Academic literature on the topic 'Computational stochastic dynamics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Computational stochastic dynamics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Computational stochastic dynamics"
Capiez-Lernout, E., and C. Soize. "Inverse problems in stochastic computational dynamics." Journal of Physics: Conference Series 135 (November 1, 2008): 012028. http://dx.doi.org/10.1088/1742-6596/135/1/012028.
Full textJohnson, E. A., C. Proppe, B. F. Spencer, L. A. Bergman, G. S. Székely, and G. I. Schuëller. "Parallel processing in computational stochastic dynamics." Probabilistic Engineering Mechanics 18, no. 1 (January 2003): 37–60. http://dx.doi.org/10.1016/s0266-8920(02)00041-3.
Full textPetromichelakis, Ioannis, and Ioannis A. Kougioumtzoglou. "Addressing the curse of dimensionality in stochastic dynamics: a Wiener path integral variational formulation with free boundaries." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, no. 2243 (November 2020): 20200385. http://dx.doi.org/10.1098/rspa.2020.0385.
Full textBreuer, H. P., and F. Petruccione. "A stochastic approach to computational fluid dynamics." Continuum Mechanics and Thermodynamics 4, no. 4 (1992): 247–67. http://dx.doi.org/10.1007/bf01129331.
Full textTo, C. W. S. "On computational stochastic structural dynamics applying finite elements." Archives of Computational Methods in Engineering 8, no. 1 (March 2001): 3–40. http://dx.doi.org/10.1007/bf02736683.
Full textHolm, D. D., and V. Putkaradze. "Dynamics of non-holonomic systems with stochastic transport." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, no. 2209 (January 2018): 20170479. http://dx.doi.org/10.1098/rspa.2017.0479.
Full textBortolussi, Luca, and Alberto Policriti. "Hybrid Dynamics of Stochastic π-Calculus." Mathematics in Computer Science 2, no. 3 (March 2009): 465–91. http://dx.doi.org/10.1007/s11786-008-0065-3.
Full textErban, Radek. "Coupling all-atom molecular dynamics simulations of ions in water with Brownian dynamics." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, no. 2186 (February 2016): 20150556. http://dx.doi.org/10.1098/rspa.2015.0556.
Full textZhang, Libin, Zijun Yao, and Bin Wu. "Calculating biodiversity under stochastic evolutionary dynamics." Applied Mathematics and Computation 411 (December 2021): 126543. http://dx.doi.org/10.1016/j.amc.2021.126543.
Full textTankhilevich, Evgeny, Jonathan Ish-Horowicz, Tara Hameed, Elisabeth Roesch, Istvan Kleijn, Michael P. H. Stumpf, and Fei He. "GpABC: a Julia package for approximate Bayesian computation with Gaussian process emulation." Bioinformatics 36, no. 10 (February 5, 2020): 3286–87. http://dx.doi.org/10.1093/bioinformatics/btaa078.
Full textDissertations / Theses on the topic "Computational stochastic dynamics"
Perez, Rafael A. "Uncertainty Analysis of Computational Fluid Dynamics Via Polynomial Chaos." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/28984.
Full textPh. D.
Breen, Barbara J. "Computational nonlinear dynamics monostable stochastic resonance and a bursting neuron model /." Diss., Available online, Georgia Institute of Technology, 2004:, 2003. http://etd.gatech.edu/theses/available/etd-04082004-180036/unrestricted/breen%5Fbarbara%5Fj%5F200312%5Fphd.pdf.
Full textMoix, Jeremy Michael. "Molecular Dynamics and Stochastic Simulations of Surface Diffusion." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14580.
Full textCharlebois, Daniel. "Computational Investigations of Noise-mediated Cell Population Dynamics." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/30339.
Full textMartí, Ortega Daniel. "Neural stochastic dynamics of perceptual decision making." Doctoral thesis, Universitat Pompeu Fabra, 2008. http://hdl.handle.net/10803/7552.
Full textComputational models based on large-scale, neurobiologically-inspired networks describe the decision-related activity observed in some cortical areas as a transition between attractors of the cortical network. Stimulation induces a change in the attractor configuration and drives the system out from its initial resting attractor to one of the existing attractors associated with the categorical choices. The noise present in the system renders transitions random. We show that there exist two qualitatively different mechanisms for decision, each with distinctive psychophysical signatures. The decision mechanism arising at low inputs, entirely driven by noise, leads to skewed distributions of decision times, with a mean governed by the amplitude of the noise. Moreover, both decision times and performances are monotonically decreasing functions of the overall external stimulation. We also propose two methods, one based on the macroscopic approximation and one based on center manifold theory, to simplify the description of multistable stochastic neural systems.
Hannay, Jonathan David. "Computational simulations of thermally activated magnetisation dynamics at high frequencies." Thesis, Bangor University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367315.
Full textDangerfield, C. E. "Stochastic models of ion channel dynamics and their role in short-term repolarisation variability in cardiac cells." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:cd0be850-1ff0-4792-8171-438ff8fc0161.
Full textInfante, Gina Paola Polo. "Modeling and stochastic simulation to study the dynamics of Rickettsia rickettsii in populations of Hydrochoerus hydrochaeris and Amblyomma sculptum in the State of São Paulo, Brazil." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/10/10134/tde-19102017-154424/.
Full textExiste um grande número de agentes patogênicos com ciclos de transmissão complexos, envolvendo hospedeiros amplificadores, vetores e condições ambientais particulares. Esses sistemas complexos apresentam desafios quanto a modelagem e desenvolvimento de políticas públicas. A Febre Maculosa Brasileira (FMB) é a doença transmitida por carrapatos mais letal do mundo e é um claro exemplo de um sistema complexo. O aumento atual de casos humanos de BSF tem sido associado à presença e expansão de capivaras Hydrochoerus hydrochaeris, hospedeiros amplificadores do agente Rickettsia rickettsii e hospedeiros primários do carrapato vetor Amblyomma sculptum. O objetivo desta tese foi analisar a dinâmica da FMB com o propósito de fornecer bases para o delineamento de estratégias de prevenção de casos em humanos. Diferentes abordagens foram propostas para avaliar: i) a contribuição específica de hospedeiros e vetores na transmissão da FMB, ii) os parâmetros antropogênicos associados com a ocorrência dos casos e potenciais áreas de risco, iii) o padrão e a velocidade de propagação espacial e da doença, e iv) os fatores climáticos e paisagísticos que poderiam estar relacionados à distribuição do vetor. Os modelos propostos elucidaram que as estratégias de controle e prevenção da FMB podem estar focadas em práticas de manejo das populações de hospedeiros amplificadores. Uma vez que uma associação positiva entre ocorrência de casos humanos e o incremento de cultura de cana-de-açúcar foi determinada, assim como uma maior velocidade de propagação da FMB em locais com alta quantidade desta cultura, barreiras geográficas geradas, por exemplo, por zonas de reflorestamento ciliar, poderiam impedir a disseminação da FMB. Esta tese foi interdisciplinar e exigiu, por um lado, conhecimentos em biologia, epidemiologia computacional, matemática e estatística e, em contrapartida, um ambiente rico em dados biológicos como o Laboratório de Parasitologia do VPS/USP. Os resultados desta tese poderão ser utilizados na planificação de políticas de saúde pública enfocadas à prevenção da FMB. Complementarmente, este trabalho abrirá o caminho para futuros estudos matemáticos e computacionais orientados no estudo da dinâmica e prevenção de outras doenças infecciosas transmitidas por vetores.
Tosi, Riccardo. "Towards stochastic methods in CFD for engineering applications." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/673389.
Full textLos desarrollos relacionados con la computación de alto rendimiento de las últimas décadas permiten resolver problemas científicos actuales, utilizando métodos computacionales sofisticados. Sin embargo, es necesario asegurarse de la eficiencia de los métodos computacionales modernos, con el fin de explotar al máximo las capacidades tecnológicas. En esta tesis proponemos diferentes métodos, relacionados con la cuantificación de incertidumbres y el cálculo de alto rendimiento, con el fin de minimizar el tiempo de computación necesario para resolver las simulaciones y garantizar una alta fiabilidad. En concreto, resolvemos sistemas de dinámica de fluidos caracterizados por incertidumbres. En el campo de la dinámica de fluidos computacional existen diferentes tipos de incertidumbres. Nosotros consideramos, por ejemplo, la forma y la evolución en el tiempo de las condiciones de frontera, así como la aleatoriedad de las fuerzas externas que actúan sobre el sistema. Desde un punto de vista práctico, es necesario estimar valores estadísticos del flujo del fluido, cumpliendo los criterios de convergencia para garantizar la fiabilidad del método. Para cuantificar el efecto de las incertidumbres utilizamos métodos de Monte Carlo jerárquicos, también llamados hierarchical Monte Carlo methods. Estas estrategias tienen tres niveles de paralelización: entre los niveles de la jerarquía, entre los eventos de cada nivel y durante la resolución del evento. Proponemos agregar un nuevo nivel de paralelización, entre batches, en el cual cada batch es independiente de los demás y tiene su propia jerarquía, compuesta por niveles y eventos distribuidos en diferentes niveles. Definimos estos nuevos algoritmos como métodos de Monte Carlo asíncronos y jerárquicos, cuyos nombres equivalentes en inglés son asynchronous hierarchical Monte Carlo methods. También nos enfocamos en reducir el tiempo de computación necesario para calcular estimadores estadísticos de flujos de fluidos caóticos e incompresibles. Nuestro método consiste en reemplazar una única simulación de dinámica de fluidos, caracterizada por una ventana de tiempo prolongada, por el promedio de un conjunto de simulaciones independientes, caracterizadas por diferentes condiciones iniciales y una ventana de tiempo menor. Este conjunto de simulaciones se puede ejecutar en paralelo en superordenadores, reduciendo el tiempo de computación. El método de promedio de conjuntos se conoce como ensemble averaging. Analizando las diferentes contribuciones del error del estimador estadístico, identificamos dos términos: el error debido a las condiciones iniciales y el error estadístico. En esta tesis proponemos un método que minimiza el error debido a las condiciones iniciales, y en paralelo sugerimos varias estrategias para reducir el coste computacional de la simulación. Finalmente, proponemos una integración del método de Monte Carlo y del método de ensemble averaging, cuyo objetivo es reducir el tiempo de computación requerido para calcular estimadores estadísticos de problemas de dinámica de fluidos dependientes del tiempo, caóticos y estocásticos. Reemplazamos cada realización de Monte Carlo por un conjunto de realizaciones independientes, cada una caracterizada por el mismo evento aleatorio y diferentes condiciones iniciales. Consideramos y resolvemos diferentes sistemas físicos, todos relevantes en el campo de la dinámica de fluidos computacional, como problemas de flujo del viento alrededor de rascacielos o problemas de flujo potencial. Demostramos la precisión, eficiencia y efectividad de nuestras propuestas resolviendo estos ejemplos numéricos.
Gli sviluppi del calcolo ad alte prestazioni degli ultimi decenni permettono di risolvere problemi scientifici di grande attualità, utilizzando sofisticati metodi computazionali. È però necessario assicurarsi dell’efficienza di questi metodi, in modo da ottimizzare l’uso delle odierne conoscenze tecnologiche. A tal fine, in questa tesi proponiamo diversi metodi, tutti inerenti ai temi di quantificazione di incertezze e calcolo ad alte prestazioni. L’obiettivo è minimizzare il tempo necessario per risolvere le simulazioni e garantire alta affidabilità. Nello specifico, utilizziamo queste strategie per risolvere sistemi fluidodinamici caratterizzati da incertezze in macchine ad alte prestazioni. Nel campo della fluidodinamica computazionale esistono diverse tipologie di incertezze. In questo lavoro consideriamo, ad esempio, il valore e l’evoluzione temporale delle condizioni di contorno, così come l’aleatorietà delle forze esterne che agiscono sul sistema fisico. Dal punto di vista pratico, è necessario calcolare una stima delle variabili statistiche del flusso del fluido, soddisfacendo criteri di convergenza, i quali garantiscono l’accuratezza del metodo. Per quantificare l’effetto delle incertezze sul sistema utilizziamo metodi gerarchici di Monte Carlo, detti anche hierarchical Monte Carlo methods. Queste strategie presentano tre livelli di parallelizzazione: tra i livelli della gerarchia, tra gli eventi di ciascun livello e durante la risoluzione del singolo evento. Proponiamo di aggiungere un nuovo livello di parallelizzazione, tra gruppi (batches), in cui ogni batch sia indipendente dagli altri ed abbia una propria gerarchia, composta da livelli e da eventi distribuiti su diversi livelli. Definiamo questi nuovi algoritmi come metodi asincroni e gerarchici di Monte Carlo, il cui corrispondente in inglese è asynchronous hierarchical Monte Carlo methods. Ci focalizziamo inoltre sulla riduzione del tempo di calcolo necessario per stimare variabili statistiche di flussi caotici ed incomprimibili. Il nostro metodo consiste nel sostituire un’unica simulazione fluidodinamica, caratterizzata da un lungo arco temporale, con il valore medio di un insieme di simulazioni indipendenti, caratterizzate da diverse condizioni iniziali ed un arco temporale minore. Questo insieme 10 di simulazioni può essere eseguito in parallelo in un supercomputer, riducendo il tempo di calcolo. Questo metodo è noto come media di un insieme o, in inglese, ensemble averaging. Calcolando la stima di variabili statistiche, commettiamo due errori: l’errore dovuto alle condizioni iniziali e l’errore statistico. In questa tesi proponiamo un metodo per minimizzare l’errore dovuto alle condizioni iniziali, ed in parallelo suggeriamo diverse strategie per ridurre il costo computazionale della simulazione. Infine, proponiamo un’integrazione del metodo di Monte Carlo e del metodo di ensemble averaging, il cui obiettivo è ridurre il tempo di calcolo necessario per stimare variabili statistiche di problemi di fluidodinamica dipendenti dal tempo, caotici e stocastici. Ogni realizzazione di Monte Carlo è sostituita da un insieme di simulazioni indipendenti, ciascuna caratterizzata dallo stesso evento casuale, da differenti condizioni iniziali e da un arco temporale minore. Consideriamo e risolviamo differenti sistemi fisici, tutti rilevanti nel campo della fluidodinamica computazionale, come per esempio problemi di flusso del vento attorno a grattacieli, o sistemi di flusso potenziale. Dimostriamo l’accuratezza, l’efficienza e l’efficacia delle nostre proposte, risolvendo questi esempi numerici.
Enginyeria civil
Szekely, Tamas. "Stochastic modelling and simulation in cell biology." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:f9b8dbe6-d96d-414c-ac06-909cff639f8c.
Full textBooks on the topic "Computational stochastic dynamics"
Papadrakakis, Manolis, George Stefanou, and Vissarion Papadopoulos, eds. Computational Methods in Stochastic Dynamics. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-9987-7.
Full textWinkelmann, Stefanie, and Christof Schütte. Stochastic Dynamics in Computational Biology. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62387-6.
Full textPapadrakakis, Manolis, George Stefanou, and Vissarion Papadopoulos, eds. Computational Methods in Stochastic Dynamics. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5134-7.
Full textPapadrakakis, Manolis. Computational Methods in Stochastic Dynamics: Volume 2. Dordrecht: Springer Netherlands, 2013.
Find full textÖttinger, Hans Christian. Stochastic processes in polymeric fluids: Tools and examples for developing simulation algorithms. Berlin: Springer, 1996.
Find full textSchinazi, Rinaldo B. Classical and Spatial Stochastic Processes. Boston, MA: Birkhäuser Boston, 1999.
Find full textNonlinear and Stochastic Beam Dynamics in Accelorators. (1993 Desy, Lüneburg). Nonlinear and stochastic beam dynamics in accelerators: A challenge to theoretical and computational physics, Lüneburg, September 29-October 3, 1997. Hamburg: Deutsches Elektronen-Synchrotron, 1998.
Find full textKrzysztof, Szajowski, and SpringerLink (Online service), eds. Advances in Dynamic Games: Theory, Applications, and Numerical Methods for Differential and Stochastic Games. Boston: Springer Science+Business Media, LLC, 2011.
Find full textservice), SpringerLink (Online, ed. Modeling Multi-Level Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
Find full textauthor, Sarich Marco 1985, ed. Metastability and Markov state models in molecular dynamics: Modeling, analysis, algorithmic approaches. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textBook chapters on the topic "Computational stochastic dynamics"
Bucher, C. G., H. J. Pradlwarter, and G. I. Schuëller. "Computational Stochastic Structural Analysis (COSSAN)." In Structural Dynamics, 301–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-88298-2_13.
Full textWinkelmann, Stefanie, and Christof Schütte. "Well-Mixed Stochastic Reaction Kinetics." In Stochastic Dynamics in Computational Biology, 1–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62387-6_1.
Full textMatthies, Hermann G., and Elmar Zander. "Sparse Representations in Stochastic Mechanics." In Computational Methods in Stochastic Dynamics, 247–65. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9987-7_13.
Full textXu, X. Frank, and George Stefanou. "Computational Stochastic Dynamics Based on Orthogonal Expansion of Random Excitations." In Computational Methods in Stochastic Dynamics, 55–67. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5134-7_4.
Full textBatou, Anas, and Christian Soize. "Random Dynamical Response of a Multibody System with Uncertain Rigid Bodies." In Computational Methods in Stochastic Dynamics, 1–14. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5134-7_1.
Full textJensen, Hector A., Marcos A. Valdebenito, and Juan G. Sepulveda. "Optimal Design of Base-Isolated Systems Under Stochastic Earthquake Excitation." In Computational Methods in Stochastic Dynamics, 161–78. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5134-7_10.
Full textMoutsopoulou, Amalia, Georgios E. Stavroulakis, and Anastasios Pouliezos. "Systematic Formulation of Model Uncertainties and Robust Control in Smart Structures Using H ∞ and μ-Analysis." In Computational Methods in Stochastic Dynamics, 179–202. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5134-7_11.
Full textSaad, George A., and Roger G. Ghanem. "Robust Structural Health Monitoring Using a Polynomial Chaos Based Sequential Data Assimilation Technique." In Computational Methods in Stochastic Dynamics, 203–13. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5134-7_12.
Full textGoller, B., M. Broggi, A. Calvi, and G. I. Schuëller. "Efficient Model Updating of the GOCE Satellite Based on Experimental Modal Data." In Computational Methods in Stochastic Dynamics, 215–35. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5134-7_13.
Full textRosić, Bojana V., and Hermann G. Matthies. "Identification of Properties of Stochastic Elastoplastic Systems." In Computational Methods in Stochastic Dynamics, 237–53. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5134-7_14.
Full textConference papers on the topic "Computational stochastic dynamics"
P., Spanos, Pirrotta A., Marino F., and Robledo Ricardo L. A. "Stochastic Analysis of Motorcycle Dynamics." In 6th International Conference on Computational Stochastic Mechanics. Singapore: Research Publishing Services, 2011. http://dx.doi.org/10.3850/978-981-08-7619-7_p056.
Full textAly, Sherif, Madara Ogot, Richard Pelz, Frank Marconi, and Mike Siclari. "Stochastic optimization applied to CFD shape design." In 12th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-1647.
Full textBelenky, Vadim, Kenneth Weems, Christopher Bassler, Martin Dipper, Bradley Campbell, and Kostas Spyrou. "Approaches to Rare Events in Stochastic Dynamics of Ships." In 6th International Conference on Computational Stochastic Mechanics. Singapore: Research Publishing Services, 2011. http://dx.doi.org/10.3850/978-981-08-7619-7_p009.
Full textPettersson, Per, Gianluca Iaccarino, and Jan Nordström. "Boundary Procedures for the Time-Dependent Stochastic Burgers' Equation." In 19th AIAA Computational Fluid Dynamics. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-3550.
Full textDuraisamy, Karthikeyan, Juan Alonso, and Praveen Chandrashekar. "Goal Oriented Uncertainty Propagation using Stochastic Adjoints." In 20th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-3412.
Full textTo, C. W. S., Jane W. Z. Lu, Andrew Y. T. Leung, Vai Pan Iu, and Kai Meng Mok. "Symplectic Algorithms in Computational Stochastic Nonlinear Structural Dynamics." In PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL MECHANICS AND THE 12TH INTERNATIONAL CONFERENCE ON THE ENHANCEMENT AND PROMOTION OF COMPUTATIONAL METHODS IN ENGINEERING AND SCIENCE. AIP, 2010. http://dx.doi.org/10.1063/1.3452191.
Full textNair, Prasanth, and Andy Keane. "New developments in computational stochastic mechanics. II - Applications." In 41st Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-1441.
Full textNair, Prasanth, and Andy Keane. "New developments in computational stochastic mechanics. I - Theory." In 41st Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-1827.
Full textWitteveen, Jeroen, and Hester Bijl. "Uncertainty Quantification in Fluid-Structure Interaction Simulations Using a Simplex Elements Stochastic Collocation Approach." In 19th AIAA Computational Fluid Dynamics. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-3671.
Full textR. V., Field Jr, and Grigoriu M. "A Poisson Random Field Model for the Dynamics of Laminar-to-Turbulent Transition on a Flight Vehicle." In 6th International Conference on Computational Stochastic Mechanics. Singapore: Research Publishing Services, 2011. http://dx.doi.org/10.3850/978-981-08-7619-7_p027.
Full textReports on the topic "Computational stochastic dynamics"
Chen, Xin, Yanfeng Ouyang, Ebrahim Arian, Haolin Yang, and Xingyu Ba. Modeling and Testing Autonomous and Shared Multimodal Mobility Services for Low-Density Rural Areas. Illinois Center for Transportation, August 2022. http://dx.doi.org/10.36501/0197-9191/22-013.
Full text