Journal articles on the topic 'Computational methods in fluid flow'

To see the other types of publications on this topic, follow the link: Computational methods in fluid flow.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Computational methods in fluid flow.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Peyret, Roger, Thomas D. Taylor, and Stanley A. Berger. "Computational Methods for Fluid Flow." Physics Today 39, no. 7 (July 1986): 70–71. http://dx.doi.org/10.1063/1.2815085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

ILIE, Marcel, Augustin Semenescu, Gabriela Liliana STROE, and Sorin BERBENTE. "NUMERICAL COMPUTATIONS OF THE CAVITY FLOWS USING THE POTENTIAL FLOW THEORY." ANNALS OF THE ACADEMY OF ROMANIAN SCIENTISTS Series on ENGINEERING SCIENCES 13, no. 2 (2021): 78–86. http://dx.doi.org/10.56082/annalsarscieng.2021.2.78.

Full text
Abstract:
Computational fluid dynamics of turbulent flows requires large computational resources or are not suitable for the computations of transient flows. Therefore methods such as Reynolds-averaged Navier-Stokes equations are not suitable for the computation of transient flows. The direct numerical simulation provides the most accurate solution, but it is not suitable for high-Reynolds number flows. Large-eddy simulation (LES) approach is computationally less demanding than the DNS but still computationally expensive. Therefore, alternative computational methods must be sought. This research concerns the modelling of inviscid incompressible cavity flow using the potential flow. The numerical methods employed the finite differences approach. The time and space discretization is achieved using second-order schemes. The studies reveal that the finite differences approach is a computationally efficient approach and large computations can be performed on a single computer. The analysis of the flow physics reveals the presence of the recirculation region inside the cavity as well at the corners of the cavity
APA, Harvard, Vancouver, ISO, and other styles
3

TAKIZAWA, KENJI, and TAYFUN E. TEZDUYAR. "SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS." Mathematical Models and Methods in Applied Sciences 22, supp02 (July 25, 2012): 1230001. http://dx.doi.org/10.1142/s0218202512300013.

Full text
Abstract:
Since its introduction in 1991 for computation of flow problems with moving boundaries and interfaces, the Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) formulation has been applied to a diverse set of challenging problems. The classes of problems computed include free-surface and two-fluid flows, fluid–object, fluid–particle and fluid–structure interaction (FSI), and flows with mechanical components in fast, linear or rotational relative motion. The DSD/SST formulation, as a core technology, is being used for some of the most challenging FSI problems, including parachute modeling and arterial FSI. Versions of the DSD/SST formulation introduced in recent years serve as lower-cost alternatives. More recent variational multiscale (VMS) version, which is called DSD/SST-VMST (and also ST-VMS), has brought better computational accuracy and serves as a reliable turbulence model. Special space–time FSI techniques introduced for specific classes of problems, such as parachute modeling and arterial FSI, have increased the scope and accuracy of the FSI modeling in those classes of computations. This paper provides an overview of the core space–time FSI technique, its recent versions, and the special space–time FSI techniques. The paper includes test computations with the DSD/SST-VMST technique.
APA, Harvard, Vancouver, ISO, and other styles
4

Bazilevs, Yuri, Kenji Takizawa, and Tayfun E. Tezduyar. "Computational analysis methods for complex unsteady flow problems." Mathematical Models and Methods in Applied Sciences 29, no. 05 (May 2019): 825–38. http://dx.doi.org/10.1142/s0218202519020020.

Full text
Abstract:
In this lead paper of the special issue, we provide a brief summary of the stabilized and multiscale methods in fluid dynamics. We highlight the key features of the stabilized and multiscale scale methods, and variational methods in general, that make these approaches well suited for computational analysis of complex, unsteady flows encountered in modern science and engineering applications. We mainly focus on the recent developments. We discuss application of the variational multiscale (VMS) methods to fluid dynamics problems involving computational challenges associated with high-Reynolds-number flows, wall-bounded turbulent flows, flows on moving domains including subdomains in relative motion, fluid–structure interaction (FSI), and complex-fluid flows with FSI.
APA, Harvard, Vancouver, ISO, and other styles
5

Dukowicz, John K. "A review of: Computational methods for fluid flow." Transport Theory and Statistical Physics 14, no. 3 (August 1985): 383–84. http://dx.doi.org/10.1080/00411458508211683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Welss, N. O. "A review of: “Computational methods for fluid flow”." Geophysical & Astrophysical Fluid Dynamics 31, no. 3-4 (February 1985): 346–48. http://dx.doi.org/10.1080/03091928508219275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alves, M. A., P. J. Oliveira, and F. T. Pinho. "Numerical Methods for Viscoelastic Fluid Flows." Annual Review of Fluid Mechanics 53, no. 1 (January 5, 2021): 509–41. http://dx.doi.org/10.1146/annurev-fluid-010719-060107.

Full text
Abstract:
Complex fluids exist in nature and are continually engineered for specific applications involving the addition of macromolecules to a solvent, among other means. This imparts viscoelasticity to the fluid, a property responsible for various flow instabilities and major modifications to the fluid dynamics. Recent developments in the numerical methods for the simulation of viscoelastic fluid flows, described by continuum-level differential constitutive equations, are surveyed, with a particular emphasis on the finite-volume method. This method is briefly described, and the main benchmark flows currently used in computational rheology to assess the performance of numerical methods are presented. Outstanding issues in numerical methods and novel and challenging applications of viscoelastic fluids, some of which require further developments in numerical methods, are discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

Lyu, Chaoyang, Wei Li, Mathieu Desbrun, and Xiaopei Liu. "Fast and versatile fluid-solid coupling for turbulent flow simulation." ACM Transactions on Graphics 40, no. 6 (December 2021): 1–18. http://dx.doi.org/10.1145/3478513.3480493.

Full text
Abstract:
The intricate motions and complex vortical structures generated by the interaction between fluids and solids are visually fascinating. However, reproducing such a two-way coupling between thin objects and turbulent fluids numerically is notoriously challenging and computationally costly: existing approaches such as cut-cell or immersed-boundary methods have difficulty achieving physical accuracy, or even visual plausibility, of simulations involving fast-evolving flows with immersed objects of arbitrary shapes. In this paper, we propose an efficient and versatile approach for simulating two-way fluid-solid coupling within the kinetic (lattice-Boltzmann) fluid simulation framework, valid for both laminar and highly turbulent flows, and for both thick and thin objects. We introduce a novel hybrid approach to fluid-solid coupling which systematically involves a mesoscopic double-sided bounce-back scheme followed by a cut-cell velocity correction for a more robust and plausible treatment of turbulent flows near moving (thin) solids, preventing flow penetration and reducing boundary artifacts significantly. Coupled with an efficient approximation to simplify geometric computations, the whole boundary treatment method preserves the inherent massively parallel computational nature of the kinetic method. Moreover, we propose simple GPU optimizations of the core LBM algorithm which achieve an even higher computational efficiency than the state-of-the-art kinetic fluid solvers in graphics. We demonstrate the accuracy and efficacy of our two-way coupling through various challenging simulations involving a variety of rigid body solids and fluids at both high and low Reynolds numbers. Finally, comparisons to existing methods on benchmark data and real experiments further highlight the superiority of our method.
APA, Harvard, Vancouver, ISO, and other styles
9

Acharya, S., B. R. Baliga, K. Karki, J. Y. Murthy, C. Prakash, and S. P. Vanka. "Pressure-Based Finite-Volume Methods in Computational Fluid Dynamics." Journal of Heat Transfer 129, no. 4 (January 7, 2007): 407–24. http://dx.doi.org/10.1115/1.2716419.

Full text
Abstract:
Pressure-based finite-volume techniques have emerged as the methods of choice for a wide variety of industrial applications involving incompressible fluid flow. In this paper, we trace the evolution of this class of solution techniques. We review the basics of the finite-volume method, and trace its extension to unstructured meshes through the use of cell-based and control-volume finite-element schemes. A critical component of the solution of incompressible flows is the issue of pressure-velocity storage and coupling. The development of staggered-mesh schemes and segregated solution techniques such as the SIMPLE algorithm are reviewed. Co-located storage schemes, which seek to replace staggered-mesh approaches, are presented. Coupled multigrid schemes, which promise to replace segregated-solution approaches, are discussed. Extensions of pressure-based techniques to compressible flows are presented. Finally, the shortcomings of existing techniques and directions for future research are discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Saye, Robert. "Interfacial gauge methods for incompressible fluid dynamics." Science Advances 2, no. 6 (June 2016): e1501869. http://dx.doi.org/10.1126/sciadv.1501869.

Full text
Abstract:
Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena.
APA, Harvard, Vancouver, ISO, and other styles
11

Vanka, S. P. "Computational methods in viscous flow III." International Journal of Heat and Fluid Flow 8, no. 2 (June 1987): 144. http://dx.doi.org/10.1016/0142-727x(87)90015-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Takizawa, Kenji, Yuri Bazilevs, Tayfun E. Tezduyar, and Ming-Chen Hsu. "Computational Cardiovascular Flow Analysis with the Variational Multiscale Methods." Journal of Advanced Engineering and Computation 3, no. 2 (June 30, 2019): 366. http://dx.doi.org/10.25073/jaec.201932.245.

Full text
Abstract:
Computational cardiovascular flow analysis can provide valuable information to medical doctors in a wide range of patientspecific cases, including cerebral aneurysms, aortas and heart valves. The computational challenges faced in this class of flow analyses also have a wide range. They include unsteady flows, complex cardiovascular geometries, moving boundaries and interfaces, such as the motion of the heart valve leaflets, contact between moving solid surfaces, such as the contact between the leaflets, and the fluid–structure interaction between the blood and the cardiovascular structure. Many of these challenges have been or are being addressed by the Space–Time Variational Multiscale (ST-VMS) method, Arbitrary Lagrangian–Eulerian VMS (ALE-VMS) method, and the VMS-based Immersogeometric Analysis (IMGA-VMS), which serve as the core computational methods, and the special methods used in combination with them. We provide an overview of the core and special methods and present examples of challenging computations carried out with these methods, including aorta and heart valve flow analyses. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.
APA, Harvard, Vancouver, ISO, and other styles
13

Ilio, G. Di, D. Chiappini, and G. Bella. "A comparison of numerical methods for non-Newtonian fluid flows in a sudden expansion." International Journal of Modern Physics C 27, no. 12 (November 23, 2016): 1650139. http://dx.doi.org/10.1142/s0129183116501394.

Full text
Abstract:
A numerical study on incompressible laminar flow in symmetric channel with sudden expansion is conducted. In this work, Newtonian and non-Newtonian fluids are considered, where non-Newtonian fluids are described by the power-law model. Three different computational methods are employed, namely a semi-implicit Chorin projection method (SICPM), an explicit algorithm based on fourth-order Runge–Kutta method (ERKM) and a Lattice Boltzmann method (LBM). The aim of the work is to investigate on the capabilities of the LBM for the solution of complex flows through the comparison with traditional computational methods. In the range of Reynolds number investigated, excellent agreement with the literature results is found. In particular, the LBM is found to be accurate in the prediction of the fluid flow behavior for the problem under consideration.
APA, Harvard, Vancouver, ISO, and other styles
14

Kanai, Taro, Kenji Takizawa, Tayfun E. Tezduyar, Kenji Komiya, Masayuki Kaneko, Kyohei Hirota, Motohiko Nohmi, Tomoki Tsuneda, Masahito Kawai, and Miho Isono. "Methods for computation of flow-driven string dynamics in a pump and residence time." Mathematical Models and Methods in Applied Sciences 29, no. 05 (May 2019): 839–70. http://dx.doi.org/10.1142/s021820251941001x.

Full text
Abstract:
We present methods for computation of flow-driven string dynamics in a pump and related residence time. The string dynamics computations help us understand how the strings carried by a fluid interact with the pump surfaces, including the blades, and get stuck on or around those surfaces. The residence time computations help us to have a simplified but quick understanding of the string behavior. The core computational method is the Space–Time Variational Multiscale (ST-VMS) method, and the other key methods are the ST Isogeometric Analysis (ST-IGA), ST Slip Interface (ST-SI) method, ST/NURBS Mesh Update Method (STNMUM), a general-purpose NURBS mesh generation method for complex geometries, and a one-way-dependence model for the string dynamics. The ST-IGA with NURBS basis functions in space is used in both fluid mechanics and string structural dynamics. The ST framework provides higher-order accuracy. The VMS feature of the ST-VMS addresses the computational challenges associated with the turbulent nature of the unsteady flow, and the moving-mesh feature of the ST framework enables high-resolution computation near the rotor surface. The ST-SI enables moving-mesh computation of the spinning rotor. The mesh covering the rotor spins with it, and the SI between the spinning mesh and the rest of the mesh accurately connects the two sides of the solution. The ST-IGA enables more accurate representation of the pump geometry and increased accuracy in the flow solution. The IGA discretization also enables increased accuracy in the structural dynamics solution, as well as smoothness in the string shape and fluid dynamics forces computed on the string. The STNMUM enables exact representation of the mesh rotation. The general-purpose NURBS mesh generation method makes it easier to deal with the complex geometry we have here. With the one-way-dependence model, we compute the influence of the flow on the string dynamics, while avoiding the formidable task of computing the influence of the string on the flow, which we expect to be small.
APA, Harvard, Vancouver, ISO, and other styles
15

Takizawa, Kenji, Yuri Bazilevs, Tayfun E. Tezduyar, and Artem Korobenko. "Computational Flow Analysis in Aerospace, Energy and Transportation Technologies with the Variational Multiscale Methods." Journal of Advanced Engineering and Computation 4, no. 2 (June 30, 2020): 83. http://dx.doi.org/10.25073/jaec.202042.279.

Full text
Abstract:
With the recent advances in the variational multiscale (VMS) methods, computational ow analysis in aerospace, energy, and transportation technologies has reached a high level of sophistication. It is bringing solutions in challenging problems such as the aerodynamics of parachutes, thermo-fluid analysis of ground vehicles and tires, and fluid-structure interaction (FSI) analysis of wind turbines. The computational challenges include complex geometries, moving boundaries and interfaces, FSI, turbulent flows, rotational flows, and large problem sizes. The Residual-Based VMS (RBVMS), Arbitrary Lagrangian-Eulerian VMS (ALE-VMS) and Space-Time VMS (ST-VMS) methods have been successfully serving as core methods in addressing the computational challenges. The core methods are supplemented with special methods targeting specific classes of problems, such as the Slip Interface (SI) method, MultiDomain Method, and the ST-C data compression method. We provide and overview of the core and special methods. We present, as examples of challenging computations performed with these methods, aerodynamic analysis of a ramair parachute, thermo-fluid analysis of a freight truck and its rear set of tires, and aerodynamic and FSI analysis of two back-to-back wind turbines in atmospheric boundary layer flow. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.
APA, Harvard, Vancouver, ISO, and other styles
16

Takizawa, Kenji, Tayfun E. Tezduyar, and Taro Kanai. "Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity." Mathematical Models and Methods in Applied Sciences 27, no. 04 (March 28, 2017): 771–806. http://dx.doi.org/10.1142/s0218202517500166.

Full text
Abstract:
Spacecraft-parachute designs quite often include “geometric porosity” created by the hundreds of gaps and slits that the flow goes through. Computational fluid–structure interaction (FSI) analysis of these parachutes with resolved geometric porosity would be exceedingly challenging, and therefore accurate modeling of the geometric porosity is essential for reliable FSI analysis. The space–time FSI (STFSI) method with the homogenized modeling of geometric porosity has proven to be reliable in computational analysis and design studies of Orion spacecraft parachutes in the incompressible-flow regime. Here we introduce porosity models and ST computational methods for compressible-flow aerodynamics of parachutes with geometric porosity. The main components of the ST computational framework we use are the compressible-flow ST SUPG method, which was introduced earlier, and the compressible-flow ST Slip Interface method, which we introduce here. The computations we present for a drogue parachute show the effectiveness of the porosity models and ST computational methods.
APA, Harvard, Vancouver, ISO, and other styles
17

JK, Mariya Helen Mercy, and Prabhakar V. "Study of fluid flow inside closed cavities using computational numerical methods." International Journal for Simulation and Multidisciplinary Design Optimization 12 (2021): 4. http://dx.doi.org/10.1051/smdo/2021003.

Full text
Abstract:
The temperature distribution and distortion of fluid flow inside the closed cavities, square and triangle, are studied for different boundary conditions. Two different conditions of thermal boundary conditions are used for studying square cavities: (i) Left wall is hot, right wall is cold, top and bottom walls are adiabatic. (ii) Left and right walls are cold, top wall is adiabatic, bottom wall is hot. For triangular enclosure, the boundary conditions are (i) the vertical wall is insulated, bottom wall is hot. (ii) The vertical wall is hot, the bottom wall insulated and the inclined walls are kept cold in both conditions. The velocity of the flow is observed by means of stream function and the temperature distribution is displayed in the form of contours. The study is carried out in ANSYS software. The mathematical procedure for solving the nonlinear system of partial differential equations by penalty finite element method involving bi-quadratic elements is also discussed in detail.
APA, Harvard, Vancouver, ISO, and other styles
18

van Leer, Bram. "Computational Methods for Fluid Flow (Roger Peyret and Thomas D. Taylor)." SIAM Review 28, no. 3 (September 1986): 440–42. http://dx.doi.org/10.1137/1028147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Marek, Ivo. "Guest Editorial: Numerical linear algebra methods for computational fluid flow problems." Numerical Linear Algebra with Applications 7, no. 6 (2000): 361. http://dx.doi.org/10.1002/1099-1506(200009)7:6<361::aid-nla201>3.0.co;2-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Mino, Yasushi, Hazuki Tanaka, and Chika Tanaka. "Computational Methods for Simulating Dynamics of Particles at Fluid–Fluid Interface." Journal of the Society of Powder Technology, Japan 59, no. 9 (September 10, 2022): 446–54. http://dx.doi.org/10.4164/sptj.59.446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Oldenburg, Jan, Julian Renkewitz, Michael Stiehm, and Klaus-Peter Schmitz. "Contributions towards Data driven Deep Learning methods to predict Steady State Fluid Flow in mechanical Heart Valves." Current Directions in Biomedical Engineering 7, no. 2 (October 1, 2021): 625–28. http://dx.doi.org/10.1515/cdbme-2021-2159.

Full text
Abstract:
Abstract It is commonly accepted that hemodynamic situation is related with cardiovascular diseases as well as clinical post-procedural outcome. In particular, aortic valve stenosis and insufficiency are associated with high shear flow and increased pressure loss. Furthermore, regurgitation, high shear stress and regions of stagnant blood flow are presumed to have an impact on clinical result. Therefore, flow field assessment to characterize the hemodynamic situation is necessary for device evaluation and further design optimization. In-vitro as well as in-silico fluid mechanics methods can be used to investigate the flow through prostheses. In-silico solutions are based on mathematical equitation’s which need to be solved numerically (Computational Fluid Dynamics - CFD). Fundamentally, the flow is physically described by Navier-Stokes. CFD often requires high computational cost resulting in long computation time. Techniques based on deep-learning are under research to overcome this problem. In this study, we applied a deep-learning strategy to estimate fluid flows during peak systolic steady-state blood flows through mechanical aortic valves with varying opening angles in randomly generated aortic root geometries. We used a data driven approach by running 3,500 two dimensional simulations (CFD). The simulation data serves as training data in a supervised deep learning framework based on convolutional neural networks analogous to the U-net architecture. We were able to successfully train the neural network using the supervised data driven approach. The results showing that it is feasible to use a neural network to estimate physiological flow fields in the vicinity of prosthetic heart valves (Validation error below 0.06), by only giving geometry data (Image) into the Network. The neural network generates flow field prediction in real time, which is more than 2500 times faster compared to CFD simulation. Accordingly, there is tremendous potential in the use of AIbased approaches predicting blood flows through heart valves on the basis of geometry data, especially in applications where fast fluid mechanic predictions are desired.
APA, Harvard, Vancouver, ISO, and other styles
22

Su, Ke Qin, Ya Wei Wang, and Jian Ping Wang. "The Research and Application on Computational Methods in Fluid Dynamics." Advanced Materials Research 317-319 (August 2011): 807–10. http://dx.doi.org/10.4028/www.scientific.net/amr.317-319.807.

Full text
Abstract:
The NND scheme based on Van Leer flux vector splitting is presented. The flow field of shock wave tube is calculated by the difference method presented in this paper, which shows that the presented finite difference method has fine calculation precision and efficiency, and could capture shock automatically.
APA, Harvard, Vancouver, ISO, and other styles
23

Battaglia, Laura, Jorge D’Elía, Mario Storti, and Norberto Nigro. "Numerical Simulation of Transient Free Surface Flows Using a Moving Mesh Technique." Journal of Applied Mechanics 73, no. 6 (February 28, 2006): 1017–25. http://dx.doi.org/10.1115/1.2198246.

Full text
Abstract:
In this work, transient free surface flows of a viscous incompressible fluid are numerically solved through parallel computation. Transient free surface flows are boundary-value problems of the moving type that involve geometrical nonlinearities. In contrast to more conventional computational fluid dynamics problems, the computational flow domain is partially bounded by a free surface which is not known a priori, since its shape must be computed as part of the solution. In steady flow the free surface is obtained by an iterative process, but when the free surface evolves with time the problem is more difficult as it generates large distortions in the computational flow domain. The incompressible Navier-Stokes numerical solver is based on the finite element method with equal order elements for pressure and velocity (linear elements), and it uses a streamline upwind/Petrov-Galerkin (SUPG) scheme (Hughes, T. J. R., and Brooks, A. N., 1979, “A Multidimensional Upwind Scheme With no Crosswind Diffusion,” in Finite Element Methods for Convection Dominated Flows, ASME ed., 34. AMD, New York, pp. 19–35, and Brooks, A. N., and Hughes, T. J. R., 1982, “Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations,” Comput. Methods Appl. Mech. Eng., 32, pp. 199–259) combined with a Pressure-Stabilizing/Petrov-Galerkin (PSPG) one (Tezduyar, T. E., 1992, “Stablized Finite Element Formulations for Incompressible Flow Computations,” Adv. Appl. Mech., 28, pp. 1–44, and Tezduyar, T. E., Mittal, S., Ray, S. E., and Shih, R., 1992, “Incompressible Flow Computations With Stabilized Bilinear and Linear Equal Order Interpolation Velocity-Pressure Elements,” Comput. Methods Appl. Mech. Eng., 95, pp. 221–242). At each time step, the fluid equations are solved with constant pressure and null viscous traction conditions at the free surface and the velocities obtained in this way are used for updating the positions of the surface nodes. Then, a pseudo elastic problem is solved in the fluid domain in order to relocate the interior nodes so as to keep mesh distortion controlled. This has been implemented in the PETSc-FEM code (PETSc-FEM: a general purpose, parallel, multi-physics FEM program. GNU general public license (GPL), http://www.cimec.org.ar/petscfem) by running two parallel instances of the code and exchanging information between them. Some numerical examples are presented.
APA, Harvard, Vancouver, ISO, and other styles
24

Majchrzak, Maciej, Katarzyna Marciniak-Lukasiak, and Piotr Lukasiak. "A Survey on the Application of Machine Learning in Turbulent Flow Simulations." Energies 16, no. 4 (February 9, 2023): 1755. http://dx.doi.org/10.3390/en16041755.

Full text
Abstract:
As early as at the end of the 19th century, shortly after mathematical rules describing fluid flow—such as the Navier–Stokes equations—were developed, the idea of using them for flow simulations emerged. However, it was soon discovered that the computational requirements of problems such as atmospheric phenomena and engineering calculations made hand computation impractical. The dawn of the computer age also marked the beginning of computational fluid mechanics and their subsequent popularization made computational fluid dynamics one of the common tools used in science and engineering. From the beginning, however, the method has faced a trade-off between accuracy and computational requirements. The purpose of this work is to examine how the results of recent advances in machine learning can be applied to further develop the seemingly plateaued method. Examples of applying this method to improve various types of computational flow simulations, both by increasing the accuracy of the results obtained and reducing calculation times, have been reviewed in the paper as well as the effectiveness of the methods presented, the chances of their acceptance by industry, including possible obstacles, and potential directions for their development. One can observe an evolution of solutions from simple determination of closure coefficients through to more advanced attempts to use machine learning as an alternative to the classical methods of solving differential equations on which computational fluid dynamics is based up to turbulence models built solely from neural networks. A continuation of these three trends may lead to at least a partial replacement of Navier–Stokes-based computational fluid dynamics by machine-learning-based solutions.
APA, Harvard, Vancouver, ISO, and other styles
25

Abouri, D., A. Parry, A. Hamdouni, and E. Longatte. "A Stable Fluid-Structure-Interaction Algorithm: Application to Industrial Problems." Journal of Pressure Vessel Technology 128, no. 4 (October 19, 2005): 516–24. http://dx.doi.org/10.1115/1.2349560.

Full text
Abstract:
Fluid-structure interactions occur in a wide range of industrial applications, including vibration of pipe-work, flow meters, and positive displacement systems as well as many flow control devices. This paper outlines computational methods for calculating the dynamic interaction between moving parts and the flow in a flow-meter system. Coupling of phenomena is allowed without need for access to the source codes and is thus suitable for use with commercially available codes. Two methods are presented: one with an explicit integration of the equations of motion of the mechanism and the other, with implicit integration. Both methods rely on a Navier-Stokes equation solver for the fluid flow. The more computationally expensive, implicit method is recommended for mathematically stiff mechanisms such as piston movement. Industrial-application examples shown are for positive displacement machines, axial turbines, and steam-generator tube-bundle vibrations. The advances in mesh technology, including deforming meshes with nonconformal sliding interfaces, open up this new field of application of computational fluid dynamics and mechanical analysis in flow meter design.
APA, Harvard, Vancouver, ISO, and other styles
26

Cortez, Ricardo. "On the Accuracy of Impulse Methods for Fluid Flow." SIAM Journal on Scientific Computing 19, no. 4 (July 1998): 1290–302. http://dx.doi.org/10.1137/s1064827595293570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Drikakis, Dimitris, Michael Frank, and Gavin Tabor. "Multiscale Computational Fluid Dynamics." Energies 12, no. 17 (August 25, 2019): 3272. http://dx.doi.org/10.3390/en12173272.

Full text
Abstract:
Computational Fluid Dynamics (CFD) has numerous applications in the field of energy research, in modelling the basic physics of combustion, multiphase flow and heat transfer; and in the simulation of mechanical devices such as turbines, wind wave and tidal devices, and other devices for energy generation. With the constant increase in available computing power, the fidelity and accuracy of CFD simulations have constantly improved, and the technique is now an integral part of research and development. In the past few years, the development of multiscale methods has emerged as a topic of intensive research. The variable scales may be associated with scales of turbulence, or other physical processes which operate across a range of different scales, and often lead to spatial and temporal scales crossing the boundaries of continuum and molecular mechanics. In this paper, we present a short review of multiscale CFD frameworks with potential applications to energy problems.
APA, Harvard, Vancouver, ISO, and other styles
28

Longatte, E., Z. Bendjeddou, and M. Souli. "Application of Arbitrary Lagrange Euler Formulations to Flow-Induced Vibration Problems." Journal of Pressure Vessel Technology 125, no. 4 (November 1, 2003): 411–17. http://dx.doi.org/10.1115/1.1613950.

Full text
Abstract:
Most classical fluid force identification methods rely on mechanical structure response measurements associated with convenient data processes providing turbulent and fluid-elastic forces responsible for possible vibrations and damage. These techniques provide good results; however, they often involve high costs as they rely on specific modelings fitted with experimental data. Owing to recent improvements in computational fluid dynamics, numerical simulation of flow-induced structure vibration problems is now practicable for industrial purposes. As far as flow structure interactions are concerned, the main difficulty consists in estimating numerically fluid-elastic forces acting on mechanical components submitted to turbulent flows. The point is to take into account both fluid effects on structure motion and conversely dynamic motion effects on local flow patterns. This requires a code coupling to solve fluid and structure problems in the same time. This ability is out of limit of most classical fluid dynamics codes. That is the reason why recently an improved numerical approach has been developed and applied to the fully numerical prediction of a flexible tube dynamic response belonging to a fixed tube bundle submitted to cross flows. The methodology consists in simulating at the same time thermo-hydraulics and mechanics problems by using an Arbitrary Lagrange Euler (ALE) formulation for the fluid computation. Numerical results turn out to be consistent with available experimental data and calculations tend to show that it is now possible to simulate numerically tube bundle vibrations in presence of cross flows. Thus a new possible application for ALE methods is the prediction of flow-induced vibration problems. The full computational process is described in the first section. Classical and improved ALE formulations are presented in the second part. Main numerical results are compared to available experimental data in section 3. Code performances are pointed out in terms of mesh generation process and code coupling method.
APA, Harvard, Vancouver, ISO, and other styles
29

Tissera, Shiroshana, Dimitris Drikakis, and Trevor Birch. "Computational Fluid Dynamics Methods for Hypersonic Flow Around Blunted-Cone-Cylinder-Flare." Journal of Spacecraft and Rockets 47, no. 4 (July 2010): 563–70. http://dx.doi.org/10.2514/1.46722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sawada, Ikuo, Hiroyuki Tanaka, and Masahiro Tanaka. "Status of Computational Fluid Dynamics and Its Application to Materials Manufacturing." MRS Bulletin 19, no. 1 (January 1994): 14–19. http://dx.doi.org/10.1557/s088376940003880x.

Full text
Abstract:
Computational fluid dynamics was born principally in the aerospace field as a method for fluid flow and heat transfer research methods following experimental and analytical approaches. Along with progress in the cost performance of computers, computational fluid dynamics is now establishing itself as a tool to improve production processes and product quality in the steel, nonferrous metals, glass, plastics, and composite materials industries.Materials manufacturers use computational fluid dynamics for diverse purposes:1. Reduction in experimental conditions and costs;2. Detailed analysis of mechanisms with multifaceted information unobtainable through experimentation;3. Universal tool for scale-up; and4. Evaluation of novel processes.It can be readily imagined that accuracy, flexibility, and other requirements of computational fluid dynamics should vary with specific applications.Fluids generally observed in materials manufacturing processes are molten materials such as metal, glass, and plastics, and gases for stirring and refining. In the flow of such fluids, materials quality and process characteristics are governed by the following:1. Transport phenomena in the bulk region (where fluid flow is normally turbulent);2. Chemical reaction at interfaces;3. Transport phenomena in boundary layers near the interfaces; and4. Complex coupled phenomena (heat transfer, diffusion, chemical reaction, phase transformation like solidification, free surface, electromagnetic force, and bubble flow).
APA, Harvard, Vancouver, ISO, and other styles
31

Яковчук, М. С., И. В. Тетерина, В. Н. Емельянов, and К. Н. Волков. "Methods and concepts of vortex flow visualization in the problems of computational fluid dynamics." Numerical Methods and Programming (Vychislitel'nye Metody i Programmirovanie), no. 1 (March 29, 2016): 81–100. http://dx.doi.org/10.26089/nummet.v17r109.

Full text
Abstract:
Рассматриваются концепции и методы визуального представления результатов численных исследований задач гидро- и газодинамики, связанных с расчетами вихревых течений. Обсуждаются подходы к визуализации вихревых течений, основанные на использовании различных определений вихря и критериев его идентификации. Приводятся примеры визуального представления решений ряда задач механики жидкости и газа, связанных с расчетами вихревых течений в струях, каналах и кавернах, а также отрывных течений, возникающих при обтекании тел различной формы. Обсуждается визуализация результатов, полученных на основе вихреразрешающих подходов к моделированию турбулентности. A number of concepts and methods for the visual representation of numerical results obtained when solving fluid and gas dynamics problems related to the simulation of vortex flows are considered. Approaches to the visualization of vortex flows based on the use of various definitions and criteria of vortex identification are discussed. Examples of visual representation of the solutions to some fluid and gas dynamics problems requiring the calculation of vortex flows in jets, channels and cavities as well as separated flows arising from the flow over bodies of different shapes are given. Visualization of the results obtained with the vortex resolved methods for turbulence simulations are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
32

Denton, J. D., and W. N. Dawes. "Computational fluid dynamics for turbomachinery design." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 213, no. 2 (February 1, 1998): 107–24. http://dx.doi.org/10.1243/0954406991522211.

Full text
Abstract:
Computational fluid dynamics (CFD) probably plays a greater part in the aerodynamic design of turbomachinery than it does in any other engineering application. For many years the design of a modern turbine or compressor has been unthinkable without the help of CFD and this dependence has increased as more of the flow becomes amenable to numerical prediction. The benefits of CFD range from shorter design cycles to better performance and reduced costs and weight. This paper presents a review of the main CFD methods in use, discusses their advantages and limitations and points out where further developments are required. The paper is concerned with the application of CFD and does not describe the numerical methods or turbulence modelling in any detail.
APA, Harvard, Vancouver, ISO, and other styles
33

Sarpkaya, Turgut. "Computational Methods With Vortices—The 1988 Freeman Scholar Lecture." Journal of Fluids Engineering 111, no. 1 (March 1, 1989): 5–52. http://dx.doi.org/10.1115/1.3243601.

Full text
Abstract:
A comprehensive review is presented of the computational methods based upon Helmholtz’s powerful concepts of vortex dynamics, making use of Lagrangian or mixed Lagrangian-Eulerian schemes, the Biot-Savart law or the Vortex-in-Cell methods. The ingenious approximations and smoothing schemes developed in search of predictive models, qualitative solutions, new insights, or just some inspiration in the simulation of often two-dimensional, occasionally three-dimensional, and almost always incompressible fluids are described in detail. One is forewarned at the onset that chaos awaits at the end of the road. The challenge is to produce results in the face of ever accumulating errors within a time scale appropriate for the investigation. The review is organized around two major sections: Theoretical foundations and practical applications of vortex methods. The first covers topics such as vorticity and laws of transportation, evolution equations for a vortex sheet, real vortices and instabilities, Biot-Savart law, smoothing techniques (cutoff schemes, amalgamation of vortices, subvortex methods), cloud-in-cell or vortex-in-cell methods, body representation (Routh’s rule, surface singularity distributions), operator splitting and the random walk method (description and convergence), and asymmetry introduction. The next section covers contra flowing streams, vortical flows in aerodynamics (vortex sheet roll-up; slender-body, two-vortex, multi-discrete vortex, and segment or panel methods; three-dimensional flow models, and vortex-lattice methods), separated flow about cylindrical bodies (circular cylinder, sharp-edged bodies, arbitrarily-shaped bodies), general three-dimensional flows (vortex rings, turbulent spots, temporally and spatially-growing shear layers, and other applications (vortex-blade interactions, combustion phenomena, acoustics, contour dynamics, interaction of line vortices, chaos, and turbulence). The review is concluded with a brief comparison of these methods with others used in computational fluid dynamics and a personal view of their future prospects.
APA, Harvard, Vancouver, ISO, and other styles
34

Johnston, D. Nigel. "Efficient Methods for Numerical Modeling of Laminar Friction in Fluid Lines." Journal of Dynamic Systems, Measurement, and Control 128, no. 4 (March 8, 2006): 829–34. http://dx.doi.org/10.1115/1.2361320.

Full text
Abstract:
An improved method for simulating frequency-dependent friction in laminar pipe flow using the method of characteristics is proposed. It has a higher computational efficiency than previous methods while retaining a high accuracy. By lumping the frequency-dependent friction at the ends of the pipeline, the computational efficiency can be improved further, at the expense of a slight reduction in accuracy. The technique is also applied to the transmission line method and found to give a significant improvement in accuracy over previous methods, while retaining a very high computational efficiency.
APA, Harvard, Vancouver, ISO, and other styles
35

Cheng, Ziqiang, and Jin Wang. "Modeling epidemic flow with fluid dynamics." Mathematical Biosciences and Engineering 19, no. 8 (2022): 8334–60. http://dx.doi.org/10.3934/mbe.2022388.

Full text
Abstract:
<abstract><p>In this paper, a new mathematical model based on partial differential equations is proposed to study the spatial spread of infectious diseases. The model incorporates fluid dynamics theory and represents the epidemic spread as a fluid motion generated through the interaction between the susceptible and infected hosts. At the macroscopic level, the spread of the infection is modeled as an inviscid flow described by the Euler equation. Nontrivial numerical methods from computational fluid dynamics (CFD) are applied to investigate the model. In particular, a fifth-order weighted essentially non-oscillatory (WENO) scheme is employed for the spatial discretization. As an application, this mathematical and computational framework is used in a simulation study for the COVID-19 outbreak in Wuhan, China. The simulation results match the reported data for the cumulative cases with high accuracy and generate new insight into the complex spatial dynamics of COVID-19.</p></abstract>
APA, Harvard, Vancouver, ISO, and other styles
36

Guo, Aixia, Tsorng-Whay Pan, Jiwen He, and Roland Glowinski. "Numerical Methods for Simulating the Motion of Porous Balls in Simple 3D Shear Flows Under Creeping Conditions." Computational Methods in Applied Mathematics 17, no. 3 (July 1, 2017): 397–412. http://dx.doi.org/10.1515/cmam-2017-0012.

Full text
Abstract:
AbstractIn this article, two novel numerical methods have been developed for simulating fluid/porous particle interactions in three-dimensional (3D) Stokes flow. The Brinkman–Debye–Bueche model is adopted for the fluid flow inside the porous particle, being coupled with the Stokes equations for the fluid flow outside the particle. The rotating motion of a porous ball and the interaction of two porous balls in bounded shear flows have been studied by these two new methods. The numerical results show that the porous particle permeability has a strong effect on the interaction of two porous balls.
APA, Harvard, Vancouver, ISO, and other styles
37

Xu, X. Y., and M. W. Collins. "Studies of Blood Flow in Arterial Bifurcations Using Computational Fluid Dynamics." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 208, no. 3 (September 1994): 163–75. http://dx.doi.org/10.1243/pime_proc_1994_208_282_02.

Full text
Abstract:
The local blood flow in arteries, especially at bends and bifurcations, is correlated with the distribution of atherosclerotic lesions. The flow is three-dimensional, unsteady and difficult to measure in vivo. In this paper a numerical treatment of blood flow in general three-dimensional arterial bifurcations is presented. The flow is assumed to be laminar and incompressible, the blood non-Newtonian and the vessel wall rigid. The three-dimensional time-dependent Navier-Stokes equations are employed to describe the flow, and a newly developed computational fluid dynamics (CFD) code AST EC based on finite volume methods is used to solve the equations. A comprehensive range of code validations has been carried out. Good agreement between numerical predictions and in vitro model data is demonstrated, but the correlation with in vivo measurements is less satisfactory. Effects of the non-Newtonian viscosity have also been investigated. It is demonstrated that differences between Newtonian and non-Newtonian flows occur mainly in regions of flow separation. With the non-Newtonian fluid, the duration of flow separation is shorter and the reverse flow is weaker. Nevertheless, it does not have significant effects on the basic features of the flow field. As for the magnitude of wall shear stress, the effect of non-Newtonian viscosity might not be negligible.
APA, Harvard, Vancouver, ISO, and other styles
38

Topalović, Marko, Aleksandar Nikolić, Snežana Vulović, and Vladimir P. Milovanović. "FSI ANALYSIS WITH CONTINUOUS FLUID FLOW USING FEM AND SPH METHODS IN LS-DYNA." Journal of the Serbian Society for Computational Mechanics 15, no. 2 (December 30, 2021): 93–100. http://dx.doi.org/10.24874/jsscm.2021.15.02.09.

Full text
Abstract:
The purpose of this research was to investigate the prospect of continuous flow modelling in LS-DYNA using SPH-FEM coupling. The both methods (SPH and FEM) are based on the continuum mechanics, however, SPH implementation uses Lagrangian material framework, while FEM uses an Eulerian formulation for the fluid analysis, and Lagrangian formulation for the solid analysis. The Lagrangian framework of the SPH means that we need to generate particles at one end, and to destroy them on the other, in order to generate a continuous fluid flow. The simplest way to do this is by using activation and deactivation planes, which is a solution implemented in the commercial LS- DYNA solver. Modelling of continuous fluid flow is practical in mechanical (naval) engineering for hydrofoil analysis and in bioengineering for blood vessel simulations. Results show that velocity fields obtained by SPH-FEM coupling are similar to velocity fields obtained by FEM. FEM only solution has a clear advantage in regards to execution time, however, SPH-FEM coupling offers greater insight into fluid structure interaction, that justifies the extra computational cost.
APA, Harvard, Vancouver, ISO, and other styles
39

Patankar, S. V. "Recent Developments in Computational Heat Transfer." Journal of Heat Transfer 110, no. 4b (November 1, 1988): 1037–45. http://dx.doi.org/10.1115/1.3250608.

Full text
Abstract:
Recent developments in computational methods for heat transfer and fluid flow are reviewed. Emphasis is given to the treatment of convection and diffusion and solution of flow equations. Also, some interesting applications of the methods are mentioned. Whereas many attractive methods have been formulated in recent years, there exists no clear consensus about a preferred method. Careful and controlled evaluations of different methods are required. This and other tasks for future research are outlined.
APA, Harvard, Vancouver, ISO, and other styles
40

Chapin, V. G., S. Jamme, and P. Chassaing. "Viscous Computational Fluid Dynamics as a Relevant Decision-Making Tool for Mast-Sail Aerodynamics." Marine Technology and SNAME News 42, no. 01 (January 1, 2005): 1–10. http://dx.doi.org/10.5957/mt1.2005.42.1.1.

Full text
Abstract:
Viscous computational fluid dynamics based on Reynolds averaged Navier-Stokes (RANS) equations have been used to simulate flow around typical mast-sail geometries. It is shown how these advanced numerical methods are relevant to investigate the complexity of such strongly separated flows. Detailed numerical results have been obtained and compared to experimental ones. Comparative analysis has shown that RANS methods are able to capture the main flow features, such as mast-flow separation, recirculation bubble, bubble reattachment through a laminar-turbulent transition process, and trailing-edge separation. A second part has been devoted to the comparative behavior of these flow features through parameters variations to evaluate the qualitative and quantitative capabilities of RANS methods in mast-sail design optimization. The last part illustrates through two examples how RANS methods may be used to optimize the design of mast-sail geometries and evaluate their relative performances.
APA, Harvard, Vancouver, ISO, and other styles
41

Courchaine, Katherine, and Sandra Rugonyi. "Quantifying blood flow dynamics during cardiac development: demystifying computational methods." Philosophical Transactions of the Royal Society B: Biological Sciences 373, no. 1759 (September 24, 2018): 20170330. http://dx.doi.org/10.1098/rstb.2017.0330.

Full text
Abstract:
Blood flow conditions (haemodynamics) are crucial for proper cardiovascular development. Indeed, blood flow induces biomechanical adaptations and mechanotransduction signalling that influence cardiovascular growth and development during embryonic stages and beyond. Altered blood flow conditions are a hallmark of congenital heart disease, and disrupted blood flow at early embryonic stages is known to lead to congenital heart malformations. In spite of this, many of the mechanisms by which blood flow mechanics affect cardiovascular development remain unknown. This is due in part to the challenges involved in quantifying blood flow dynamics and the forces exerted by blood flow on developing cardiovascular tissues. Recent technologies, however, have allowed precise measurement of blood flow parameters and cardiovascular geometry even at early embryonic stages. Combined with computational fluid dynamics techniques, it is possible to quantify haemodynamic parameters and their changes over development, which is a crucial step in the quest for understanding the role of mechanical cues on heart and vascular formation. This study summarizes some fundamental aspects of modelling blood flow dynamics, with a focus on three-dimensional modelling techniques, and discusses relevant studies that are revealing the details of blood flow and their influence on cardiovascular development. This article is part of the Theo Murphy meeting issue ‘Mechanics of development’.
APA, Harvard, Vancouver, ISO, and other styles
42

Toma, Milan, Shelly Singh-Gryzbon, Elisabeth Frankini, Zhenglun (Alan) Wei, and Ajit P. Yoganathan. "Clinical Impact of Computational Heart Valve Models." Materials 15, no. 9 (May 5, 2022): 3302. http://dx.doi.org/10.3390/ma15093302.

Full text
Abstract:
This paper provides a review of engineering applications and computational methods used to analyze the dynamics of heart valve closures in healthy and diseased states. Computational methods are a cost-effective tool that can be used to evaluate the flow parameters of heart valves. Valve repair and replacement have long-term stability and biocompatibility issues, highlighting the need for a more robust method for resolving valvular disease. For example, while fluid–structure interaction analyses are still scarcely utilized to study aortic valves, computational fluid dynamics is used to assess the effect of different aortic valve morphologies on velocity profiles, flow patterns, helicity, wall shear stress, and oscillatory shear index in the thoracic aorta. It has been analyzed that computational flow dynamic analyses can be integrated with other methods to create a superior, more compatible method of understanding risk and compatibility.
APA, Harvard, Vancouver, ISO, and other styles
43

Edlin, Joy, Justin Nowell, Christopher Arthurs, Alberto Figueroa, and Marjan Jahangiri. "Assessing the methodology used to study the ascending aorta haemodynamics in bicuspid aortic valve." European Heart Journal - Digital Health 2, no. 2 (June 1, 2021): 271–78. http://dx.doi.org/10.1093/ehjdh/ztab022.

Full text
Abstract:
Abstract Aims Modern imaging techniques provide evermore-detailed anatomical and physiological information for use in computational fluid dynamics to predict the behaviour of physiological phenomena. Computer modelling can help plan suitable interventions. Our group used magnetic resonance imaging and computational fluid dynamics to study the haemodynamic variables in the ascending aorta in patients with bicuspid aortic valve before and after isolated tissue aortic valve replacement. Computer modelling requires turning a physiological model into a mathematical one, solvable by equations that undergo multiple iterations in four dimensions. Creating these models involves several steps with manual inputs, making the process prone to errors and limiting its inter- and intra-operator reproducibility. Despite these challenges, we created computational models for each patient to study ascending aorta blood flow before and after surgery. Methods and results Magnetic resonance imaging provided the anatomical and velocity data required for the blood flow simulation. Patient-specific in- and outflow boundary conditions were used for the computational fluid dynamics analysis. Haemodynamic variables pertaining to blood flow pattern and derived from the magnetic resonance imaging data were calculated. However, we encountered problems in our multi-step methodology, most notably processing the flow data. This meant that other variables requiring computation with computational fluid dynamics could not be calculated. Conclusion Creating a model for computational fluid dynamics analysis is as complex as the physiology under scrutiny. We discuss some of the difficulties associated with creating such models, along with suggestions for improvements in order to yield reliable and beneficial results.
APA, Harvard, Vancouver, ISO, and other styles
44

Whitehouse, Glen R. "Investigation of Hybrid Grid–Based Computational Fluid Dynamics Methods for Rotorcraft Flow Analysis." Journal of the American Helicopter Society 56, no. 3 (July 1, 2011): 1–10. http://dx.doi.org/10.4050/jahs.56.032004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Fontaine, J. R., R. Rapp, H. Koskela, and R. Niemelä. "Evaluation of air diffuser flow modelling methods experiments and computational fluid dynamics simulations." Building and Environment 40, no. 3 (March 2005): 377–89. http://dx.doi.org/10.1016/j.buildenv.2004.06.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Petrov, A., N. Isaev, and M. Kuleshova. "Test bench flow straightener design investigation and optimization with computational fluid dynamics methods." IOP Conference Series: Materials Science and Engineering 492 (March 13, 2019): 012036. http://dx.doi.org/10.1088/1757-899x/492/1/012036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Klemens, Fabian, Benjamin Förster, Márcio Dorn, Gudrun Thäter, and Mathias J. Krause. "Solving fluid flow domain identification problems with adjoint lattice Boltzmann methods." Computers & Mathematics with Applications 79, no. 1 (January 2020): 17–33. http://dx.doi.org/10.1016/j.camwa.2018.07.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Gottlieb, David, Sigal Gottlieb, and Paul Tseng. "Book Review: High-order methods for incompressible fluid flow." Mathematics of Computation 73, no. 246 (November 25, 2003): 1039–41. http://dx.doi.org/10.1090/s0025-5718-03-01670-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chen, Bin, and Frederick Stern. "Computational Fluid Dynamics of Four-Quadrant Marine-Propulsor Flow." Journal of Ship Research 43, no. 04 (December 1, 1999): 218–28. http://dx.doi.org/10.5957/jsr.1999.43.4.218.

Full text
Abstract:
Computational fluid dynamics results are presented of four-quadrant flow for marine-propulsor P4381. The solution method is unsteady three-dimensional incompressible Reynolds-averaged Navier-Stokes equations in generalized coordinates with the Baldwin-Lomax turbulence model. The method was used previously for the design condition for marine-propulsor P4119, including detailed verification and validation. Only limited verification is performed for P4381. The validation is limited by the availability of four-quadrant performance data and ring vortex visualizations for the crashback conditions. The predicted performance shows close agreement with the data for the forward and backing conditions, whereas for the crashahead and crashback conditions the agreement is only qualitative and requires an ad hoc cavitation correction. Also, the predicted ring vortices for the crashback conditions are in qualitative agreement with the data. Extensive calculations enable detailed description of flow characteristics over a broad range of propulsor four-quadrant operations, including surface pressure and streamlines, velocity distributions, boundary layer and wake, separation, and tip and ring vortices. The overall results suggest promise for Reynolds-averaged Navier-Stokes methods for simulating marine-propulsor flow, including offdesign. However, important outstanding issues include additional verification and validation, time-accurate solutions, and resolution and turbulence modeling for separation and tip and ring vortices.
APA, Harvard, Vancouver, ISO, and other styles
50

GUSTAFSSON, BERTIL. "Analysis and Methods in Fluid Mechanics." International Journal of Modern Physics C 02, no. 01 (March 1991): 75–85. http://dx.doi.org/10.1142/s0129183191000093.

Full text
Abstract:
When constructing numerical methods for partial differential equations, it is important to have a thorough understanding of the continuous model and the characteristic properties of its solutions. We shall present methods of analysis for determining well-posedness of hyperbolic and mixed hyperbolic-parabolic équations which are applicable to the time-dependent Euler and Navier-Stokes equations. We shall then discuss difference- and finite volume methods and the construction of grids. The geometry of realistic problems is usually such that it is almost impossible to construct one structured grid. One way to overcome this difficulty is to use overlapping grids, where each domain has a structured grid. We discuss stability and accuracy of difference methods applied on such grids. Many problems in physics and engineering are defined in boundary domains, and artificial boundaries are introduced for computational reasons. In some cases one can construct accurate boundary conditions at these open boundaries. We shall indicate how this can be achieved, but we will also point out certain cases where accurate solutions are impossible to be obtained on limited domains. Finally some comments will be given on the difficulties arising when almost incompressible flow is computed. This corresponds to small Mach-numbers, and extra care must be taken when designing numerical methods. The theory will be complemented by numerical experiments for various flow problems in two space dimensions.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography