtually no orbit or attitude control. The most significant result of the research in this thesis is proving that a SPS can operate in GLPO with nominal orbit control and yet still deliver almost equivalent power to the Earth’s surface as the same SPS would in a controlled GEO.
APA, Harvard, Vancouver, ISO, and other styles
42

Jeal, Corey. "The impact of a 'trough' Concentrated Solar Power facility on birds and other animals in the Northern Cape, South Africa." Master's thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/25010.

Full text
Abstract:
The environmental impacts of solar power generation and particularly Concentrated Solar Power (CSP) are not well understood. There have been reports of birds injured and killed by concentrated solar radiation at power 'towers' and from collisions with mirrors at both tower and 'trough' facilities. This study assesses the impacts of a utility-scale 50 MW 'trough' CSP facility - Bokpoort CSP Power Plant - in the Northern Cape, South Africa. To assess the changes in functional and structural changes in bird communities, bird counts in the solar fields (mirror arrays) were compared with transects from rangelands adjacent to the CSP plant. Invertebrates were sampled with sticky and pitfall traps adjacent to the power block, in the solar fields, and in the rangeland landscape to assess changes in invertebrate communities. There were significant changes in bird distribution across the landscape with more species richness and two orders of magnitude greater abundance in the rangeland compared to the solar fields. Fewer invertebrates were caught, but with a greater taxonomic richness in rangeland compared to the power block and solar field. The facilities' evaporation ponds created novel wetland habitat for birds; 23 species were recorded that would have been absent from the area prior to construction, including three breeding species. The solar fields were surveyed for bird injuries or fatalities over 3 months; only eight dead birds were found, all but one was too old to determine the cause of death (>1 month); the remaining carcass likely died from a mirror impact. Western Barn Owls (Tyto alba) made up half of the mortalities. Biases in mortality estimates due to searcher efficiency and scavenger removal were substantial only for small birds. Twenty-one animals (3 reptiles, 12 mammals, 6 birds) likely drowned in the evaporation ponds after being unable to escape. The recorded mortalities were very low in comparison with similar studies on CSP facilities. No threatened or endangered species were killed. Overall, the facility had a low impact on bird populations, but the drowning risk posed to animals by evaporation ponds requires mitigation. The negative impacts observed could be minimised through careful site selection of solar facilities and careful design and mitigation considerations particularly with regard to evaporation and water ponds in arid areas such as the Northern Cape.
APA, Harvard, Vancouver, ISO, and other styles
43

Tiari, Saeed. "EXPERIMENTAL AND NUMERICAL STUDY OF LATENT HEAT THERMAL ENERGY STORAGE SYSTEMS ASSISTED BY HEAT PIPES FOR CONCENTRATED SOLAR POWER APPLICATION." Diss., Temple University Libraries, 2016. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/403481.

Full text
Abstract:
Mechanical Engineering
Ph.D.
A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.
Temple University--Theses
APA, Harvard, Vancouver, ISO, and other styles
44

Khan, Fahad. "Spherical Tanks for Use in Thermal Energy Storage Systems." Digital WPI, 2015. https://digitalcommons.wpi.edu/etd-dissertations/187.

Full text
Abstract:
Thermal energy storage (TES) systems play a crucial part in the success of concentrated solar power as a reliable thermal energy source. The economics and operational effectiveness of TES systems are the subjects of continuous research for improvement, in order to lower the localized cost of energy (LCOE). This study investigates the use of spherical tanks and their role in sensible heat storage in liquids. In the two tank system, typical cylindrical tanks were replaced by spherical tanks of the same volume and subjected to heat loss, stress analysis, and complete tank cost evaluation. The comparison revealed that replacing cylindrical tanks by spherical tanks in two tank molten salt storage systems could result in a 30% reduction in heat loss from the wall, with a comparable reduction in total cost. For a one tank system (or thermocline system), a parametric computational fluid dynamic (CFD) study was performed in order to obtain fluid flow parameters that govern the formation and maintenance of a thermocline in a spherical tank. The parametric study involved the following dimensionless numbers: Re (500-7500), Ar (0.5-10), Fr (0.5-3), and Ri (1-100). The results showed that within the examined range of flow characteristics, the inlet Fr number is the most influential parameter in spherical tank thermocline formation and maintenance, and the largest tank thermal efficiency in a spherical tank is achieved at Fr = 0.5. Experimental results were obtained to validate the CFD model used in the parametric study. For the flow parameters within the current model, the use of an eddy viscosity turbulence model with variable turbulence intensity delivered the best agreement with experimental results. Overall, the experimental study using a spherical one tank setup validated the results of the CFD model with acceptable accuracy.
APA, Harvard, Vancouver, ISO, and other styles
45

Lyles, Carl Thomas. "Investigation of regenerative and alternative energy sources for electrified passenger vehicles." Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54260.

Full text
Abstract:
The electrification of passenger vehicles has been a step towards the reduction of greenhouse gas emissions by automobiles; however, in the United States many plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) must still be plugged in to a grid that is heavily reliant on the burning of fossil fuels to charge. The goal of this thesis is to investigate how to develop a system capable of fully charging a PHEV using only alternative and/or regenerative energy sources. In developing such a system, various alternative and regenerative energy sources were investigated with the intent of reaching a specified daily energy goal; sufficient to charge a PHEV. These energy sources were evaluated based upon criteria such as novelty, ability to reach desired daily energy goal, applicability to BEV/PHEV, etc. The primary technological categories considered include but are not limited to regenerative and solar technologies. The evaluation of technologies indicated that a major opportunity lies in solar technologies, and in particular concentrated photovoltaics. Design alternatives for a concentrated photovoltaic system capable of reaching the desired energy goal are described. The design alternatives utilize Fresnel lenses as a means of concentrating a large area of sunlight onto an array of photovoltaics affixed to a vehicle. Various tracking mechanisms for the concentrating systems have been outlined to meet given design criteria. 3-D ray tracing algorithms have been developed to determine the path of the tracking mechanisms depending upon the time of year and on the geographic location. The same algorithms have been used in conjunction with typical meteorological year data to determine the expected output of the concentrating systems based upon the solar resource and solar angles at a specific place and time. The findings suggest that a concentrated photovoltaic system designed specifically for charging an electrified vehicle may generate sufficient energy over the course of a day to power a typical driver’s trips. However, for such a concentrating system to be commercially feasible there are still many design challenges to be overcome. Design limitations and implications for further research are discussed.
APA, Harvard, Vancouver, ISO, and other styles
46

Woodrow, Oliver Rhys. "Characterisation of a parabolic trough collector using sheet metal and glass mirror strips." Diss., University of Pretoria, 2017. http://hdl.handle.net/2263/62804.

Full text
Abstract:
A novel type of parabolic trough collector was characterised using a very basic theoretical model. This model looked at an ideal case and provided a basic expectation that was compared to actual measurements. The model showed that greater improvements can be achieved if heat losses to the environment are limited or omitted. This can be achieved by using a glass shield to insulate the receiver in a vacuum to limit the effect wind has and therefore limit convective losses. The experimental characterisation of the PTC consisted of taking six different temperature measurements to better understand the energy balances taking place. Four different configurations were tested, using two different types of concentrator and in each case a receiver that was either unpainted or painted with a semi matte black paint. The different types of concentrator were either stainless steel sheet metal or discretised glass mirror strips, similar to a linear Fresnel collector. Experimental runs were conducted on cloudless days for an hour and 15 minutes. This allowed for three runs to be performed on a single day. Using the theoretical model and comparing it to the experimental data, an efficiency was calculated. This efficiency averaged 14 % when the receiver was unpainted and 13 % when the receiver was painted for the metal sheets. The glass mirror strips had average efficiencies of 54 % and 45 % for an unpainted and painted receiver respectively. The model is very basic and can be improved upon if more variables are taken into consideration, such as convective heat losses. It was also recommended that wind measurements are taken in future tests. A property looked at to evaluate the effectiveness of each type of configuration was the average energy supplied to the thermal heating fluid over the course of an experimental run. For this the averaged values over all the experimental runs conducted for stainless steel sheet metal were 258 W and 332 W for an unpainted and painted pipe respectively. When using the glass mirrors an average energy value of 1049 W was supplied when the pipe was unpainted and an average of 1181 W was gained in the runs conducted after the pipe had been painted. Painting the receiver had little to no effect. The surface temperature of the receiver after painting the pipe was not higher and a slight increase in the energy gained by water was observed. This was explained by inaccuracies during testing as scattered light may have caused an interference on some of the measurements. There were also human inaccuracies in testing which should be omitted in future tests by implementing, for one, a functional tracking system. Future tests should be designed in such a way to completely omit irradiance affecting the thermocouple taking the measurement. Glass mirrors fared far better than the stainless steel sheet metal counterpart. It was recommended that they are used as the concentrator of choice. Higher efficiencies were achieved and in some cases almost four times the energy was supplied to the water in the pipe. This was attributed to a much lower concentrator temperature, on average 11 °C lower than the temperature of the metal sheets, as well as a much better ability to concentrate sunlight onto a single focal point. However, the glass mirror strips were proven to be very fragile and as such, require protection from the elements. While the strips were lighter and caused less of a load during windy conditions, they were susceptible to oscillations from gusty wind. This led to a number of strips breaking and needed to be replaced. By discretising the strips into individual pieces, they had the benefit of only needing to replace the strips that were damaged. This is also true for all future runs. It is still recommended that a tarp be used to protect the glass mirrors. Using glass mirror strips as a concentrator combined LFC technology with PTC technology and a novel PTC design was achieved. The design still required the installation area of a PTC. The novel design was compared to Industrial Solar’s industrial LFC module, LF-11, as it shares many similarities to LFC technology. The peak thermal output of the rig was significantly lower at 346 W/m2 compared to the industrial value of 562 W/m2. However, the noteworthy differences in design and optimisation between the two modules meant the results achieved were comparable. It is expected that better and more comparable results can be realised once the inherent flaws in the design, such as tracking the sun, aperture size and adding a vacuum absorber, are addressed. It is recommended that more research and emphasis is put into this field as an alternative energy power plant for South Africa.
Dissertation (MEng)--University of Pretoria, 2017.
Chemical Engineering
MEng
Unrestricted
APA, Harvard, Vancouver, ISO, and other styles
47

Gaynullin, Bakhram. "LASER-TESTING RIG : Measurement System for evaluation of Shape of concentrating reflector for solar collector Absolicon X10." Thesis, Högskolan Dalarna, Energi och miljöteknik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:du-4645.

Full text
Abstract:
This Thesis project is a part of the all-round automation of production of concentrating solar PV/T systems Absolicon X10. ABSOLICON Solar Concentrator AB has been invented and started production of the prospective solar concentrated system Absolicon X10. The aims of this Thesis project are designing, assembling, calibrating and putting in operation the automatic measurement system intended to evaluate the shape of concentrating parabolic reflectors.On the basis of the requirements of the company administration and needs of real production process the operation conditions for the Laser testing rig were formulated. The basic concept to use laser radiation was defined.At the first step, the complex design of the whole system was made and division on the parts was defined. After the preliminary conducted simulations the function and operation conditions of the all parts were formulated.At the next steps, the detailed design of all the parts was conducted. Most components were ordered from respective companies. Some of the mechanical components were made in the workshop of the company. All parts of the Laser-testing rig were assembled and tested. Software part, which controls the Laser-testing rig work, was created on the LabVIEW basis. To tune and test software part the special simulator was designed and assembled.When all parts were assembled in the complete system, the Laser-testing rig was tested, calibrated and tuned.In the workshop of Absolicon AB, the trial measurements were conducted and Laser-testing rig was installed in the production line at the plant in Soleftea.
APA, Harvard, Vancouver, ISO, and other styles
48

Almquist, Isabelle, Ellen Lindblom, and Alfred Birging. "Workplace Electric Vehicle Solar Smart Charging based on Solar Irradiance Forecasting." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-323319.

Full text
Abstract:
The purpose of this bachelor thesis is to investigate different outcomes of the usage of photovoltaic (PV) power for electric vehicle (EV) charging adjacent to workplaces. In the investigated case, EV charging stations are assumed to be connected to photovoltaic systems as well as the electricity grid. The model used to simulate different scenarios is based on a goal of achieving constant power exchange with the grid by adjusting EV charging to a solar irradiance forecast. The model is implemented in MATLAB. This enables multiple simulations for varying input parameters. Data on solar irradiance are used to simulate the expected PV power generation. Data on driving distances are used to simulate hourly electricity demands of the EVs at the charging stations. A sensitivity analysis, based on PV irradiance that deviates from the forecast, is carried out. The results show what power the grid needs to have installed capacity for if no PV power system is installed. Furthermore, appropriate PV power installation sizes are suggested. The suggestions depend on whether the aim is to achieve 100 percent self-consumption of PV generated power or full PV power coverage of charging demands. For different scenarios, PV power installations appropriate for reducing peak powers on the grid are suggested. The sensitivity analysis highlights deviations caused by interference in solar irradiance.
APA, Harvard, Vancouver, ISO, and other styles
49

Cortese, Ignacio. "Comparison of Utility-scale Solar Power Generation Technologies in Yunnan Province, China." Thesis, KTH, Kraft- och värmeteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

van, der Meer Dennis. "Spatio-temporal probabilistic forecasting of solar power, electricity consumption and net load." Licentiate thesis, Uppsala universitet, Fasta tillståndets fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-363448.

Full text
Abstract:
The increasing penetration of renewable energy sources into the electricity generating mix poses challenges to the operational performance of the power system. Similarly, the push for energy efficiency and demand response—i.e., when electricity consumers are encouraged to alter their demand depending by means of a price signal—introduces variability on the consumption side as well. Forecasting is generally viewed as a cost-efficient method to mitigate the adverse effects of the aforementioned energy transition because it enables a grid operator to reduce the operational risk by, e.g., unit-commitment or curtailment. However, deterministic—or point—forecasting is currently still the norm. This thesis focuses on probabilistic forecasting, a method with which the uncertainty ac- companying the forecast is expressed by means of a probability distribution. In this framework, the thesis contributes to the current state-of-the-art by investigating properties of probabilistic forecasts of PV power production, electricity consumption and net load at the residential and distribution level of the electricity grid. The thesis starts with an introduction to probabilistic forecasting in general and two models in specific: Gaussian processes and quantile regression. The former model has been used to produce probabilistic forecasts of PV power production, electricity consumption and net load of individual residential buildings—particularly challenging due to the stochasticity involved— but important for home energy management systems and potential peer-to-peer energy trading. Furthermore, both models have been utilized to investigate what effects spatial aggregation and increasing penetration have on the predictive distribution. The results indicated that only 20- 25 customers—out of a data set containing 300 customers—need to be aggregated in order to improve the reliability of the probabilistic forecasts. Finally, this thesis explores the potential of Gaussian process ensembles, which is an effective way to improve the accuracy of the forecasts.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography