Dissertations / Theses on the topic 'Computer Modelling - Silicon Solar Cells'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 24 dissertations / theses for your research on the topic 'Computer Modelling - Silicon Solar Cells.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Thomas, Trevor. "The computer modelling of amorphous silicon solar cells." Thesis, Cardiff University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361326.
Full textShariff, A. "Computer simulation of amorphous silicon solar cells." Thesis, Swansea University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.638814.
Full textAl-Juffali, Abdullah Ali S. "Modelling, simulation and optimisation of back contact silicon solar cells." Thesis, Cardiff University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329638.
Full textDavidson, Lauren Michel. "Strategies for high efficiency silicon solar cells." Thesis, University of Iowa, 2017. https://ir.uiowa.edu/etd/5452.
Full textEkhagen, Sebastian. "Silicon solar cells: basics of simulation and modelling : Using the mathematical program Maple to simulate and model a silicon solar cell." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-62611.
Full textFallisch, Arne Jürgen [Verfasser]. "Fabrication, Analysis and Modelling of Emitter Wrap-Through Silicon Solar Cells / Arne Fallisch." München : Verlag Dr. Hut, 2013. http://d-nb.info/103184466X/34.
Full textAhmed, Fatema. "Structural properties and optical modelling of SiC thin films." University of the Western Cape, 2020. http://hdl.handle.net/11394/7284.
Full textAmorphous silicon carbide (a-SiC) is a versatile material due to its interesting mechanical, chemical and optical properties that make it a candidate for application in solar cell technology. As a-SiC stoichiometry can be tuned over a large range, consequently is its bandgap. In this thesis, amorphous silicon carbide thin films for solar cells application have been deposited by means of the electron-beam physical vapour deposition (e-beam PVD) technique and have been isochronally annealed at varying temperatures. The structural and optical properties of the films have been investigated by Fourier transform Infrared and Raman spectroscopies, X-ray diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy and UV-VIS-NIR spectroscopy. The effect of annealing is a gradual crystallization of the amorphous network of as-deposited silicon carbide films and consequently the microstructural and optical properties are altered. We showed that the microstructural changes of the as-deposited films depend on the annealing temperature. High temperature enhances the growth of Si and SiC nanocrystals in amorphous SiC matrix. Improved stoichiometry of SiC comes with high band gap of the material up to 2.53 eV which makes the films transparent to the visible radiation and thus they can be applied as window layer in solar cells.
Temple, Tristan Leigh. "Optical properties of metal nanoparticles and their influence on silicon solar cells." Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/66674/.
Full textMailoa, Jonathan P. "Anti-reflection zinc oxide nanocones for higher efficiency thin-film silicon solar cells." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/77250.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 77-80).
Thin film silicon solar cells, which are commonly made from microcrystalline silicon ([mu]c-Si) or amorphous silicon (a-Si), have been considered inexpensive alternatives to thick polycrystalline silicon (polysilicon) solar cells. However, the low solar efficiency of these thin film cells has become a major problem, which prevents thin film silicon cells from being able to compete with other solar cells in the market. One source of inefficiency is the light reflection off the interface between the thin film cell's top Transparent Conducting Oxide (TCO) and the light absorbing silicon. In this work, we demonstrate the use of nanocone textured ZnO as the anti-reflection surface that mitigates this problem. The tapered structure of the nanocone forms a smooth transition of refractive index on the interface between the TCO (ZnO) and the silicon, effectively acting as a wideband Anti-Reflection coating (AR coating). Finite Difference Time Domain simulation is used to estimate the optimal ZnO nanocone parameter (periodicity and height) to be applied on a single junction microcrystalline silicon ([mu]c-Si) solar cell. Relative improvement over 25% in optical performance is achieved in the simulated structure when compared to state-of-the-art [mu]c-Si cell structure. Cheap and scalable colloidal lithography method is then developed to fabricate ZnO nanocone with the desired geometry. Since the ZnO texturing technique works by depositing ZnO on nanocone-textured glass substrate, the technique is potentially applicable to Transparent Conducting Oxides other than ZnO as well, making it a useful TCO texturing technique for solar cell applications.
by Jonathan P. Mailoa.
M.Eng.
Ning, Steven. "Simulation and process development for ion-implanted N-type silicon solar cells." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47684.
Full textMailoa, Jonathan P. "Beyond the Shockley-Queisser limit : intermediate band and tandem solar cells leveraging silicon and CdTe technology." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105950.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis. Page 156 blank.
Includes bibliographical references (pages 141-153).
The efficiencies of single-junction solar cells have been rapidly increasing and approaching their fundamental Shockley-Queisser efficiency limits. This is true for mature commercial technologies such as silicon and cadmium telluride. In order to enable solar cells with higher efficiency limits, new concepts need to be implemented which overcome the fundamental energy conversion mechanism limitations of single-junction solar cells. For this approach to be successful, it is advantageous to leverage existing manufacturing facilities and integrate these new solar cell architectures into commercially successful solar cell technologies such as silicon and cadmium telluride. In this thesis, two novel solar cell concepts are explored, categorized into three contributions. First, the application of intermediate band concept on silicon solar cells is explored by hyperdoping silicon, demonstrating room-temperature sub-band gap optoelectronic response from the material, and evaluating the feasibility of the intermediate band approach for improving silicon solar cell efficiency. Second, perovskite solar cells are integrated onto silicon solar cells to demonstrate mechanically-stacked perovskite/silicon tandem solar cell using low-cost silicon cell and monolithic perovskite/silicon tandem solar cell enabled by a silicon tunnel junction. Third, an analytic model is built to rapidly investigate the energy yield of different tandem solar cell architectures. When applied to cadmium telluride-based tandem solar cells, this model will help thin-film companies like First Solar narrow down the scope of future research and development programs on tandem solar cells.
by Jonathan P. Mailoa.
Ph. D.
Abebe, Birhanu Tamene [Verfasser], and Christoph [Gutachter] Pflaum. "Modelling, Simulation and Optimization of Thin Film Silicon Solar Cells on Flexible Aluminium Substrate / Birhanu Tamene Abebe ; Gutachter: Christoph Pflaum." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2017. http://d-nb.info/1138837563/34.
Full textBoreland, Matt School of Electrical Engineering UNSW. "Laser Crystallisation of Silicon for Photovoltaic Applications using Copper Vapour Lasers." Awarded by:University of New South Wales. School of Electrical Engineering, 1999. http://handle.unsw.edu.au/1959.4/17190.
Full textAzunre, Paul. "A parallel branch-and-bound algorithm for thin-film optical systems, with application to realizing a broadband omnidirectional antireflection coating for silicon solar cells." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/96436.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 124-129).
For the class of nondispersive, nonabsorbing, multilayer thin-film optical systems, this thesis work develops a parallel branch-and-bound computational system on Amazon's EC2 platform, using the Taylor model mathematical/computational system due to Berz and Makino to construct tight rigorous bounds on the merit function on subsets of the search space (as required by a branch-and-bound algorithm). This represents the first, to the best of our knowledge, deterministic global optimization algorithm for this important class of problems, i.e., the first algorithm that can guarantee that a global solution to an optimization problem in this class has been found. For the particular problem of reducing reflection using multilayer systems, it is shown that a gradient index constraint on the solution can be exploited to significantly reduce the search space and thereby make the algorithm more practical. This optimization system is then used to design a broadband omnidirectional antireflection coating for silicon solar energy. The design is experimentally validated using RF sputtering, and shows performance that is competitive with existing solutions based on impractical sophisticated nano-deposition techniques, as well as the more practical but also more narrowly applicable solutions based on texturing. This makes it arguably the best practical solution to this important problem to date. In addition, this thesis develops a mathematical theory for cheaply (in the computational sense) and tightly bounding solutions to parametric weakly-coupled semilinear parabolic (reaction-diffusion) partial differential equation systems, as motivated by the design of tandem organic solar cell structures (which are governed by the drift-diffusion-Poisson system of equations). This represents the first theoretical foundation, to the best of our knowledge, to enable guaranteed global optimization of this important class of problems, which includes, but is broader, than many semiconductor design problems. A serial branch-and-bound algorithm implementation illustrates the applicability of the bounds on a pair of simple examples.
by Paul Azunre.
Ph. D.
Zarmai, Musa Tanko. "Modelling of solder interconnection's performance in photovoltaic modules for reliability prediction." Thesis, University of Wolverhampton, 2016. http://hdl.handle.net/2436/617782.
Full textShafai, Adam, and Wei Zhao. "Kiselkarbidtransistorer i växelriktare för solceller." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-177197.
Full textSedan den första kommersiella transistorn av kiselkarbid (SiC) släpptes har intresset för SiC ökat exponentiellt [1]. Det breda energibandgapet, höga kritisk elektriska fältstyrkan och termiska ledningsförmågan i SiC gör att den klarar en högre kombination av spänning/strömförstärkning än konventionella halvledarmaterial [2]. De elektriska egenskaperna av SiC gör det möjligt för integrerade komponenter och kretsar att arbeta i högre spänningar och temperaturer. Ett av de största användningsområdena för SiC är i växelriktare för solceller, där switch-tid har stor betydelse. I detta examensarbete presenteras studien av två bipolära transistorer (BJT), FSICBH15A120 av SiC och BUV48A av konventionellt kisel (Si). Transistorerna simulerades och valideras experimentellt, och slutligen jämfördes med varandra i en DC/AC-omvandlare med en polykristallin solpanel av 36 solceller som strömkälla. Hög verkningsgrad och låga energiförluster påvisades.
Favre, Wilfried. "Silicium de type n pour cellules à hétérojonctions : caractérisations et modélisations." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00635222.
Full textBaker-Finch, Simeon Conor. "Rules and tools for understanding, modelling and designing textured silicon solar cells." Phd thesis, 2012. http://hdl.handle.net/1885/149614.
Full textChapa, Manuel Manta. "2D Optimization of Thin Perovskite/Silicon Four-Terminal Tandem Solar Cells." Master's thesis, 2018. http://hdl.handle.net/10362/56426.
Full textEl, Gohary Hassan Gad El Hak Mohamed. "Development of Low-Temperature Epitaxial Silicon Films and Application to Solar Cells." Thesis, 2010. http://hdl.handle.net/10012/5560.
Full textFathi, Ehsanollah. "Thin Film Solar Cells on Transparent Plastic Foils." Thesis, 2011. http://hdl.handle.net/10012/5952.
Full textRahman, Khalifa Mohammad Azizur. "Nanocrystalline Silicon Solar Cells Deposited via Pulsed PECVD at 150°C Substrate Temperature." Thesis, 2010. http://hdl.handle.net/10012/5446.
Full textFell, Andreas [Verfasser]. "Modelling and simulation of laser chemical processing (LCP) for the manufacturing of silicon solar cells / vorgelegt von Andreas Fell." 2010. http://d-nb.info/1006688714/34.
Full textTian, Lin. "Development of Advanced Thin Films by PECVD for Photovoltaic Applications." Thesis, 2013. http://hdl.handle.net/10012/7250.
Full text