Dissertations / Theses on the topic 'Computational stochastic dynamics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 37 dissertations / theses for your research on the topic 'Computational stochastic dynamics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Perez, Rafael A. "Uncertainty Analysis of Computational Fluid Dynamics Via Polynomial Chaos." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/28984.
Full textPh. D.
Breen, Barbara J. "Computational nonlinear dynamics monostable stochastic resonance and a bursting neuron model /." Diss., Available online, Georgia Institute of Technology, 2004:, 2003. http://etd.gatech.edu/theses/available/etd-04082004-180036/unrestricted/breen%5Fbarbara%5Fj%5F200312%5Fphd.pdf.
Full textMoix, Jeremy Michael. "Molecular Dynamics and Stochastic Simulations of Surface Diffusion." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14580.
Full textCharlebois, Daniel. "Computational Investigations of Noise-mediated Cell Population Dynamics." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/30339.
Full textMartí, Ortega Daniel. "Neural stochastic dynamics of perceptual decision making." Doctoral thesis, Universitat Pompeu Fabra, 2008. http://hdl.handle.net/10803/7552.
Full textComputational models based on large-scale, neurobiologically-inspired networks describe the decision-related activity observed in some cortical areas as a transition between attractors of the cortical network. Stimulation induces a change in the attractor configuration and drives the system out from its initial resting attractor to one of the existing attractors associated with the categorical choices. The noise present in the system renders transitions random. We show that there exist two qualitatively different mechanisms for decision, each with distinctive psychophysical signatures. The decision mechanism arising at low inputs, entirely driven by noise, leads to skewed distributions of decision times, with a mean governed by the amplitude of the noise. Moreover, both decision times and performances are monotonically decreasing functions of the overall external stimulation. We also propose two methods, one based on the macroscopic approximation and one based on center manifold theory, to simplify the description of multistable stochastic neural systems.
Hannay, Jonathan David. "Computational simulations of thermally activated magnetisation dynamics at high frequencies." Thesis, Bangor University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367315.
Full textDangerfield, C. E. "Stochastic models of ion channel dynamics and their role in short-term repolarisation variability in cardiac cells." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:cd0be850-1ff0-4792-8171-438ff8fc0161.
Full textInfante, Gina Paola Polo. "Modeling and stochastic simulation to study the dynamics of Rickettsia rickettsii in populations of Hydrochoerus hydrochaeris and Amblyomma sculptum in the State of São Paulo, Brazil." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/10/10134/tde-19102017-154424/.
Full textExiste um grande número de agentes patogênicos com ciclos de transmissão complexos, envolvendo hospedeiros amplificadores, vetores e condições ambientais particulares. Esses sistemas complexos apresentam desafios quanto a modelagem e desenvolvimento de políticas públicas. A Febre Maculosa Brasileira (FMB) é a doença transmitida por carrapatos mais letal do mundo e é um claro exemplo de um sistema complexo. O aumento atual de casos humanos de BSF tem sido associado à presença e expansão de capivaras Hydrochoerus hydrochaeris, hospedeiros amplificadores do agente Rickettsia rickettsii e hospedeiros primários do carrapato vetor Amblyomma sculptum. O objetivo desta tese foi analisar a dinâmica da FMB com o propósito de fornecer bases para o delineamento de estratégias de prevenção de casos em humanos. Diferentes abordagens foram propostas para avaliar: i) a contribuição específica de hospedeiros e vetores na transmissão da FMB, ii) os parâmetros antropogênicos associados com a ocorrência dos casos e potenciais áreas de risco, iii) o padrão e a velocidade de propagação espacial e da doença, e iv) os fatores climáticos e paisagísticos que poderiam estar relacionados à distribuição do vetor. Os modelos propostos elucidaram que as estratégias de controle e prevenção da FMB podem estar focadas em práticas de manejo das populações de hospedeiros amplificadores. Uma vez que uma associação positiva entre ocorrência de casos humanos e o incremento de cultura de cana-de-açúcar foi determinada, assim como uma maior velocidade de propagação da FMB em locais com alta quantidade desta cultura, barreiras geográficas geradas, por exemplo, por zonas de reflorestamento ciliar, poderiam impedir a disseminação da FMB. Esta tese foi interdisciplinar e exigiu, por um lado, conhecimentos em biologia, epidemiologia computacional, matemática e estatística e, em contrapartida, um ambiente rico em dados biológicos como o Laboratório de Parasitologia do VPS/USP. Os resultados desta tese poderão ser utilizados na planificação de políticas de saúde pública enfocadas à prevenção da FMB. Complementarmente, este trabalho abrirá o caminho para futuros estudos matemáticos e computacionais orientados no estudo da dinâmica e prevenção de outras doenças infecciosas transmitidas por vetores.
Tosi, Riccardo. "Towards stochastic methods in CFD for engineering applications." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/673389.
Full textLos desarrollos relacionados con la computación de alto rendimiento de las últimas décadas permiten resolver problemas científicos actuales, utilizando métodos computacionales sofisticados. Sin embargo, es necesario asegurarse de la eficiencia de los métodos computacionales modernos, con el fin de explotar al máximo las capacidades tecnológicas. En esta tesis proponemos diferentes métodos, relacionados con la cuantificación de incertidumbres y el cálculo de alto rendimiento, con el fin de minimizar el tiempo de computación necesario para resolver las simulaciones y garantizar una alta fiabilidad. En concreto, resolvemos sistemas de dinámica de fluidos caracterizados por incertidumbres. En el campo de la dinámica de fluidos computacional existen diferentes tipos de incertidumbres. Nosotros consideramos, por ejemplo, la forma y la evolución en el tiempo de las condiciones de frontera, así como la aleatoriedad de las fuerzas externas que actúan sobre el sistema. Desde un punto de vista práctico, es necesario estimar valores estadísticos del flujo del fluido, cumpliendo los criterios de convergencia para garantizar la fiabilidad del método. Para cuantificar el efecto de las incertidumbres utilizamos métodos de Monte Carlo jerárquicos, también llamados hierarchical Monte Carlo methods. Estas estrategias tienen tres niveles de paralelización: entre los niveles de la jerarquía, entre los eventos de cada nivel y durante la resolución del evento. Proponemos agregar un nuevo nivel de paralelización, entre batches, en el cual cada batch es independiente de los demás y tiene su propia jerarquía, compuesta por niveles y eventos distribuidos en diferentes niveles. Definimos estos nuevos algoritmos como métodos de Monte Carlo asíncronos y jerárquicos, cuyos nombres equivalentes en inglés son asynchronous hierarchical Monte Carlo methods. También nos enfocamos en reducir el tiempo de computación necesario para calcular estimadores estadísticos de flujos de fluidos caóticos e incompresibles. Nuestro método consiste en reemplazar una única simulación de dinámica de fluidos, caracterizada por una ventana de tiempo prolongada, por el promedio de un conjunto de simulaciones independientes, caracterizadas por diferentes condiciones iniciales y una ventana de tiempo menor. Este conjunto de simulaciones se puede ejecutar en paralelo en superordenadores, reduciendo el tiempo de computación. El método de promedio de conjuntos se conoce como ensemble averaging. Analizando las diferentes contribuciones del error del estimador estadístico, identificamos dos términos: el error debido a las condiciones iniciales y el error estadístico. En esta tesis proponemos un método que minimiza el error debido a las condiciones iniciales, y en paralelo sugerimos varias estrategias para reducir el coste computacional de la simulación. Finalmente, proponemos una integración del método de Monte Carlo y del método de ensemble averaging, cuyo objetivo es reducir el tiempo de computación requerido para calcular estimadores estadísticos de problemas de dinámica de fluidos dependientes del tiempo, caóticos y estocásticos. Reemplazamos cada realización de Monte Carlo por un conjunto de realizaciones independientes, cada una caracterizada por el mismo evento aleatorio y diferentes condiciones iniciales. Consideramos y resolvemos diferentes sistemas físicos, todos relevantes en el campo de la dinámica de fluidos computacional, como problemas de flujo del viento alrededor de rascacielos o problemas de flujo potencial. Demostramos la precisión, eficiencia y efectividad de nuestras propuestas resolviendo estos ejemplos numéricos.
Gli sviluppi del calcolo ad alte prestazioni degli ultimi decenni permettono di risolvere problemi scientifici di grande attualità, utilizzando sofisticati metodi computazionali. È però necessario assicurarsi dell’efficienza di questi metodi, in modo da ottimizzare l’uso delle odierne conoscenze tecnologiche. A tal fine, in questa tesi proponiamo diversi metodi, tutti inerenti ai temi di quantificazione di incertezze e calcolo ad alte prestazioni. L’obiettivo è minimizzare il tempo necessario per risolvere le simulazioni e garantire alta affidabilità. Nello specifico, utilizziamo queste strategie per risolvere sistemi fluidodinamici caratterizzati da incertezze in macchine ad alte prestazioni. Nel campo della fluidodinamica computazionale esistono diverse tipologie di incertezze. In questo lavoro consideriamo, ad esempio, il valore e l’evoluzione temporale delle condizioni di contorno, così come l’aleatorietà delle forze esterne che agiscono sul sistema fisico. Dal punto di vista pratico, è necessario calcolare una stima delle variabili statistiche del flusso del fluido, soddisfacendo criteri di convergenza, i quali garantiscono l’accuratezza del metodo. Per quantificare l’effetto delle incertezze sul sistema utilizziamo metodi gerarchici di Monte Carlo, detti anche hierarchical Monte Carlo methods. Queste strategie presentano tre livelli di parallelizzazione: tra i livelli della gerarchia, tra gli eventi di ciascun livello e durante la risoluzione del singolo evento. Proponiamo di aggiungere un nuovo livello di parallelizzazione, tra gruppi (batches), in cui ogni batch sia indipendente dagli altri ed abbia una propria gerarchia, composta da livelli e da eventi distribuiti su diversi livelli. Definiamo questi nuovi algoritmi come metodi asincroni e gerarchici di Monte Carlo, il cui corrispondente in inglese è asynchronous hierarchical Monte Carlo methods. Ci focalizziamo inoltre sulla riduzione del tempo di calcolo necessario per stimare variabili statistiche di flussi caotici ed incomprimibili. Il nostro metodo consiste nel sostituire un’unica simulazione fluidodinamica, caratterizzata da un lungo arco temporale, con il valore medio di un insieme di simulazioni indipendenti, caratterizzate da diverse condizioni iniziali ed un arco temporale minore. Questo insieme 10 di simulazioni può essere eseguito in parallelo in un supercomputer, riducendo il tempo di calcolo. Questo metodo è noto come media di un insieme o, in inglese, ensemble averaging. Calcolando la stima di variabili statistiche, commettiamo due errori: l’errore dovuto alle condizioni iniziali e l’errore statistico. In questa tesi proponiamo un metodo per minimizzare l’errore dovuto alle condizioni iniziali, ed in parallelo suggeriamo diverse strategie per ridurre il costo computazionale della simulazione. Infine, proponiamo un’integrazione del metodo di Monte Carlo e del metodo di ensemble averaging, il cui obiettivo è ridurre il tempo di calcolo necessario per stimare variabili statistiche di problemi di fluidodinamica dipendenti dal tempo, caotici e stocastici. Ogni realizzazione di Monte Carlo è sostituita da un insieme di simulazioni indipendenti, ciascuna caratterizzata dallo stesso evento casuale, da differenti condizioni iniziali e da un arco temporale minore. Consideriamo e risolviamo differenti sistemi fisici, tutti rilevanti nel campo della fluidodinamica computazionale, come per esempio problemi di flusso del vento attorno a grattacieli, o sistemi di flusso potenziale. Dimostriamo l’accuratezza, l’efficienza e l’efficacia delle nostre proposte, risolvendo questi esempi numerici.
Enginyeria civil
Szekely, Tamas. "Stochastic modelling and simulation in cell biology." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:f9b8dbe6-d96d-414c-ac06-909cff639f8c.
Full textHorchler, Andrew de Salle. "Design of Stochastic Neural-inspired Dynamical Architectures: Coordination and Control of Hyper-redundant Robots." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1459442036.
Full textYassir, Jedra. "Multi-period portfolio optimization given a priori information on signal dynamics and transactions costs." Thesis, KTH, Optimeringslära och systemteori, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-227264.
Full textPortföljoptimering över era perioder (MPO) har fått stort intresse inom modern portföljteori. Skälet till detta är att MPO tar hänsyn till inter-temporala handelseffekter, särskilt marknadseffekter och transaktionskostnader, plus dess tillförlitlighet på avkastningsförutsägbarhet. På grund av det stora beräkningsbehovet har dock portföljpolitiken baserad på denna metod inte undersökts mycket. I det avseendet, har en underskriven MPO ramverk som föreslagits av N.Gârleanu L. H. Pedersen undersökts. Med hjälp av stokastiska kontrollramen tillhandahöll författarna formuläret för sluten form av den optimala politiken. Dessutom använde de en specifik, men ändå flexibel returförutsägbarhetsmodell. Överskjutande avkastning uttrycktes med hjälp av en linjärfaktormodell och de förutsägande faktorerna modellerades som genomsnittligaåterföringsprocesser. Slutligen inkorporerades transaktionskostnader och marknadseffekter i problemformuleringen som en kvadratisk funktion. Den utarbetade metodiken ansåg att marknadens avkastningsdynamik styrs av snabba och långsammaåterhämtningsfaktorer, och att kostnaderna för marknadstransaktioner inte nödvändigtvis är kvadratiska. Genom att reglera exponeringen mot marknaden återspeglar förutsägande faktorer, var målet att avslöja vikten av de genomsnittliga omkastningshastigheterna i utförandet av de konstruerade handelsstrategierna, under realistiska marknadskostnader. Dessutom, för jämförelses skull, övervägdes handelsstrategier baserade på en enstaka genomsnittlig variansoptimering. Resultaten tyder på en överlägsen överlägsenhet i prestanda för det studerade MPO-tillvägagångssättet, även när marknadsutgifterna inte är kvadratiska. Detta åtföljdes av bevis för bättre användbarhet av faktorernas genomsnittliga återgångshastighet, särskilt snabba återställningsfaktorer och robusthet vid anpassning till transaktionskostnader
Bahlali, Meïssam. "Adaptation de la modélisation hybride eulérienne/lagrangienne stochastique de Code_Saturne à la dispersion atmosphérique de polluants à l’échelle micro-météorologique et comparaison à la méthode eulérienne." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1047/document.
Full textThis Ph.D. thesis is part of a project that aims at modeling pollutant atmospheric dispersion with the Computational Fluid Dynamics code Code_Saturne. The objective is to simulate atmospheric dispersion of pollutants in a complex environment, that is to say around power plants, industrial sites or in urban areas. In this context, the focus is on modeling the dispersion at micro-scale, that is for distances of the order of a few meters to a few kilometers and corresponding to time scales of the order of a few tens of seconds to a few tens of minutes: this is also called the near field area. The approach followed in this thesis follows a hybrid Eulerian/Lagrangian formulation, where the mean dynamical fields relative to the carrier fluid (pressure, velocity, temperature, turbulence) are calculated through an Eulerian approach and are then provided to the Lagrangian solver. This type of formulation is commonly used in the atmospheric literature for its numerical efficiency. The Lagrangian stochastic model considered in our work is the Simplified Langevin Model (SLM), developed by Pope (1985,2000). This model belongs to the methods commonly referred to as PDF (Probability Density Function) methods, and, to our knowledge, has not been used before in the context of atmospheric dispersion. First, we show that the SLM meets the so-called well-mixed criterion (Thomson, 1987). This criterion, essential for any Lagrangian stochastic model to be regarded as acceptable, corresponds to the fact that if particles are initially uniformly distributed in an incompressible fluid, then they must remain so. We check the good respect of the well-mixed criterion for three cases of inhomogeneous turbulence representative of a wide range of practical applications: a mixing layer, an infinite plane channel, and an atmospheric-like case involving an obstacle within a neutral boundary layer. We show that the good respect of the well-mixed criterion lies simply in the good introduction of the pressure gradient term as the mean drift term in the Langevin model (Pope, 1987; Minier et al., 2014; Bahlali et al., 2018c). Also, we discuss the importance of consistency between Eulerian and Lagrangian fields in the framework of such Eulerian/Lagrangian hybrid formulations. Then, we validate the model in the case of continuous point source pollutant dispersion, under uniform wind and homogeneous turbulence. In these conditions, there is an analytical solution allowing a precise verification. We observe that in this case, the Lagrangian model discriminates well the two different near- and far-field diffusion regimes, which is not the case for an Eulerian model based on the eddy-viscosity hypothesis (Bahlali et al., 2018b).Finally, we work on the validation of the model on several experimental campaigns in real atmosphere, taking into account atmospheric thermal stratification and the presence of buildings. The first experimental program considered in our work has been conducted on the `SIRTA' site (Site Instrumental de Recherche par Télédétection Atmosphérique), in the southern suburb of Paris, and involves a stably stratified surface layer. The second campaign studied is the MUST (Mock Urban Setting Test) experiment. Conducted in the United States, in Utah's desert, this experiment aims at representing an idealized city, through several ranges of containers. Two cases are simulated and analyzed, respectively corresponding to neutral and stable atmospheric stratifications (Bahlali et al., 2018a)
Timpanaro, André Martin. "Mudanças de opinião em redes complexas." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-11032013-103856/.
Full textIn the recent years, a great number of opinion propagation models were proposed, motivated by the increasing interest among physicists in interdisciplinary problems, not only in sociology, but also in economics and biology. One of the goals of this work is to unify some of these models under a same formulation. In order to do that, we generalized the notion of bounded confidence to what we called confidence rules, that can be interpreted as the introduction of biases and prejudices in the interactions among agents holding differing points of view. Using this formulation, we decided to study how models that locally breed conformity (what is in accordance with experiments conducted by psichologists for small groups) could sustain diversity globally (explaining the persistence of different points of view in societies, for example). We studied the mean field version of the voter model and of variants of the Sznajd model. We used dynamical systems techniques and were able to solve analytically the qualitative behaviour of the models in the absence of noise and developed a perturbation theory for the Sznajd model with infinitesimal noise, that yielded a partial picture of the behaviour with noise. In the absence of noise, we found that the voter model has a completely different behaviour, while the other models have essentially the same behaviour. We also did simulations in Barabási-Albert and Watts-Strogatz networks for the voter and the Sznajd models and we collaborated with the research group of the Institute for Complex Systems and Mathematical Biology from the University of Aberdeen, studying a biodiversity model that can be seen as a modification of the voter model in a square lattice. Our conclusions point that the mean field results can be understood through connections with graph theory problems and that the different models that were simulated, in some sense, have the same behaviour, reinforcing the idea of universality for these models (due to the obvious difficulties in modelling human beings in a reliable and realistic way, some degree of universality in human behaviour is actually essential, in order for social modelling to be feasible). Roughly speaking, in all the systems that were studied, the coexistence or not of differing opinions, seems to depend more strongly on the network and on the type of confidence rule used, than in other specific details of the model.
Lautenschlager, Willian Wagner. "Um modelo estocástico de simulação da dinâmica dos queratinócitos, melanócitos e melanomas no desenvolvimento dos tumores." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/100/100132/tde-21082017-174520/.
Full textDuring the last decades, tumor biology research with the use of new techniques in molecular biology resulted in a profusion of information that have given conditions and motivated the development of new mathematical models dedicated to analyzing various aspects of growth and proliferation of the cell population. Some of these models have been devoted to the description and analysis of the steady state of the development process of a cell population under chemical conditions that, in theory, promote the acceleration or deceleration of the growth of tumor cell population. However, these studies have not yet analyzed the temporal dynamics of growth of a tumor cell population. One of the difficulties is the establishment of the interaction between cells of multiple types that serve as the description for this dynamic. Our work fills this gap and this dissertation aims to present the model, developed by us, to simulate the growth dynamics and cellular proliferation of melanoma (cancer of low incidence but of extremely high lethality) and the results obtained through the simulations of this computational model
Abdennur, Nezar A. "A Framework for Individual-based Simulation of Heterogeneous Cell Populations." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20478.
Full textChen, Guozhang. "Dynamical and computational mechanisms of biological and artificial neural circuits." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23710.
Full textLospinoso, Joshua Alfred. "Statistical models for social network dynamics." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:d5ed9b9c-020c-4379-a5f2-cf96439ca37c.
Full textLai, Yi Ming. "Stochastic population oscillators in ecology and neuroscience." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:f12697fb-23fa-4817-974e-6e188b9ecb38.
Full textWilken, St Elmo. "Computationally efficient formulation of stochastic dynamical control within the context of switching probabilistic graphical models." Diss., University of Pretoria, 2015. http://hdl.handle.net/2263/56126.
Full textLenormand, Maxime. "Initialize and Calibrate a Dynamic Stochastic Microsimulation Model: Application to the SimVillages Model." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2012. http://tel.archives-ouvertes.fr/tel-00764929.
Full textAshant, Aidin, and Elisabeth Hakim. "Quantitative Portfolio Construction Using Stochastic Programming." Thesis, KTH, Matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230243.
Full textI denna studie inom kvantitativ portföljoptimering undersöks stokastisk programmering som ett investeringsbeslutsverktyg. Denna studie tar riktningen för scenariobaserad Mean-Absolute Deviation och jämförs med den traditionella Mean-Variance-modellen samt den utbrett använda Risk Parity-portföljen. Avhandlingen görs i samarbete med Första AP-fonden, och de implementerade portföljerna, med era tillgångsslag, är därför skräddarsydda för att matcha deras investeringsstil. Modellerna utvärderas på två olika fondhanteringsnivåer för att studera om portföljens prestanda drar nytta av en mer restrektiv optimeringsmodell. Den här undersökningen visar att stokastisk programmering under undersökta tidsperioder presterar något sämre än Risk Parity, men överträffar Mean-Variance. Modellens största brist är dess prestanda under perioder av marknadsstress. Modellen visade dock något bättre resultat under normala marknadsförhållanden.
Barua, Ananda. "Mesoscale computational prediction and quantification of thermomechanical ignition behavior of polymer-bonded explosives (PBXs)." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49028.
Full textBountourelis, Theologos. "Efficient pac-learning for episodic tasks with acyclic state spaces and the optimal node visitation problem in acyclic stochastic digaphs." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/28144.
Full textCommittee Chair: Reveliotis, Spyros; Committee Member: Ayhan, Hayriye; Committee Member: Goldsman, Dave; Committee Member: Shamma, Jeff; Committee Member: Zwart, Bert.
Robacker, Thomas C. "Comparison of Two Parameter Estimation Techniques for Stochastic Models." Digital Commons @ East Tennessee State University, 2015. https://dc.etsu.edu/etd/2567.
Full textPichené, Matthieu. "Analyse multi-niveaux en biologie systémique computationnelle : le cas des cellules HeLa sous traitement apoptotique." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S026/document.
Full textThis thesis examines a new way to study the impact of a given pathway on the dynamics of a tissue through Multi-Level Analysis. The analysis is split in two main parts: The first part considers models describing the pathway at the cellular level. Using these models, one can compute in a tractable manner the dynamics of a group of cells, representing it by a multivariate distribution over concentrations of key molecules. % of the distribution of the states of this pathway through groups of cells. The second part proposes a 3d model of tissular growth that considers the population of cell as a set of subpopulations, partitionned such as each subpopulation shares the same external conditions. For each subpopulation, the tractable model presented in the first part can be used. This thesis focuses mainly on the first part, whereas a chapter covers a draft of a model for the second part
Bianchi, Leonora. "Ant colony optimization and local search for the probabilistic traveling salesman problem: a case study in stochastic combinatorial optimization." Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210877.
Full textOptimization problems under uncertainty are complex and difficult, and often classical algorithmic approaches based on mathematical and dynamic programming are able to solve only very small problem instances. For this reason, in recent years metaheuristic algorithms such as Ant Colony Optimization, Evolutionary Computation, Simulated Annealing, Tabu Search and others, are emerging as successful alternatives to classical approaches.
In this thesis, metaheuristics that have been applied so far to SCOPs are introduced and the related literature is thoroughly reviewed. In particular, two properties of metaheuristics emerge from the survey: they are a valid alternative to exact classical methods for addressing real-sized SCOPs, and they are flexible, since they can be quite easily adapted to solve different SCOPs formulations, both static and dynamic. On the base of the current literature, we identify the following as the key open issues in solving SCOPs via metaheuristics:
(1) the design and integration of ad hoc, fast and effective objective function approximations inside the optimization algorithm;
(2) the estimation of the objective function by sampling when no closed-form expression for the objective function is available, and the study of methods to reduce the time complexity and noise inherent to this type of estimation;
(3) the characterization of the efficiency of metaheuristic variants with respect to different levels of stochasticity in the problem instances.
We investigate the above issues by focusing in particular on a SCOP belonging to the class of vehicle routing problems: the Probabilistic Traveling Salesman Problem (PTSP). For the PTSP, we consider the Ant Colony Optimization metaheuristic and we design efficient local search algorithms that can enhance its performance. We obtain state-of-the-art algorithms, but we show that they are effective only for instances above a certain level of stochasticity, otherwise it is more convenient to solve the problem as if it were deterministic.
The algorithmic variants based on an estimation of the objective function by sampling obtain worse results, but qualitatively have the same behavior of the algorithms based on the exact objective function, with respect to the level of stochasticity. Moreover, we show that the performance of algorithmic variants based on ad hoc approximations is strongly correlated with the absolute error of the approximation, and that the effect on local search of ad hoc approximations can be very degrading.
Finally, we briefly address another SCOP belonging to the class of vehicle routing problems: the Vehicle Routing Problem with Stochastic Demands (VRPSD). For this problem, we have implemented and tested several metaheuristics, and we have studied the impact of integrating in them different ad hoc approximations.
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Nguyen, Lan K. "Dynamical modelling of feedback gene regulatory networks." Diss., Lincoln University, 2009. http://hdl.handle.net/10182/1340.
Full textСатов, А. В., and A. V. Satov. "Компьютерные методы исследования нелинейных динамических систем : магистерская диссертация." Master's thesis, б. и, 2021. http://hdl.handle.net/10995/99133.
Full textThe work contains description of confidence band construction of a stochastic chaos and realization of algorithms for n-dimensional models studying. The thesis considers a discrete model presented in the form of a nonlinear dynamic system of difference equations, which describes the dynamic of consumer interaction. There are two task that were set and performed in this work to expand the software tools for research dynamic sys-tems of this kind. For the two-dimensional case, a stochastic analysis of the sensitivity of chaos is carried out through the construction of a confidence band using critical lines. In addition, there is description and implementation of algorithm, that can build outer boundary of chaos. A transition is made to the n-dimensional version of the model (interaction of n consumers). There are 4 algorithms for studying the n-dimensional model: 1. phase trajectory building, 2. bifurcation diagram building, 3. mode map building, 4. Lyapunov components building. Algorithm implementation is described with a bias in parallel computations. The algorithms are implemented with C# programming language (.NET platform) in the form of a console application for running parallel computations on the computing cluster of the Ural Branch of the Russian Academy of Sciences (supercomputer «Uranus»).
Metzig, Cornelia. "A Model for a complex economic system." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENS038/document.
Full textThe thesis is in the field of complex systems, applied to an economic system. In this thesis, an agent-based model has been proposed to model the production cycle. It comprises firms, workers, and a bank, and respects stock-flow consistency. Its central assumption is that firms plan their production based on an expected profit margin. A simple scenario of the model, where the expected profit margin is the same for all firms, has been analyzed in the context of simple stochastic growth models. Results are a firms' size distribution close to a power law, and tent-shaped growth rate distribution, and a growth rate variance scaling with firm size. These results are close to empirically found stylized facts. In a more comprehensive version, the model contains additional features: heterogeneous profits margins, as well as interest payments and the possibility of bankruptcy. This relates the model to agent-based macroeconomic models. The extensions are described theoretically theoretically with replicator dynamics. New results are the age distribution of active firms, their profit rate distribution, debt distribution, bankruptcy statistics, as well as typical life cycles of firms, which are all qualitatively in agreement with studies of firms databases of various countries.The proposed model yields promising results by respecting the principle that jointly found results may be generated by the same process, or by several ones which are compatible
Wang, Liming. "Dynamics and asymptotic behaviors of biochemical networks." 2008. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000050469.
Full textVasylkivska, Veronika S. "Stochastic analysis of flow and transport in porous media." Thesis, 2012. http://hdl.handle.net/1957/33728.
Full textGraduation date: 2013
Xing, X. Q., Murali Damodaran, and Chung Piaw Teo. "Aerodynamic Shape Design of Transonic Airfoils Using Hybrid Optimization Techniques and CFD." 2003. http://hdl.handle.net/1721.1/3710.
Full textSingapore-MIT Alliance (SMA)
Hossain, Md Nurtaj. "Adaptive reduced order modeling of dynamical systems through novel a posteriori error estimators : Application to uncertainty quantification." Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5218.
Full textNeme, Pedro José. "Transiciones abruptas en un modelo de opinión de agentes autopropulsados." Bachelor's thesis, 2017. http://hdl.handle.net/11086/5864.
Full text¿Qué es lo que lleva a una sociedad a pasar de una situación social estable a un estado convulsionado o caótico? Los mejores ejemplos de esto son los procesos revolucionarios o las crisis económicas argentinas. En este trabajo presentamos un modelo simple en el que se observan transiciones abruptas en la opinión media del sistema dinámico. Consideramos una sociedad formada por agentes con distintos estados de opinión sobre una determinada cuestión. Dichos estados pueden ser modificados debido a dos procesos; una influencia externa (reflexión/propaganda) o por la interacción entre agentes (persuasión). Encontramos que si la dinámica de interacción no es homogénea en los estados de opinión, un pequeño cambio de alguno de los parámetros del modelo lleva a cambios drásticos en es el estado medio de opinión de la sociedad.
What leads a society to move from a stable social state to a troubled or chaotic one? Examples of this are the bank runs, Argentinian economical crisis, Political Crisis, Abrupts changes in the approval of a politician or distrust in the political sectors. To analize this problem we considered an agent based society with different state of opinion that can change their opinion due to two processes; an external influence (propaganda), and by the interaction between agents (persuasion), generated by the dynamical properties of the model.
(9178547), Joel A. Zirkle. "Modeling Temporal Patterns of Neural Synchronization: Synaptic Plasticity and Stochastic Mechanisms." Thesis, 2020.
Find full textThe dynamics of this network is subjected to the time-series analysis methods used in prior experimental studies. We provide numerical evidence that both STDP and channel noise can alter the synchronized dynamics in the network in several ways. This depends on the time scale that plasticity acts on and the intensity of the noise. However, in general, the action of STDP and noise in the simple network considered here is to promote dynamics with short desynchronizations (i.e. dynamics reminiscent of that observed in experimental studies) over dynamics with longer desynchronizations.
Σακελλαρίου, Ιωάννης. "Εξωτερικά-εξαρτώμενα στοχαστικά συναρτησιακά μοντέλα : μέθοδοι εκτίμησης & εφαρμογή στη διάγνωση βλαβών." 2006. http://nemertes.lis.upatras.gr/jspui/handle/10889/281.
Full textThe aim of the present dissertation is the development of a new class of externally dependent stochastic functional models for the identification of dynamical systems under multiple operating conditions, which are defined by an external measurable variable (i.e. temperature, humidity, etc). The development of a novel methodology for fault diagnosis (fault detection, identification and estimation) in dynamical systems based upon the stochastic functional models is also an additional aim. The development of a proper method for fault detection, identification and estimation in structures under earthquake excitation is initially achieved. The method’s assessment was the motivation for the development of a novel methodology, which is based upon a new class of externally dependent stochastic functional models. These models are capable of accurately representing a structure for a certain type of fault in a continuous range of magnitudes by using a single mathematical representation parameterized in terms of the fault magnitude. It is noticed that such models are not referred in the literature until now. The most related families of models are found in sciences of statistics and econometrics. These models are mathematical representations without functional form and they are incapable of covering continuous ranges of values. Due to this fact, the new class of externally dependent stochastic Functional (F) AutoRegressive (AR) with eXogenous (X) excitation models, with parameters and innovations variance expressed as functions of a measurable external variable, is defined in the sequel of the dissertation. This functional dependence offers to the new class of models the important advantage of being used for: a) the identification of dynamical systems under multiple operating conditions which are defined by an external measurable variable and, b) fault detection, identification and estimation in stochastic dynamical systems where the external variable is the fault magnitude. Proper methods for FARX estimation are also developed and studied and their assessment is achieved via Monte Carlo simulations. In the following, the new class of externally dependent stochastic Functional (F) AutoRegressive (AR) Moving Average (MA) with eXogenous (X) excitation models, with parameters and innovations variance expressed as functions of a measurable external variable, is defined. The FARMAX models offer extra flexibility due to the MA part. Proper methods for FARMAX estimation, which are based upon the Maximum Likelihood and the Prediction Error principles, are also developed. Two further estimation methods are also formulated which are based upon minimization of the prediction error via successive linear stages. These methods offer some practical advantages comparing with the previous methods, they can be combined with the latter but they require the development of a proper algebra for FARMAX models. Additionally, the consistency and the asymptotic distribution of the prediction error estimator are considered. The assessment of all estimation methods is achieved via Monte Carlo simulations. In the last part of the dissertation a novel methodology for fault detection, identification and estimation in dynamical systems, which is based upon the new class of stochastic functional models of the previous chapters, is developed. The methodology’s assessment is accomplished via an experimental application in a prototype scale aircraft skeleton structure, where it achieves accurate fault detection, identification and estimation of several kinds and magnitudes of faults and also overcomes difficulties that are referred by other methods.