Academic literature on the topic 'Computer interfaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Computer interfaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Computer interfaces"
Pepperberg, Irene M. "Animal-computer interfaces." Interaction Studies 24, no. 2 (November 3, 2023): 193–200. http://dx.doi.org/10.1075/is.23018.pep.
Full textAllan, K. "Inspiring interfaces [computer game interfaces]." Engineering & Technology 2, no. 5 (May 1, 2007): 34–36. http://dx.doi.org/10.1049/et:20070503.
Full textBartz, Christina. "Der Computer in der Küche." Zeitschrift für Medien- und Kulturforschung 9, no. 2 (2018): 13–26. http://dx.doi.org/10.28937/1000108172.
Full textBogdanova, Nellija. "PRINCIPLES OF USER-CENTERED DESIGN." Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 1 (June 20, 2001): 245. http://dx.doi.org/10.17770/etr2001vol1.1921.
Full textLi, Jiayi. "Brain-computer interface for the treatment of mental illness." Theoretical and Natural Science 16, no. 1 (December 4, 2023): 93–96. http://dx.doi.org/10.54254/2753-8818/16/20240539.
Full textPeters, Gabriele. "Criteria for the Creation of Aesthetic Images for Human-Computer Interfaces A Survey for Computer Scientists." International Journal of Creative Interfaces and Computer Graphics 2, no. 1 (January 2011): 68–98. http://dx.doi.org/10.4018/jcicg.2011010105.
Full textWilliams, Evelyn, and Evelyn Hewlett-Packard. "Panel on Visual Interface Design." Proceedings of the Human Factors Society Annual Meeting 33, no. 5 (October 1989): 323–24. http://dx.doi.org/10.1177/154193128903300519.
Full textYoung, Michael J., David J. Lin, and Leigh R. Hochberg. "Brain–Computer Interfaces in Neurorecovery and Neurorehabilitation." Seminars in Neurology 41, no. 02 (March 19, 2021): 206–16. http://dx.doi.org/10.1055/s-0041-1725137.
Full textGao, Xiaorong, Yijun Wang, Xiaogang Chen, and Shangkai Gao. "Interface, interaction, and intelligence in generalized brain–computer interfaces." Trends in Cognitive Sciences 25, no. 8 (August 2021): 671–84. http://dx.doi.org/10.1016/j.tics.2021.04.003.
Full textChao, Dennis L. "Computer games as interfaces." Interactions 11, no. 5 (September 2004): 71–72. http://dx.doi.org/10.1145/1015530.1015567.
Full textDissertations / Theses on the topic "Computer interfaces"
Ward, David James. "Adaptive computer interfaces." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620273.
Full textRihan, Jonathan. "Computer vision based interfaces for computer games." Thesis, Oxford Brookes University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.579554.
Full textHawthorn, Dan. "Designing Effective Interfaces for Older Users." The University of Waikato, 2006. http://hdl.handle.net/10289/2538.
Full textHalder, Sebastian [Verfasser]. "Prediction of Brain-Computer Interface Performance: For P300 and Motor Imagery Brain-Computer Interfaces / Sebastian Halder." München : Verlag Dr. Hut, 2011. http://d-nb.info/1015607330/34.
Full textHobro, Mark, and Marcus Heine. "Natural Language Interfaces in Computer Games." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-166592.
Full textZajicek, Mary Pamela. "The usability of alternative computer interfaces." Thesis, Oxford Brookes University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251356.
Full textWong, Shu-Fai. "Motion recognition for human-computer interfaces." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613368.
Full textYeung, C. "Spectroscopic analysis of nanodielectric interfaces." Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/358897/.
Full textMynatt, Elizabeth D. "Transforming graphical interfaces into auditory interfaces." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/9209.
Full textSebastián, Romagosa Marc. "Brain computer interfaces for brain acquired damage." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670835.
Full textEl término Interfaz Cerebro-Computadora (ICC) surgió en los años 70 por el Dr. Jacques J. Vidal, que mediante el uso de la electroencefalografía (EEG) trató de dar una salida alternativa a las señales del cerebro para controlar un dispositivo externo. El objetivo principal de esta hazaña era ayudar a los pacientes con problemas de movimiento o comunicación a relacionarse con el entorno. Desde entonces, muchos neurocientíficos han utilizado esta idea y han tratado de ponerla en práctica utilizando diferentes métodos de adquisición y procesamiento de señales, nuevos dispositivos de interacción y nuevas metas y objetivos. Todo ello ha facilitado la aplicación de esta tecnología en muchas áreas y actualmente las ICC se utilizan para jugar a videojuegos, mover sillas de ruedas, facilitar la escritura en personas sin movilidad, establecer criterios y preferencias de compra en el mundo del comercio y el consumo, o incluso pueden servir como detector de mentiras. Sin embargo, el sector que presenta un mayor avance y desarrollo de las ICC es el sector biomédico. A grandes rasgos podemos utilizar las ICC con dos finalidades distintas dentro de la neurorehabilitación; sustituir una función perdida o inducir cambios en la plasticidad neuronal con el objetivo de restaurar o compensar dicha función perdida. Hay diferentes principios para el registro de las señales del cerebro; de forma invasiva, colocando los electrodos de registro dentro de la cavidad craneal, o no invasiva, colocando los electrodos de registro fuera de la cavidad craneal. El método más conocido y difundido es la EEG. Su uso es adecuado para entornos clínicos, tiene una resolución temporal muy precisa y su retroalimentación en tiempo real puede inducir la plasticidad cortical y el restablecimiento de la función motora normal. En esta tesis presentamos tres objetivos diferentes: (1) evaluar los efectos clínicos de la rehabilitación mediante las ICC en pacientes con ictus, ya sea realizando un meta-análisis de los estudios publicados o evaluando los cambios funcionales en los pacientes con ictus después de la terapia de ICC; (2) explorar parámetros alternativos para cuantificar los efectos de las ICC en pacientes con ictus, evaluando diferentes biomarcadores de electroencefalografía en pacientes con esta patología y correlacionando los posibles cambios en estos parámetros con los resultados en las escalas funcionales; (3) optimizar el sistema ICC utilizando mediante la gamificación de un avatar.
The term Brain Computer Interface (BCI) emerged in the 70's by Dr. Jacques J Vidal, who by using electroencephalography (EEG) tried to give an alternative output to the brain signals in order to control an external device. The main objective of this feat was to help patients with impaired movement or communication to relate themselves to the environment. Since then many neuroscientists have used this idea and have tried to implement it using different methods of signal acquisition and processing, new interaction devices, new goals and objectives. All this has facilitated the implementation of this technology in many areas and currently BCI is used to play video games, move wheelchairs, facilitate writing in people without mobility, establish criteria and purchase preferences in the world of marketing and consumption, or even serve as a lie detector. However, the sector that presents the most marked progress and development of BCI is the biomedical sector. In rough outlines we can use BCI with two different purposes within the neurorehabilitation; to substitute a lost function or to induce neural plasticity changes with the aim to restore or compensate the lost function. To restore a lost function by inducing neuroplastic changes in the brain is undoubtedly a challenging strategy but a feasible goal through BCI technology. This type of intervention requires that the patient invests time and effort in a therapy based on the practice of motor image and feedback mechanisms in real time. There are different principles to record the brain signals; invasively, placing the recording electrodes inside the cranial cavity, or non-invasive, placing the recording electrodes outside of the cranial cavity. The best known and most widespread one is EEG, since they are suitable for clinical environments, have a highly accurate temporal resolution and their real-time feedback can induce cortical plasticity and the restoration of normal motor function. On this thesis we present three different objectives: (1) to evaluate the clinical effects of rehabilitation based on BCI system in stroke patients, either by performing a meta-analysis of published studies or by evaluating functional changes in stroke patients after BCI training; (2) to explore alternative parameters to quantify effects of BCI in stroke patients, by evaluating different electroencephalography biomarkers in stroke patients and correlating potential changes in these parameters with functional scales; (3) to optimize the BCI system by using a new gamified avatar.
Books on the topic "Computer interfaces"
Marquez-Chin, Cesar, Naaz Kapadia-Desai, and Sukhvinder Kalsi-Ryan. Brain–Computer Interfaces. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-031-01608-0.
Full textHassanien, Aboul Ella, and Ahmad Taher Azar, eds. Brain-Computer Interfaces. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-10978-7.
Full textGraimann, Bernhard, Gert Pfurtscheller, and Brendan Allison, eds. Brain-Computer Interfaces. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02091-9.
Full textTan, Desney S., and Anton Nijholt, eds. Brain-Computer Interfaces. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-272-8.
Full textBerger, Theodore W., John K. Chapin, Greg A. Gerhardt, Dennis J. McFarland, José C. Principe, Walid V. Soussou, Dawn M. Taylor, and Patrick A. Tresco. Brain-Computer Interfaces. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8705-9.
Full textHordeski, Michael F. Personal computer interfaces. Maidenhead: McGraw-Hill, 1995.
Find full textI, Vlaeminke, ed. Man-computer interfaces. Oxford: Blackwell Scientific, 1987.
Find full textNam, Chang S., Anton Nijholt, and Fabien Lotte, eds. Brain–Computer Interfaces Handbook. Boca Raton : Taylor & Francis, CRC Press, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781351231954.
Full textClerc, Maureen, Laurent Bougrain, and Fabien Lotte, eds. Brain-Computer Interfaces 1. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119144977.
Full textClerc, Maureen, Laurent Bougrain, and Fabien Lotte, eds. Brain-Computer Interfaces 2. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119332428.
Full textBook chapters on the topic "Computer interfaces"
Tan, Desney, and Anton Nijholt. "Brain-Computer Interfaces and Human-Computer Interaction." In Brain-Computer Interfaces, 3–19. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-272-8_1.
Full textMarquez-Chin, Cesar, Naaz Kapadia-Desai, and Sukhvinder Kalsi-Ryan. "Brain–Computer Interfaces." In Brain–Computer Interfaces, 51–65. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-031-01608-0_4.
Full textBrandman, David M., and Leigh R. Hochberg. "Brain Computer Interfaces." In Neurobionics: The Biomedical Engineering of Neural Prostheses, 231–63. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118816028.ch9.
Full textSchalk, Gerwin, and Jürgen Mellinger. "Brain–Computer Interfaces." In A Practical Guide to Brain–Computer Interfacing with BCI2000, 3–8. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-092-2_1.
Full textSutcliffe, Alistair. "Computer Control Interfaces." In Human-Computer Interface Design, 156–80. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4899-6749-7_9.
Full textHolmes, Nate. "Camera Computer Interfaces." In Handbook of Machine and Computer Vision, 431–503. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527413409.ch8.
Full textCurio, Gabriel. "Brain-Computer Interfaces." In Bildverarbeitung für die Medizin 2012, 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28502-8_2.
Full textMillán, José del R. "Brain-Computer Interfaces." In Introduction to Neural Engineering for Motor Rehabilitation, 237–52. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118628522.ch12.
Full textSibilano, Elena, Vladimiro Suglia, Antonio Brunetti, Domenico Buongiorno, Nicholas Caporusso, Christoph Guger, and Vitoantonio Bevilacqua. "Brain–Computer Interfaces." In Neuromethods, 203–40. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3545-2_10.
Full textHe, Bin, Han Yuan, Jianjun Meng, and Shangkai Gao. "Brain–Computer Interfaces." In Neural Engineering, 131–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43395-6_4.
Full textConference papers on the topic "Computer interfaces"
Wolpaw, Jonathan R. "Brain-computer interfaces." In the 2nd ACM SIGHIT symposium. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2110363.2110366.
Full textJantz, Jay, Adam Molnar, and Ramses Alcaide. "A brain-computer interface for extended reality interfaces." In SIGGRAPH '17: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3089269.3089290.
Full textRekimoto, Jun. "Multiple-computer user interfaces." In CHI '00 extended abstracts. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/633292.633297.
Full textMolina, Gary Garcia, Tsvetomira Tsoneva, and Anton Nijholt. "Emotional brain-computer interfaces." In 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops (ACII 2009). IEEE, 2009. http://dx.doi.org/10.1109/acii.2009.5349478.
Full textHincks, Samuel, Sarah Bratt, Sujit Poudel, Vir V. Phoha, Robert J. K. Jacob, Daniel C. Dennett, and Leanne Hirshfield. "Entropic Brain-computer Interfaces." In 4th International Conference on Physiological Computing Systems. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0006383300230034.
Full textBeckhaus, Steffi, and Ernst Kruijff. "Unconventional human computer interfaces." In the conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1103900.1103918.
Full textIgarashi, Takeo. "Sketching interfaces for computer graphics." In ACM SIGGRAPH ASIA 2009 Courses. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1665817.1665833.
Full textLotte, Fabien, Junya Fujisawa, Hideaki Touyama, Rika Ito, Michitaka Hirose, and Anatole Lécuyer. "Towards ambulatory brain-computer interfaces." In the International Conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1690388.1690452.
Full textMcCullagh, P. J., M. P. Ware, and G. Lightbody. "Brain Computer Interfaces for inclusion." In AH '10: 2010 Augmented Human International Conference. New York, NY, USA: ACM, 2010. http://dx.doi.org/10.1145/1785455.1785461.
Full textGrynszpan, Ouriel, Jean-Claude Martin, and Jacqueline Nadel. "Human computer interfaces for autism." In CHI '05 extended abstracts. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1056808.1056931.
Full textReports on the topic "Computer interfaces"
Norcio, A. F., and J. Stanley. Adaptive Human-Computer Interfaces. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada200930.
Full textTolmie, D. E., W. St. John, and D. H. DuBois. Super-speed computer interfaces and networks. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/534509.
Full textTerranova, M. Team-computer interfaces in complex task environments. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6427485.
Full textKirchstetter, Thomas. Brain-computer interfaces enabled by novel magnetometers. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1755426.
Full textSchmidt, Nick. Control of Physical Objects Utilizing Brain Computer Interfaces. Ames (Iowa): Iowa State University, January 2020. http://dx.doi.org/10.31274/cc-20240624-423.
Full textMyers, Brad A. Why are Human-Computer Interfaces Difficult to Design and Implement. Fort Belvoir, VA: Defense Technical Information Center, July 1993. http://dx.doi.org/10.21236/ada268843.
Full textEnright, Doug, and Ron Fedkiw. Robust Treatment of Interfaces for Fluid Flows and Computer Graphics. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada479018.
Full textJyothi, Yadav. Neural implants: A meta analysis on the efficacy and the possibilities of brain-computer interfaces. Ames (Iowa): Iowa State University, May 2022. http://dx.doi.org/10.31274/cc-20240624-1048.
Full textFranza, Bernard R. Combining Broadband Connectivity and Immersive Human-to-Computer Interfaces to Improve Medical Simulation Training and Patient Care. Fort Belvoir, VA: Defense Technical Information Center, November 2010. http://dx.doi.org/10.21236/ada543828.
Full textHannas, William, Huey-Meei Chang, Daniel Chou, and Brian Fleeger. China's Advanced AI Research: Monitoring China's Paths to "General" Artificial Intelligence. Center for Security and Emerging Technology, July 2022. http://dx.doi.org/10.51593/20210064.
Full text