Academic literature on the topic 'Computer vision, object detection, action recognition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Computer vision, object detection, action recognition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Computer vision, object detection, action recognition"
Zhang, Hong-Bo, Yi-Xiang Zhang, Bineng Zhong, Qing Lei, Lijie Yang, Ji-Xiang Du, and Duan-Sheng Chen. "A Comprehensive Survey of Vision-Based Human Action Recognition Methods." Sensors 19, no. 5 (February 27, 2019): 1005. http://dx.doi.org/10.3390/s19051005.
Full textGundu, Sireesha, and Hussain Syed. "Vision-Based HAR in UAV Videos Using Histograms and Deep Learning Techniques." Sensors 23, no. 5 (February 25, 2023): 2569. http://dx.doi.org/10.3390/s23052569.
Full textMikhalev, Oleg, and Alexander Yanyushkin. "Machine vision and object recognition using neural networks." Robotics and Technical Cybernetics 10, no. 2 (June 2022): 113–20. http://dx.doi.org/10.31776/rtcj.10204.
Full textVoulodimos, Athanasios, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopapadakis. "Deep Learning for Computer Vision: A Brief Review." Computational Intelligence and Neuroscience 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/7068349.
Full textWang, Chang, Jinyu Sun, Shiwei Ma, Yuqiu Lu, and Wang Liu. "Multi-stream Network for Human-object Interaction Detection." International Journal of Pattern Recognition and Artificial Intelligence 35, no. 08 (March 12, 2021): 2150025. http://dx.doi.org/10.1142/s0218001421500257.
Full textGall, J., A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky. "Hough Forests for Object Detection, Tracking, and Action Recognition." IEEE Transactions on Pattern Analysis and Machine Intelligence 33, no. 11 (November 2011): 2188–202. http://dx.doi.org/10.1109/tpami.2011.70.
Full textHoshino, Satoshi, and Kyohei Niimura. "Optical Flow for Real-Time Human Detection and Action Recognition Based on CNN Classifiers." Journal of Advanced Computational Intelligence and Intelligent Informatics 23, no. 4 (July 20, 2019): 735–42. http://dx.doi.org/10.20965/jaciii.2019.p0735.
Full textSumathi, J. k. "Dynamic Image Forensics and Forgery Analytics using Open Computer Vision Framework." Wasit Journal of Computer and Mathematics Science 1, no. 1 (March 17, 2021): 1–8. http://dx.doi.org/10.31185/wjcm.vol1.iss1.3.
Full textZeng, Wei, Junjian Huang, Wei Zhang, Hai Nan, and Zhenjiang Fu. "SlowFast Action Recognition Algorithm Based on Faster and More Accurate Detectors." Electronics 11, no. 22 (November 16, 2022): 3770. http://dx.doi.org/10.3390/electronics11223770.
Full textPrahara, Adhi, Murinto Murinto, and Dewi Pramudi Ismi. "Bottom-up visual attention model for still image: a preliminary study." International Journal of Advances in Intelligent Informatics 6, no. 1 (March 31, 2020): 82. http://dx.doi.org/10.26555/ijain.v6i1.469.
Full textDissertations / Theses on the topic "Computer vision, object detection, action recognition"
Anwer, Rao Muhammad. "Color for Object Detection and Action Recognition." Doctoral thesis, Universitat Autònoma de Barcelona, 2013. http://hdl.handle.net/10803/120224.
Full textRecognizing object categories in real world images is a challenging problem in computer vision. The deformable part based framework is currently the most successful approach for object detection. Generally, HOG are used for image representation within the part-based framework. For action recognition, the bag-of-word framework has shown to provide promising results. Within the bag-of-words framework, local image patches are described by SIFT descriptor. Contrary to object detection and action recognition, combining color and shape has shown to provide the best performance for object and scene recognition. In the first part of this thesis, we analyze the problem of person detection in still images. Standard person detection approaches rely on intensity based features for image representation while ignoring the color. Channel based descriptors is one of the most commonly used approaches in object recognition. This inspires us to evaluate incorporating color information using the channel based fusion approach for the task of person detection. In the second part of the thesis, we investigate the problem of object detection in still images. Due to high dimensionality, channel based fusion increases the computational cost. Moreover, channel based fusion has been found to obtain inferior results for object category where one of the visual varies significantly. On the other hand, late fusion is known to provide improved results for a wide range of object categories. A consequence of late fusion strategy is the need of a pure color descriptor. Therefore, we propose to use Color attributes as an explicit color representation for object detection. Color attributes are compact and computationally efficient. Consequently color attributes are combined with traditional shape features providing excellent results for object detection task. Finally, we focus on the problem of action detection and classification in still images. We investigate the potential of color for action classification and detection in still images. We also evaluate different fusion approaches for combining color and shape information for action recognition. Additionally, an analysis is performed to validate the contribution of color for action recognition. Our results clearly demonstrate that combining color and shape information significantly improve the performance of both action classification and detection in still images.
Friberg, Oscar. "Recognizing Semantics in Human Actions with Object Detection." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212579.
Full textFaltningsnätverk i två strömmar är just nu den mest lyckade tillvägagångsmetoden för mänsklig aktivitetsigenkänning, vilket delar upp rumslig och timlig information i en rumslig ström och en timlig ström. Den rumsliga strömmen tar emot individella RGB bildrutor för igenkänning, medan den timliga strömmen tar emot en sekvens av optisk flöde. Försök i att utöka ramverket för faltningsnätverk i två strömmar har gjorts i tidigare arbete. Till exempel har försök gjorts i att komplementera dessa två nätverk med ett tredje nätverk som tar emot extra information. I detta examensarbete söker vi metoder för att utöka faltningsnätverk i två strömmar genom att introducera en semantisk ström med objektdetektion. Vi gör i huvudsak två bidrag i detta examensarbete: Först visar vi att den semantiska strömmen tillsammans med den rumsliga strömmen och den timliga strömmen kan bidra till små förbättringar för mänsklig aktivitetsigenkänning i video på riktmärkesstandarder. För det andra söker vi efter divergensutökningstekniker som tvingar den semantiska strömme att komplementera de andra två strömmarna genom att modifiera förlustfunktionen under träning. Vi ser små förbättringar med att använda dessa tekniker för att öka divergens.
Kalogeiton, Vasiliki. "Localizing spatially and temporally objects and actions in videos." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/28984.
Full textRanalli, Lorenzo. "Studio ed implementazione di un modello di Action Recognition. Classificazione delle azioni di gioco e della tipologia di colpi durante un match di Tennis." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textLiu, Chang. "Human motion detection and action recognition." HKBU Institutional Repository, 2010. http://repository.hkbu.edu.hk/etd_ra/1108.
Full textTa, Anh Phuong. "Inexact graph matching techniques : application to object detection and human action recognition." Lyon, INSA, 2010. http://theses.insa-lyon.fr/publication/2010ISAL0099/these.pdf.
Full textLa détection d’objets et la reconnaissance des activités humaines sont les deux domaines actifs dans la vision par ordinateur, qui trouve des applications en robotique, vidéo surveillance, analyse des images médicales, interaction homme-machine, annotation et recherche de la vidéo par le contenue. Actuellement, il reste encore très difficile de construire de tels systèmes, en raison des variations des classes d’objets et d’actions, les différents points de vue, ainsi que des changements d’illumination, des mouvements de caméra, des fonds dynamiques et des occlusions. Dans cette thèse, nous traitons le problème de la détection d’objet et d’activités dans la vidéo. Malgré ses différences de buts, les problèmes fondamentaux associés partagent de nombreuses propriétés, par exemple la nécessité de manipuler des transformations non-ridiges. En décrivant un modèle d’objet ou une vidéo par un ensemble des caractéristiques locales, nous formulons le problème de reconnaissance comme celui d’une mise en correspondance de graphes, dont les nœuds représentent les caractéristiques locales, et les arrêtes représentent les relations que l’on veut vérifier entre ces caractéristiques. Le problème de mise en correspondance inexacte de graphes est connu comme NP-difficile, nous avons donc porté notre effort sur des solutions approchées. Pour cela, le problème est transformé en problème d’optimisation d’une fonction d’énergie, qui contient un terme en rapport avec la distance entre les descripteurs locaux et d’autres termes en rapport avec les relations spatiales (ou/et temporelles) entre eux. Basé sur cette énergie, deux différentes solutions ont été proposées et validées pour les deux applications ciblées: la reconnaissance d’objets à partir d’images et la reconnaissance des activités dans la vidéo. En plus, nous avons également proposé un nouveaux descripteur pour améliorer les modèles de Sac-de-mots, qui sont largement utilisé dans la vision par ordinateur. Nos expérimentations sur deux bases standards, ainsi que sur nos bases démontrent que les méthodes proposées donnent de bons résultats en comparant avec l’état de l’art dans ces deux domaines
Dittmar, George William. "Object Detection and Recognition in Natural Settings." PDXScholar, 2013. https://pdxscholar.library.pdx.edu/open_access_etds/926.
Full textHiggs, David Robert. "Parts-based object detection using multiple views /." Link to online version, 2005. https://ritdml.rit.edu/dspace/handle/1850/1000.
Full textPan, Xiang. "Approaches for edge detection, pose determination and object representation in computer vision." Thesis, Heriot-Watt University, 1994. http://hdl.handle.net/10399/1378.
Full textTonge, Ashwini Kishor. "Object Recognition Using Scale-Invariant Chordiogram." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984116/.
Full textBooks on the topic "Computer vision, object detection, action recognition"
Amit, Yali. 2D object detection and recognition: Models, algorithms, and networks. Cambridge, Mass: MIT Press, 2002.
Find full text2D Object Detection and Recognition: Models, Algorithms, and Networks. The MIT Press, 2002.
Find full textMoving Object Detection Using Background Subtraction. Springer International Publishing AG, 2014.
Find full textCyganek, Boguslaw. Object Detection and Recognition in Digital Images: Theory and Practice. Wiley & Sons, Incorporated, John, 2013.
Find full textCyganek, Boguslaw. Object Detection and Recognition in Digital Images: Theory and Practice. Wiley & Sons, Limited, John, 2013.
Find full textCyganek, Boguslaw. Object Detection and Recognition in Digital Images: Theory and Practice. Wiley & Sons, Limited, John, 2013.
Find full textCyganek, Boguslaw. Object Detection and Recognition in Digital Images: Theory and Practice. Wiley & Sons, Incorporated, John, 2013.
Find full textCyganek, Boguslaw. Object Detection and Recognition in Digital Images: Theory and Practice. Wiley & Sons, Incorporated, John, 2013.
Find full textChalupa, Leo M., and John S. Werner, eds. The Visual Neurosciences, 2-vol. set. The MIT Press, 2003. http://dx.doi.org/10.7551/mitpress/7131.001.0001.
Full textBook chapters on the topic "Computer vision, object detection, action recognition"
Gollapudi, Sunila. "Object Detection and Recognition." In Learn Computer Vision Using OpenCV, 97–117. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4261-2_5.
Full textXia, Jingran, Guowen Kuang, Xu Wang, Zhibin Chen, and Jinfeng Yang. "ORION: Orientation-Sensitive Object Detection." In Pattern Recognition and Computer Vision, 593–607. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-18916-6_47.
Full textCheng, Qi, Yingjie Wu, Fei Chen, and Yilong Guo. "Balanced Loss for Accurate Object Detection." In Pattern Recognition and Computer Vision, 342–54. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60636-7_29.
Full textWang, Xiao, Xiaohua Xie, and Jianhuang Lai. "Convolutional LSTM Based Video Object Detection." In Pattern Recognition and Computer Vision, 99–109. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03335-4_9.
Full textLiu, Zhuo, Xuemei Xie, and Xuyang Li. "Scene Semantic Guidance for Object Detection." In Pattern Recognition and Computer Vision, 355–65. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88004-0_29.
Full textHu, Zibo, Kun Gao, Xiaodian Zhang, and Zeyang Dou. "Noise Resistant Focal Loss for Object Detection." In Pattern Recognition and Computer Vision, 114–25. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60639-8_10.
Full textXie, Xuemei, Quan Liao, Lihua Ma, and Xing Jin. "Gated Feature Pyramid Network for Object Detection." In Pattern Recognition and Computer Vision, 199–208. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03341-5_17.
Full textZhao, Wenqing, and Hai Yan. "Penalty Non-maximum Suppression in Object Detection." In Pattern Recognition and Computer Vision, 90–102. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03341-5_8.
Full textLiu, Junjie, and Weiyu Yu. "Multi-view LiDAR Guided Monocular 3D Object Detection." In Pattern Recognition and Computer Vision, 520–32. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-18916-6_42.
Full textYang, Xinbo, Chenglong Li, Rui Ruan, Lei Liu, Wang Chao, and Bin Luo. "EllipseIoU: A General Metric for Aerial Object Detection." In Pattern Recognition and Computer Vision, 537–50. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-18913-5_42.
Full textConference papers on the topic "Computer vision, object detection, action recognition"
Pardo, Alejandro, Mengmeng Xu, Ali Thabet, Pablo Arbelaez, and Bernard Ghanem. "BAOD: Budget-Aware Object Detection." In LatinX in AI at Computer Vision and Pattern Recognition Conference 2021. Journal of LatinX in AI Research, 2021. http://dx.doi.org/10.52591/lxai202106254.
Full textZhong, Xubin, Xian Qu, Changxing Ding, and Dacheng Tao. "Glance and Gaze: Inferring Action-aware Points for One-Stage Human-Object Interaction Detection." In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021. http://dx.doi.org/10.1109/cvpr46437.2021.01303.
Full textNi, Bingbing, Xiaokang Yang, and Shenghua Gao. "Progressively Parsing Interactional Objects for Fine Grained Action Detection." In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016. http://dx.doi.org/10.1109/cvpr.2016.116.
Full textMi, Peng, Jianghang Lin, Yiyi Zhou, Yunhang Shen, Gen Luo, Xiaoshuai Sun, Liujuan Cao, Rongrong Fu, Qiang Xu, and Rongrong Ji. "Active Teacher for Semi-Supervised Object Detection." In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022. http://dx.doi.org/10.1109/cvpr52688.2022.01408.
Full textYuan, Tianning, Fang Wan, Mengying Fu, Jianzhuang Liu, Songcen Xu, Xiangyang Ji, and Qixiang Ye. "Multiple Instance Active Learning for Object Detection." In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021. http://dx.doi.org/10.1109/cvpr46437.2021.00529.
Full textYu, Weiping, Sijie Zhu, Taojiannan Yang, and Chen Chen. "Consistency-based Active Learning for Object Detection." In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2022. http://dx.doi.org/10.1109/cvprw56347.2022.00440.
Full textGonzalez-Garcia, Abel, Alexander Vezhnevets, and Vittorio Ferrari. "An active search strategy for efficient object class detection." In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015. http://dx.doi.org/10.1109/cvpr.2015.7298921.
Full textFu, Qichen, Xingyu Liu, and Kris M. Kitani. "Sequential Voting with Relational Box Fields for Active Object Detection." In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022. http://dx.doi.org/10.1109/cvpr52688.2022.00241.
Full textWu, Jiaxi, Jiaxin Chen, and Di Huang. "Entropy-based Active Learning for Object Detection with Progressive Diversity Constraint." In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022. http://dx.doi.org/10.1109/cvpr52688.2022.00918.
Full textVikas Desai, Sai, and Vineeth N. Balasubramanian. "Towards Fine-grained Sampling for Active Learning in Object Detection." In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2020. http://dx.doi.org/10.1109/cvprw50498.2020.00470.
Full textReports on the topic "Computer vision, object detection, action recognition"
Bragdon, Sophia, Vuong Truong, and Jay Clausen. Environmentally informed buried object recognition. Engineer Research and Development Center (U.S.), November 2022. http://dx.doi.org/10.21079/11681/45902.
Full text