Journal articles on the topic 'COMPUTATIONAL MODELLING OF RAIL WHEEL'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'COMPUTATIONAL MODELLING OF RAIL WHEEL.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Fajdiga, Gorazd, Matjaž Šraml, and Janez Kramar. "Modelling of Rolling Contact Fatigue of Rails." Key Engineering Materials 324-325 (November 2006): 987–90. http://dx.doi.org/10.4028/www.scientific.net/kem.324-325.987.
Full textAn, Boyang, Jing Wen, Panjie Wang, Ping Wang, Rong Chen, and Jingmang Xu. "Numerical Investigation into the Effect of Geometric Gap Idealisation on Wheel-Rail Rolling Contact in Presence of Yaw Angle." Mathematical Problems in Engineering 2019 (April 2, 2019): 1–14. http://dx.doi.org/10.1155/2019/9895267.
Full textXu, Lei, Qiang Zhang, Zhiwu Yu, and Zhihui Zhu. "Vehicle–track interaction with consideration of rail irregularities at three-dimensional space." Journal of Vibration and Control 26, no. 15-16 (January 14, 2020): 1228–40. http://dx.doi.org/10.1177/1077546319894816.
Full textDižo, Ján, Miroslav Blatnický, Jozef Harušinec, and Andrej Suchánek. "Assessment of Dynamics of a Rail Vehicle in Terms of Running Properties While Moving on a Real Track Model." Symmetry 14, no. 3 (March 6, 2022): 536. http://dx.doi.org/10.3390/sym14030536.
Full textBaeza, L., F. J. Fuenmayor, J. Carballeira, and A. Roda. "Influence of the wheel-rail contact instationary process on contact parameters." Journal of Strain Analysis for Engineering Design 42, no. 5 (July 1, 2007): 377–87. http://dx.doi.org/10.1243/03093247jsa247.
Full textZhao, Jing, Edwin A. H. Vollebregt, and Cornelis W. Oosterlee. "EXTENDING THE BEM FOR ELASTIC CONTACT PROBLEMS BEYOND THE HALF-SPACE APPROACH." Mathematical Modelling and Analysis 21, no. 1 (January 26, 2016): 119–41. http://dx.doi.org/10.3846/13926292.2016.1138418.
Full textAn, Boyang, Daolin Ma, Ping Wang, Jiayi Zhou, Rong Chen, Jingmang Xu, and Dabin Cui. "Assessing the fast non-Hertzian methods based on the simulation of wheel–rail rolling contact and wear distribution." Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 234, no. 5 (May 9, 2019): 524–37. http://dx.doi.org/10.1177/0954409719848592.
Full textRamalho, A. "Wear modelling in rail–wheel contact." Wear 330-331 (May 2015): 524–32. http://dx.doi.org/10.1016/j.wear.2015.01.067.
Full textWu, Qing, Maksym Spiryagin, Peter Wolfs, and Colin Cole. "Traction modelling in train dynamics." Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 233, no. 4 (August 30, 2018): 382–95. http://dx.doi.org/10.1177/0954409718795496.
Full textTao, Gongquan, Zefeng Wen, Xin Zhao, and Xuesong Jin. "Effects of wheel–rail contact modelling on wheel wear simulation." Wear 366-367 (November 2016): 146–56. http://dx.doi.org/10.1016/j.wear.2016.05.010.
Full textDailydka, Stasys, Leonas Povilas Lingaitis, Sergey Myamlin, and Vladimir Prichodko. "MODELLING THE INTERACTION BETWEEN RAILWAY WHEEL AND RAIL." TRANSPORT 23, no. 3 (September 30, 2008): 236–39. http://dx.doi.org/10.3846/1648-4142.2008.23.236-239.
Full textThompson, D. J. "Theoretical Modelling of Wheel-Rail Noise Generation." Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 205, no. 2 (July 1991): 137–49. http://dx.doi.org/10.1243/pime_proc_1991_205_227_02.
Full textMa, Xiaoqi, Lin Jing, and Liangliang Han. "A computational simulation study on the dynamic response of high-speed wheel–rail system in rolling contact." Advances in Mechanical Engineering 10, no. 11 (November 2018): 168781401880921. http://dx.doi.org/10.1177/1687814018809215.
Full textJelila, Y. D., H. G. Lemu, W. Pamuła, and G. G. Sirata. "Fatigue life analysis of wheel-rail contacts at railway turnouts using finite element modelling approach." IOP Conference Series: Materials Science and Engineering 1201, no. 1 (November 1, 2021): 012047. http://dx.doi.org/10.1088/1757-899x/1201/1/012047.
Full textBhaskar, A., K. L. Johnson, G. D. Wood, and J. Woodhouse. "Wheel-rail dynamics with closely conformal contact Part 1: Dynamic modelling and stability analysis." Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 211, no. 1 (January 1, 1997): 11–26. http://dx.doi.org/10.1243/0954409971530860.
Full textPradhan and Samantaray. "A Recursive Wheel Wear and Vehicle Dynamic Performance Evolution Computational Model for Rail Vehicles with Tread Brakes." Vehicles 1, no. 1 (April 17, 2019): 88–114. http://dx.doi.org/10.3390/vehicles1010006.
Full textLewandowski, Mirosław, Wiesław Grzesikiewicz, Michał Makowski, and Katarzyna Rutczyńska-Wdowiak. "Modelling and simulation of Adhesion of the RAIL vehicle." Journal of Automation, Electronics and Electrical Engineering 4, no. 2 (December 31, 2022): 17–21. http://dx.doi.org/10.24136/jaeee.2022.008.
Full textColeman, I., E. Kassa, and R. Smith. "Wheel-Rail Contact Modelling within Switches and Crossings." International Journal of Railway Technology 1, no. 2 (2012): 45–66. http://dx.doi.org/10.4203/ijrt.1.2.3.
Full textTrummer, Gerald, Zing Siang Lee, Roger Lewis, and Klaus Six. "Modelling of Frictional Conditions in the Wheel–Rail Interface Due to Application of Top-of-Rail Products." Lubricants 9, no. 10 (October 8, 2021): 100. http://dx.doi.org/10.3390/lubricants9100100.
Full textChiba, Elhocine, Mourad Abdelkrim, Abderrahim Belloufi, and Imane Rezgui. ""THREE-DIMENSIONAL MODELLING OF RAILS / WHEELS MANUFACTURED BY ER6 AND ER7 IN TRAMWAY APPLICATIONS "." International Journal of Modern Manufacturing Technologies 14, no. 3 (December 20, 2022): 38–43. http://dx.doi.org/10.54684/ijmmt.2022.14.3.38.
Full textSteenbergen, Michaël J. M. M. "Modelling of wheels and rail discontinuities in dynamic wheel–rail contact analysis." Vehicle System Dynamics 44, no. 10 (October 2006): 763–87. http://dx.doi.org/10.1080/00423110600648535.
Full textWu, Yi, Jing Zeng, Sheng Qu, Huailong Shi, Qunsheng Wang, and Lai Wei. "Low-Frequency Carbody Sway Modelling Based on Low Wheel-Rail Contact Conicity Analysis." Shock and Vibration 2020 (December 21, 2020): 1–17. http://dx.doi.org/10.1155/2020/6671049.
Full textGuiral, A., A. Alonso, L. Baeza, and J. G. Giménez. "Non-steady state modelling of wheel–rail contact problem." Vehicle System Dynamics 51, no. 1 (January 2013): 91–108. http://dx.doi.org/10.1080/00423114.2012.713499.
Full textCai, Guanmian, Zhihui Zhu, Wei Gong, Gaoyang Zhou, Lizhong Jiang, and Bailong Ye. "Influence of Wheel-Rail Contact Algorithms on Running Safety Assessment of Trains under Earthquakes." Applied Sciences 13, no. 9 (April 22, 2023): 5230. http://dx.doi.org/10.3390/app13095230.
Full textAlizadeh Kaklar, J., R. Ghajar, and H. Tavakkoli. "Modelling of nonlinear hunting instability for a high-speed railway vehicle equipped by hollow worn wheels." Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 230, no. 4 (August 3, 2016): 553–67. http://dx.doi.org/10.1177/1464419316636968.
Full textShih, J. Y., R. Ambur, H. C. Boghani, R. Dixon, and E. Stewart. "A New Switch and Crossing Design: Introducing the Back to Back Bistable Switch." Journal of Civil Engineering and Construction 9, no. 4 (November 15, 2020): 175–86. http://dx.doi.org/10.32732/jcec.2020.9.4.175.
Full textPombo, João, and Jorge Ambrosio. "A computational efficient general wheel-rail contact detection method." Journal of Mechanical Science and Technology 19, S1 (January 2005): 411–21. http://dx.doi.org/10.1007/bf02916162.
Full textCroft, B. E., C. J. C. Jones, and D. J. Thompson. "Modelling the effect of rail dampers on wheel–rail interaction forces and rail roughness growth rates." Journal of Sound and Vibration 323, no. 1-2 (June 2009): 17–32. http://dx.doi.org/10.1016/j.jsv.2008.12.013.
Full textPieringer, A., W. Kropp, and J. C. O. Nielsen. "The influence of contact modelling on simulated wheel/rail interaction due to wheel flats." Wear 314, no. 1-2 (June 2014): 273–81. http://dx.doi.org/10.1016/j.wear.2013.12.005.
Full textSichani, M. Sh, R. Enblom, and M. Berg. "Non-Elliptic Wheel-Rail Contact Modelling in Vehicle Dynamics Simulation." International Journal of Railway Technology 3, no. 3 (2014): 77–96. http://dx.doi.org/10.4203/ijrt.3.3.5.
Full textBurgelman, Nico, Matin Sh Sichani, Roger Enblom, Mats Berg, Zili Li, and Rolf Dollevoet. "Influence of wheel–rail contact modelling on vehicle dynamic simulation." Vehicle System Dynamics 53, no. 8 (May 14, 2015): 1190–203. http://dx.doi.org/10.1080/00423114.2015.1039550.
Full textRovira, A., A. Roda, M. B. Marshall, H. Brunskill, and R. Lewis. "Experimental and numerical modelling of wheel–rail contact and wear." Wear 271, no. 5-6 (June 2011): 911–24. http://dx.doi.org/10.1016/j.wear.2011.03.024.
Full textAlonso, Asier, Carlos Casanueva, Javier Perez, and Sebastian Stichel. "Modelling of rough wheel-rail contact for physical damage calculations." Wear 436-437 (October 2019): 202957. http://dx.doi.org/10.1016/j.wear.2019.202957.
Full textZhang, ShuGuang, WeiHua Zhang, and XueSong Jin. "Dynamics of high speed wheel/rail system and its modelling." Chinese Science Bulletin 52, no. 11 (June 2007): 1566–75. http://dx.doi.org/10.1007/s11434-007-0213-1.
Full textTHOMPSON, D. J., and C. J. C. JONES. "A REVIEW OF THE MODELLING OF WHEEL/RAIL NOISE GENERATION." Journal of Sound and Vibration 231, no. 3 (March 2000): 519–36. http://dx.doi.org/10.1006/jsvi.1999.2542.
Full textZhong, Shuoqiao, Xinbiao Xiao, Zefeng Wen, and Xuesong Jin. "Effect of wheelset flexibility on wheel–rail contact behavior and a specific coupling of wheel–rail contact to flexible wheelset." Acta Mechanica Sinica 32, no. 2 (August 25, 2015): 252–64. http://dx.doi.org/10.1007/s10409-015-0441-6.
Full textLisowski, Filip, and Edward Lisowski. "Optimization of ER8 and 42CrMo4 Steel Rail Wheel for Road–Rail Vehicles." Applied Sciences 10, no. 14 (July 8, 2020): 4717. http://dx.doi.org/10.3390/app10144717.
Full textGautam, Aishwarya, and Sheldon I. Green. "Computational fluid dynamics–discrete element method simulation of locomotive sanders." Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 235, no. 1 (February 4, 2020): 12–21. http://dx.doi.org/10.1177/0954409720902897.
Full textChang, Chao, Liang Ling, Zhaoling Han, Kaiyun Wang, and Wanming Zhai. "High-Speed Train-Track-Bridge Dynamic Interaction considering Wheel-Rail Contact Nonlinearity due to Wheel Hollow Wear." Shock and Vibration 2019 (October 31, 2019): 1–18. http://dx.doi.org/10.1155/2019/5874678.
Full textParakhnenko, Inna, Sergey Akkerman, Andrey Romanov, and Oksana Shalamova. "Influence of change in frictional condition of track rail surfaces on interaction forces in the “wheel/rail” contact." E3S Web of Conferences 296 (2021): 02005. http://dx.doi.org/10.1051/e3sconf/202129602005.
Full textNicholson, G. L., and C. L. Davis. "Modelling of the response of an ACFM sensor to rail and rail wheel RCF cracks." NDT & E International 46 (March 2012): 107–14. http://dx.doi.org/10.1016/j.ndteint.2011.11.010.
Full textŽygienė, Rasa, Marijonas Bogdevičius, and Laima Dabulevičienė. "A MATHEMATICAL MODEL AND SIMULATION RESULTS OF THE DYNAMIC SYSTEM RAILWAY VEHICLE WHEEL–TRACK WITH A WHEEL FLAT / DINAMINĖS SISTEMOS „GELEŽINKELIŲ VAGONO RATAS – KELIAS“ SU RATO IŠČIUOŽA MATEMATINIS MODELIS IR MODELIAVIMO REZULTATAI." Mokslas – Lietuvos ateitis 6, no. 5 (December 19, 2014): 531–37. http://dx.doi.org/10.3846/mla.2014.696.
Full textSirata, G. G., H. G. Lemu, K. Waclawiak, and Y. D. Jelila. "Study of rail-wheel contact problem by analytical and numerical approaches." IOP Conference Series: Materials Science and Engineering 1201, no. 1 (November 1, 2021): 012035. http://dx.doi.org/10.1088/1757-899x/1201/1/012035.
Full textSix, K., A. Meierhofer, G. Trummer, C. Marte, G. Müller, B. Luber, P. Dietmaier, and M. Rosenberger. "Classification and Consideration of Plasticity Phenomena in Wheel-Rail Contact Modelling." International Journal of Railway Technology 5, no. 3 (2016): 55–77. http://dx.doi.org/10.4203/ijrt.5.3.3.
Full textGoryacheva, I. G., S. N. Soshenkov, and E. V. Torskaya. "Modelling of wear and fatigue defect formation in wheel–rail contact." Vehicle System Dynamics 51, no. 6 (June 2013): 767–83. http://dx.doi.org/10.1080/00423114.2011.602419.
Full textLUNDÉN, R. "Elastoplastic modelling of subsurface crack growth in rail/wheel contact problems." Fatigue & Fracture of Engineering Materials and Structures 30, no. 10 (October 2007): 905–14. http://dx.doi.org/10.1111/j.1460-2695.2007.01160.x.
Full textSchupp, Gunter, Christoph Weidemann, and Lutz Mauer. "Modelling the Contact Between Wheel and Rail Within Multibody System Simulation." Vehicle System Dynamics 41, no. 5 (May 2004): 349–64. http://dx.doi.org/10.1080/00423110412331300326.
Full textAsih, A. M. S., K. Ding, and A. Kapoor. "Modelling the Effect of Steady State Wheel Temperature on Rail Wear." Tribology Letters 49, no. 1 (October 30, 2012): 239–49. http://dx.doi.org/10.1007/s11249-012-0061-2.
Full textJönsson, J., E. Svensson, and J. T. Christensen. "Strain gauge measurement of wheel-rail interaction forces." Journal of Strain Analysis for Engineering Design 32, no. 3 (April 1, 1997): 183–91. http://dx.doi.org/10.1243/0309324971513328.
Full textSuhr, Bettina, William A. Skipper, Roger Lewis, and Klaus Six. "Sanded Wheel–Rail Contacts: Experiments on Sand Crushing Behaviour." Lubricants 11, no. 2 (January 20, 2023): 38. http://dx.doi.org/10.3390/lubricants11020038.
Full text