Dissertations / Theses on the topic 'Computational methods in fluid flow'

To see the other types of publications on this topic, follow the link: Computational methods in fluid flow.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Computational methods in fluid flow.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Zeybek, Birol. "Numerical simulation of flow induced by a spinning sphere using spectral methods." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1997. http://handle.dtic.mil/100.2/ADA331206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pitman, Mark William. "An investigation of flow structure interactions on a finite compliant surface using computational methods." Thesis, Curtin University, 2007. http://hdl.handle.net/20.500.11937/625.

Full text
Abstract:
A study of the interaction of one-sided flow over a compliant surface is presented. When fluid passes over a flexible surface the simultaneous interaction between the flow and structure gives rise to vibrations and instabilities on the surface as well as in the fluid. The fluid-structure interaction (FSI) has potential to be used in the control of boundary layer dynamics to achieve drag reduction through transition delay. The modelling and control of FSI systems apply to many fields of engineering beyond drag reduction, for example: the modelling and analysis of biomechanical systems; natural environmental systems; aero-elastics; and other areas where flow interacts moving or compliant boundaries. The investigation is performed through numerical simulation. This returns more detail than could be resolved through experiments, while also permitting the study of finite compliant surfaces that are prohibitively difficult, or impossible, to study with analytical techniques. In the present work, novel numerical modelling methods are developed from linear system analysis through to nonlinear disturbances and viscous effects.Two numerical modelling techniques are adopted to approach the analysis of the FSI system. A potential-flow method is used for the modelling of flows in the limit of infinite Reynolds numbers, while a grid-free Discrete Vortex Method (DVM) is used for the modelling of the rotational boundary-layer flow at moderate Reynolds numbers. In both inviscid and viscous studies, significant contributions are made to the numerical modelling techniques. The application of these methods to the study of flow over compliant panels gives new insight to the nature of the FSI system. In the linear inviscid model, a novel hybrid computational/theoretical method is developed that evaluates the eigenvalues and eigenmodes from a discretised FSI system. The results from the non-linear inviscid model revealed that the steady-state of the non-linear wall motion is independent of initial excitation. For the viscous case, the first application of a DVM to model the interaction of a viscous, rotational flow with a compliant surface is developed. This DVM is successfully applied to model boundary-layer flow over a finite compliant surface.
APA, Harvard, Vancouver, ISO, and other styles
3

Rudgyard, Michael A. "Cell vertex methods for compressible gas flows." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Robbins, David James. "Development of computational fluid dynamics methods for low-speed flows." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

MazHer, A. Hamid K. "A computational method for three dimensional, internal viscous flows with separation and secondary flow patterns." Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/12338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pitman, Mark William. "An investigation of flow structure interactions on a finite compliant surface using computational methods." Curtin University of Technology, Department of Mechanical Engineering, 2007. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=17209.

Full text
Abstract:
A study of the interaction of one-sided flow over a compliant surface is presented. When fluid passes over a flexible surface the simultaneous interaction between the flow and structure gives rise to vibrations and instabilities on the surface as well as in the fluid. The fluid-structure interaction (FSI) has potential to be used in the control of boundary layer dynamics to achieve drag reduction through transition delay. The modelling and control of FSI systems apply to many fields of engineering beyond drag reduction, for example: the modelling and analysis of biomechanical systems; natural environmental systems; aero-elastics; and other areas where flow interacts moving or compliant boundaries. The investigation is performed through numerical simulation. This returns more detail than could be resolved through experiments, while also permitting the study of finite compliant surfaces that are prohibitively difficult, or impossible, to study with analytical techniques. In the present work, novel numerical modelling methods are developed from linear system analysis through to nonlinear disturbances and viscous effects.
Two numerical modelling techniques are adopted to approach the analysis of the FSI system. A potential-flow method is used for the modelling of flows in the limit of infinite Reynolds numbers, while a grid-free Discrete Vortex Method (DVM) is used for the modelling of the rotational boundary-layer flow at moderate Reynolds numbers. In both inviscid and viscous studies, significant contributions are made to the numerical modelling techniques. The application of these methods to the study of flow over compliant panels gives new insight to the nature of the FSI system. In the linear inviscid model, a novel hybrid computational/theoretical method is developed that evaluates the eigenvalues and eigenmodes from a discretised FSI system. The results from the non-linear inviscid model revealed that the steady-state of the non-linear wall motion is independent of initial excitation. For the viscous case, the first application of a DVM to model the interaction of a viscous, rotational flow with a compliant surface is developed. This DVM is successfully applied to model boundary-layer flow over a finite compliant surface.
APA, Harvard, Vancouver, ISO, and other styles
7

Gariba, Munir Antonio. "Visualisation methods for the analysis of blood flow using magnetic resonance imaging and computational fluid dynamics." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Peña, Monferrer Carlos. "Computational fluid dynamics multiscale modelling of bubbly flow. A critical study and new developments on volume of fluid, discrete element and two-fluid methods." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/90493.

Full text
Abstract:
The study and modelling of two-phase flow, even the simplest ones such as the bubbly flow, remains a challenge that requires exploring the physical phenomena from different spatial and temporal resolution levels. CFD (Computational Fluid Dynamics) is a widespread and promising tool for modelling, but nowadays, there is no single approach or method to predict the dynamics of these systems at the different resolution levels providing enough precision of the results. The inherent difficulties of the events occurring in this flow, mainly those related with the interface between phases, makes that low or intermediate resolution level approaches as system codes (RELAP, TRACE, ...) or 3D TFM (Two-Fluid Model) have significant issues to reproduce acceptable results, unless well-known scenarios and global values are considered. Instead, methods based on high resolution level such as Interfacial Tracking Method (ITM) or Volume Of Fluid (VOF) require a high computational effort that makes unfeasible its use in complex systems. In this thesis, an open-source simulation framework has been designed and developed using the OpenFOAM library to analyze the cases from microescale to macroscale levels. The different approaches and the information that is required in each one of them have been studied for bubbly flow. In the first part, the dynamics of single bubbles at a high resolution level have been examined through VOF. This technique has allowed to obtain accurate results related to the bubble formation, terminal velocity, path, wake and instabilities produced by the wake. However, this approach has been impractical for real scenarios with more than dozens of bubbles. Alternatively, this thesis proposes a CFD Discrete Element Method (CFD-DEM) technique, where each bubble is represented discretely. A novel solver for bubbly flow has been developed in this thesis. This includes a large number of improvements necessary to reproduce the bubble-bubble and bubble-wall interactions, turbulence, velocity seen by the bubbles, momentum and mass exchange term over the cells or bubble expansion, among others. But also new implementations as an algorithm to seed the bubbles in the system have been incorporated. As a result, this new solver gives more accurate results as the provided up to date. Following the decrease on resolution level, and therefore the required computational resources, a 3D TFM have been developed with a population balance equation solved with an implementation of the Quadrature Method Of Moments (QMOM). The solver is implemented with the same closure models as the CFD-DEM to analyze the effects involved with the lost of information due to the averaging of the instantaneous Navier-Stokes equation. The analysis of the results with CFD-DEM reveals the discrepancies found by considering averaged values and homogeneous flow in the models of the classical TFM formulation. Finally, for the lowest resolution level approach, the system code RELAP5/MOD3 is used for modelling the bubbly flow regime. The code has been modified to reproduce properly the two-phase flow characteristics in vertical pipes, comparing the performance of the calculation of the drag term based on drift-velocity and drag coefficient approaches.
El estudio y modelado de flujos bifásicos, incluso los más simples como el bubbly flow, sigue siendo un reto que conlleva aproximarse a los fenómenos físicos que lo rigen desde diferentes niveles de resolución espacial y temporal. El uso de códigos CFD (Computational Fluid Dynamics) como herramienta de modelado está muy extendida y resulta prometedora, pero hoy por hoy, no existe una única aproximación o técnica de resolución que permita predecir la dinámica de estos sistemas en los diferentes niveles de resolución, y que ofrezca suficiente precisión en sus resultados. La dificultad intrínseca de los fenómenos que allí ocurren, sobre todo los ligados a la interfase entre ambas fases, hace que los códigos de bajo o medio nivel de resolución, como pueden ser los códigos de sistema (RELAP, TRACE, etc.) o los basados en aproximaciones 3D TFM (Two-Fluid Model) tengan serios problemas para ofrecer resultados aceptables, a no ser que se trate de escenarios muy conocidos y se busquen resultados globales. En cambio, códigos basados en alto nivel de resolución, como los que utilizan VOF (Volume Of Fluid), requirieren de un esfuerzo computacional tan elevado que no pueden ser aplicados a sistemas complejos. En esta tesis, mediante el uso de la librería OpenFOAM se ha creado un marco de simulación de código abierto para analizar los escenarios desde niveles de resolución de microescala a macroescala, analizando las diferentes aproximaciones, así como la información que es necesaria aportar en cada una de ellas, para el estudio del régimen de bubbly flow. En la primera parte se estudia la dinámica de burbujas individuales a un alto nivel de resolución mediante el uso del método VOF (Volume Of Fluid). Esta técnica ha permitido obtener resultados precisos como la formación de la burbuja, velocidad terminal, camino recorrido, estela producida por la burbuja e inestabilidades que produce en su camino. Pero esta aproximación resulta inviable para entornos reales con la participación de más de unas pocas decenas de burbujas. Como alternativa, se propone el uso de técnicas CFD-DEM (Discrete Element Methods) en la que se representa a las burbujas como partículas discretas. En esta tesis se ha desarrollado un nuevo solver para bubbly flow en el que se han añadido un gran número de nuevos modelos, como los necesarios para contemplar los choques entre burbujas o con las paredes, la turbulencia, la velocidad vista por las burbujas, la distribución del intercambio de momento y masas con el fluido en las diferentes celdas por cada una de las burbujas o la expansión de la fase gaseosa entre otros. Pero también se han tenido que incluir nuevos algoritmos como el necesario para inyectar de forma adecuada la fase gaseosa en el sistema. Este nuevo solver ofrece resultados con un nivel de resolución superior a los desarrollados hasta la fecha. Siguiendo con la reducción del nivel de resolución, y por tanto los recursos computacionales necesarios, se efectúa el desarrollo de un solver tridimensional de TFM en el que se ha implementado el método QMOM (Quadrature Method Of Moments) para resolver la ecuación de balance poblacional. El solver se desarrolla con los mismos modelos de cierre que el CFD-DEM para analizar los efectos relacionados con la pérdida de información debido al promediado de las ecuaciones instantáneas de Navier-Stokes. El análisis de resultados de CFD-DEM permite determinar las discrepancias encontradas por considerar los valores promediados y el flujo homogéneo de los modelos clásicos de TFM. Por último, como aproximación de nivel de resolución más bajo, se investiga el uso uso de códigos de sistema, utilizando el código RELAP5/MOD3 para analizar el modelado del flujo en condiciones de bubbly flow. El código es modificado para reproducir correctamente el flujo bifásico en tuberías verticales, comparando el comportamiento de aproximaciones para el cálculo del término d
L'estudi i modelatge de fluxos bifàsics, fins i tot els més simples com bubbly flow, segueix sent un repte que comporta aproximar-se als fenòmens físics que ho regeixen des de diferents nivells de resolució espacial i temporal. L'ús de codis CFD (Computational Fluid Dynamics) com a eina de modelatge està molt estesa i resulta prometedora, però ara per ara, no existeix una única aproximació o tècnica de resolució que permeta predir la dinàmica d'aquests sistemes en els diferents nivells de resolució, i que oferisca suficient precisió en els seus resultats. Les dificultat intrínseques dels fenòmens que allí ocorren, sobre tots els lligats a la interfase entre les dues fases, fa que els codis de baix o mig nivell de resolució, com poden ser els codis de sistema (RELAP,TRACE, etc.) o els basats en aproximacions 3D TFM (Two-Fluid Model) tinguen seriosos problemes per a oferir resultats acceptables , llevat que es tracte d'escenaris molt coneguts i se persegueixen resultats globals. En canvi, codis basats en alt nivell de resolució, com els que utilitzen VOF (Volume Of Fluid), requereixen d'un esforç computacional tan elevat que no poden ser aplicats a sistemes complexos. En aquesta tesi, mitjançant l'ús de la llibreria OpenFOAM s'ha creat un marc de simulació de codi obert per a analitzar els escenaris des de nivells de resolució de microescala a macroescala, analitzant les diferents aproximacions, així com la informació que és necessària aportar en cadascuna d'elles, per a l'estudi del règim de bubbly flow. En la primera part s'estudia la dinàmica de bambolles individuals a un alt nivell de resolució mitjançant l'ús del mètode VOF. Aquesta tècnica ha permès obtenir resultats precisos com la formació de la bambolla, velocitat terminal, camí recorregut, estela produida per la bambolla i inestabilitats que produeix en el seu camí. Però aquesta aproximació resulta inviable per a entorns reals amb la participació de més d'unes poques desenes de bambolles. Com a alternativa en aqueix cas es proposa l'ús de tècniques CFD-DEM (Discrete Element Methods) en la qual es representa a les bambolles com a partícules discretes. En aquesta tesi s'ha desenvolupat un nou solver per a bubbly flow en el qual s'han afegit un gran nombre de nous models, com els necessaris per a contemplar els xocs entre bambolles o amb les parets, la turbulència, la velocitat vista per les bambolles, la distribució de l'intercanvi de moment i masses amb el fluid en les diferents cel·les per cadascuna de les bambolles o els models d'expansió de la fase gasosa entre uns altres. Però també s'ha hagut d'incloure nous algoritmes com el necessari per a injectar de forma adequada la fase gasosa en el sistema. Aquest nou solver ofereix resultats amb un nivell de resolució superior als desenvolupat fins la data. Seguint amb la reducció del nivell de resolució, i per tant els recursos computacionals necessaris, s'efectua el desenvolupament d'un solver tridimensional de TFM en el qual s'ha implementat el mètode QMOM (Quadrature Method Of Moments) per a resoldre l'equació de balanç poblacional. El solver es desenvolupa amb els mateixos models de tancament que el CFD-DEM per a analitzar els efectes relacionats amb la pèrdua d'informació a causa del promitjat de les equacions instantànies de Navier-Stokes. L'anàlisi de resultats de CFD-DEM permet determinar les discrepàncies ocasionades per considerar els valors promitjats i el flux homogeni dels models clàssics de TFM. Finalment, com a aproximació de nivell de resolució més baix, s'analitza l'ús de codis de sistema, utilitzant el codi RELAP5/MOD3 per a analitzar el modelatge del fluxos en règim de bubbly flow. El codi és modificat per a reproduir correctament les característiques del flux bifàsic en canonades verticals, comparant el comportament d'aproximacions per al càlcul del terme de drag basades en velocitat de drift flux model i de les basades en coe
Peña Monferrer, C. (2017). Computational fluid dynamics multiscale modelling of bubbly flow. A critical study and new developments on volume of fluid, discrete element and two-fluid methods [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90493
TESIS
APA, Harvard, Vancouver, ISO, and other styles
9

Izard, Edouard. "Modélisation numérique des écoulements granulaires denses immergés dans un fluide." Phd thesis, Toulouse, INPT, 2014. http://oatao.univ-toulouse.fr/12186/1/izard.pdf.

Full text
Abstract:
Ce travail de thèse concerne la modélisation numérique fine des processus locaux dans le transport sédimentaire, à l'échelle d'un à plusieurs centaines de grains. Une méthode aux éléments discrets (DEM) basée sur la méthode dite des sphères molles et prenant en compte les contacts entre les grains a été développée et couplée à une méthode de frontière immergée (IBM) qui calcule l'écoulement autour d'objets solides mobiles dans un fluide Newtonien incompressible. Dans ce couplage, une force de lubrification est incluse pour représenter les interactions entre le fluide et les particules proches d'un contact. Il est montré que la méthode numérique reproduit de manière satisfaisante le coefficient de restitution effective mesuré dans des expériences de rebonds normal et oblique d'un grain sur un plan, ainsi que de rebond entre deux grains dans un fluide visqueux. Deux modèles analytiques associés au phénomène de rebond sont proposés et montrent l'importance de la rugosité de surface du grain et du nombre de Stokes sur le phénomène. La méthode numérique est ensuite utilisée pour simuler deux configurations tridimensionnelles d'écoulements granulaires pilotés par la gravité en milieu fluide : l'avalanche de grains sur un plan incliné rugueux et l'effondrement d'une colonne de grains. Dans le premier cas, les résultats permettent de caractériser les différents régimes d'écoulement granulaires (visqueux, inertiel et sec) observés dans les expériences en fonction du rapport de masse volumique grain-fluide et du nombre de Stokes. En particulier, les simulations apportent des informations originales quant aux profils de vitesse de grains et du fluide ainsi qu'aux forces prédominantes dans chacun des régimes. Dans le second cas, les résultats sont en bon accord avec les expériences et le mécanisme dit de « pore pressure feedback », qui dépend de la compacité initiale de la colonne, est pour la première fois observé dans des simulations numériques directes.
APA, Harvard, Vancouver, ISO, and other styles
10

Roberge, Jennifer Anne. "Use of Computational Fluid Dynamics (CFD) to Model Flow at Pump Intakes." Digital WPI, 1999. https://digitalcommons.wpi.edu/etd-theses/1046.

Full text
Abstract:
"This thesis presents a series of physical experiments and numerical simulations intended to determine whether the use of commercially available computational fluid dynamics (CFD) software may provide a viable alternative to the use of physical models for predicting the occurrence of vortices and swirl in pump intakes. The physical experiments were set up at Alden Research Laboratories, Inc. (ARL) of Holden, Massachusetts, using a simple pump intake model donated by ARL for use in this study. Swirl and velocity measurements and dye injections were used to characterize the flow in the physical model. Three flow conditions were chosen for the physical experiments because they demonstrated swirl and vortices developing at the pump intake. Once the physical experiments were performed, FIDAP, a general-purpose finite-element CFD package, was used to simulate the circulation patterns in the vicinity of a pump intake. The model configuration and scale were selected to simulate experimental conditions in the physical pump intake model. Some similarities were also identified in the locations of the models predicted vortex characteristics and the vortex characteristics that were observed in the experimental facility. However, the characteristics of swirl within the pump intake differed from experimental observations. Therefore, additional simulations were conducted to analyze the sensitivity of simulations to model assumptions. These additional simulations showed that the assumptions related to these model parameters have minor affects on the general nature of the predicted vortices, but do affect the predicted vortex strength. This thesis represents a first step in addressing the discrepancies between numerical and experimental results. Additional investigations are recommended to clarify the applicability of CFD to address pump intake problems."
APA, Harvard, Vancouver, ISO, and other styles
11

Fairchilds, William Landrum. "NEW WALL FUNCTION METHODS FOR USE WITH COARSE NEAR-WALL MESHES IN TURBULENT FLOW COMPUTATIONAL FLUID DYNAMICS SIMULATIONS." MSSTATE, 2007. http://sun.library.msstate.edu/ETD-db/theses/available/etd-07052007-125941/.

Full text
Abstract:
A common alternative to full resolution of the near-wall region in computational fluid dynamics (CFD) simulations is the use of wall functions that decrease the mesh requirements in this region. This study presents two alternatives to current wall functions. The first method is based on numerically approximating a turbulent velocity profile using a one-dimensional subgrid contained within wall-adjacent control cells. The second method is an analytical approach similar to previous wall function methods, but this method is valid both inside and outside of the fluid boundary layer. Use of both methods allows approximation of boundary layers of varying height relative to the first layer sizing. Use of these methods allows wall adjacent primary grid sizes to vary from low-Re model sizing of y+ ≈ 1 to grid sizes of y+ ~ 1000 or more without significant loss in accuracy, and with computational costs similar to currently used wall functions.
APA, Harvard, Vancouver, ISO, and other styles
12

Yun, Brian Min. "Simulations of pulsatile flow through bileaflet mechanical heart valves using a suspension flow model: to assess blood damage." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/53378.

Full text
Abstract:
Defective or diseased native valves have been replaced by bileaflet mechanical heart valves (BMHVs) for many years. However, severe complications still exist, and thus blood damage that occurs in BMHV flows must be well understood. The aim of this research is to numerically study platelet damage that occurs in BMHV flows. The numerical suspension flow method combines lattice-Boltzmann fluid modeling with the external boundary force method. This method is validated as a general suspension flow solver, and then validated against experimental BMHV flow data. Blood damage is evaluated for a physiologic adult case of BMHV flow and then for BMHVs with pediatric sizing and flow conditions. Simulations reveal intricate, small-scale BMHV flow features, and the presence of turbulence in BMHV flow. The results suggest a shift from previous evaluations of instantaneous flow to the determination of long-term flow recirculation regions when assessing thromboembolic potential. Sharp geometries that may induce these recirculation regions should be avoided in device design. Simulations for predictive assessment of pediatric sized valves show increased platelet damage values for potential pediatric valves. However, damage values do not exceed platelet activation thresholds, and highly damaged platelets are found far from the valve. Thus, the increased damage associated with resized valves is not such that pediatric valve development should be hindered. This method can also be used as a generic tool for future evaluation of novel prosthetic devices or cardiovascular flow problems.
APA, Harvard, Vancouver, ISO, and other styles
13

From, Christopher. "High-order lattice Boltzmann for nonideal fluid mixtures." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/200190/1/Christopher_From_Thesis.pdf.

Full text
Abstract:
Nonideal fluid mixtures are ubiquitous in nature and the study of their fundamental dynamics is important in many areas of modern science, such as miniaturized flow processes for portable small-scale medical diagnostic tools. However, numerical simulations of such flows face a formidable multi-scale challenge due to the competing nonideal interactions. This thesis presents a novel numerical model for simulating nonideal fluid mixtures based on high-order lattice Boltzmann methods. A solution to gauge the physical interpretations of nonideal interactions is proposed and with this, previously unknown transport properties are derived, including, the equation of state, interface tension, diffusion coefficient, and contact angle.
APA, Harvard, Vancouver, ISO, and other styles
14

Rahimian, Abtin. "Parallel algorithms for direct blood flow simulations." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43611.

Full text
Abstract:
Fluid mechanics of blood can be well approximated by a mixture model of a Newtonian fluid and deformable particles representing the red blood cells. Experimental and theoretical evidence suggests that the deformation and rheology of red blood cells is similar to that of phospholipid vesicles. Vesicles and red blood cells are both area preserving closed membranes that resist bending. Beyond red blood cells, vesicles can be used to investigate the behavior of cell membranes, intracellular organelles, and viral particles. Given the importance of vesicle flows, in this thesis we focus in efficient numerical methods for such problems: we present computationally scalable algorithms for the simulation of dilute suspension of deformable vesicles in two and three dimensions. Our method is based on the boundary integral formulation of Stokes flow. We present new schemes for simulating the three-dimensional hydrodynamic interactions of large number of vesicles with viscosity contrast. The algorithms incorporate a stable time-stepping scheme, high-order spatiotemporal discretizations, spectral preconditioners, and a reparametrization scheme capable of resolving extreme mesh distortions in dynamic simulations. The associated linear systems are solved in optimal time using spectral preconditioners. The highlights of our numerical scheme are that (i) the physics of vesicles is faithfully represented by using nonlinear solid mechanics to capture the deformations of each cell, (ii) the long-range, N-body, hydrodynamic interactions between vesicles are accurately resolved using the fast multipole method (FMM), and (iii) our time stepping scheme is unconditionally stable for the flow of single and multiple vesicles with viscosity contrast and its computational cost-per-simulation-unit-time is comparable to or less than that of an explicit scheme. We report scaling of our algorithms to simulations with millions of vesicles on thousands of computational cores.
APA, Harvard, Vancouver, ISO, and other styles
15

MacFadden, James. "Computational methods for incompressible fluid flows, with reference to interface modelling by an extended finite element method." Thesis, Swansea University, 2006. https://cronfa.swan.ac.uk/Record/cronfa42810.

Full text
Abstract:
In this thesis an implicit Semi-Discrete Stabilized eXtended Finite Element formulation has been successfully developed and implemented for laminar Newtonian incompressible fluid flows. In doing so we have contributed to the research into the field of incompressible fluid flows, multiphase flow and fluid-rigid body interaction. The fluid flows are governed by the incompressible viscous Navier-Stokes equations, using a Finite Element formulation to model the fluid behaviour numerically. A Semi-Discrete time integration scheme was implemented, discretizing in space, leaving the system of ordinary differential equations to be integrated in time. Initially the classical Galerkin method is used to formulate the boundary value problem from the governing equations, however stability issues due to incompressibility and dominant advection terms force the implementation of the stabilized formulation, i.e. SUPG/PSPG. This approach gives greater flexibility in choice of velocity/pressure interpolations, such as equal order functions. The time integration schemes (Generalized alpha method and Generalized Midpoint rule) were compared and contrasted, with the Generalized alpha method demonstrating improved convergence. The highly nonlinear form of the governing equations required an implicit iterative solver and the Newton-Raphson procedure was chosen. Several tests were performed throughout the formulation of the boundary value problem to validate the implementation. The result, a robust, efficient and accurate unsteady incompressible Newtonian fluid formulation. extended FEM was introduced by adding terms to the FEM formulation in a Partition of Unity framework. With the addition of complex solution procedures X-FEM was implemented and tested for multiphase and fluid-rigid body interaction, demonstrating the attractive qualities of this method.
APA, Harvard, Vancouver, ISO, and other styles
16

Kupiainen, Marco. "Compressible Turbulent Flows : LES and Embedded Boundary Methods." Doctoral thesis, KTH, Numerisk analys, NA, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Celestin, Carey Jr. "Computational Fluid Dynamics Applied to the Analysis of Blood Flow Through Central Aortic to Pulmonary Artery Shunts." ScholarWorks@UNO, 2015. http://scholarworks.uno.edu/td/1972.

Full text
Abstract:
This research utilizes CFD to analyze blood flow through pathways representative of central shunts, commonly used as part of the Fontan procedure to treat cyanotic heart disease. In the first part of this research, a parametric study of steady, Newtonian blood flow through parabolic pathways was performed to demonstrate the effect that flow pathway curvature has on wall shear stress distribution and flow energy losses. In the second part, blood flow through two shunts obtained via biplane angiograms is simulated. Pressure boundary conditions were obtained via catheterization. Results showed that wall shear stresses were of sufficient magnitude to initiate platelet activation, a precursor for thrombus formation. Steady results utilizing time-averaged boundary conditions showed excellent agreement with the time-averaged results obtained from pulsatile simulations. For the points of interest in this research, namely wall shear stress distribution and flow energy loss, the Newtonian viscosity model was found to yield acceptable results.
APA, Harvard, Vancouver, ISO, and other styles
18

Gryngarten, Leandro Damian. "Multi-phase flows using discontinuous Galerkin methods." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45824.

Full text
Abstract:
This thesis is concerned with the development of numerical techniques to simulate compressible multi-phase flows, in particular a high-accuracy numerical approach with mesh adaptivity. The Discontinuous Galerkin (DG) method was chosen as the framework for this work for being characterized for its high-order of accuracy -thus low numerical diffusion- and being compatible with mesh adaptivity due to its locality. A DG solver named DiGGIT (Discontinuous Galerkin at the Georgia Institute of Technology) has been developed and several aspects of the method have been studied. The Local Discontinuous Galerkin (LDG) method -an extension of DG for equations with high-order derivatives- was extended to solve multiphase flows using Diffused Interface Methods (DIM). This multi-phase model includes the convection of the volume fraction, which is treated as a Hamilton-Jacobi equation. This is the first study, to the author's knowledge, in which the volume fraction of a DIM is solved using the DG and the LDG methods. The formulation is independent of the Equation of State (EOS) and it can differ for each phase. This allows for a more accurate representation of the different fluids by using cubic EOSs, like the Peng-Robinson and the van der Waals models. Surface tension is modeled with a new numerical technique appropriate for LDG. Spurious oscillations due to surface tension are common to all the capturing schemes, and this new approach presents oscillations comparable in magnitude to the most common schemes. The moment limiter (ML) was generalized for non-uniform grids with hanging nodes that result from adaptive mesh refinement (AMR). The effect of characteristic, primitive, or conservative decomposition in the limiting stage was studied. The characteristic option cannot be used with the ML in multi-dimensions. In general, primitive variable decomposition is a better option than with conservative variables, particularly for multiphase flows, since the former type of decomposition reduces the numerical oscillations at material discontinuities. An additional limiting technique was introduced for DIM to preserve positivity while minimizing the numerical diffusion, which is especially important at the interface. The accuracy-preserving total variation diminishing (AP-TVD) marker for ``troubled-cell' detection, which uses an averaged-derivative basis, was modified to use the Legendre polynomial basis. Given that the latest basis is generally used for DG, the new approach avoids transforming to the averaged-derivative basis, what results in a more efficient technique. Furthermore, a new error estimator was proposed to determine where to refine or coarsen the grid. This estimator was compared against other estimator used in the literature and it showed an improved performance. In order to provide equal order of accuracy in time as in space, the commonly used 3rd-order TVD Runge-Kutta (RK) scheme in the DG method was replaced in some cases by the Spectral Deferred Correction (SDC) technique. High orders in time were shown to only be required when the error in time is significant. For instance, convection-dominated compressible flows require for stability a time step much smaller than is required for accuracy, so in such cases 3rd-order TVD RK resulted to be more efficient than SDC with higher orders. All these new capabilities were included in DiGGIT and have provided a generalized approach capable of solving sub- and super-critical flows at sub- and super-sonic speeds, using a high-order scheme in space and time, and with AMR. Canonical test cases are presented to verify and validate the formulation in one, two, and three dimensions. Finally, the solver is applied to practical applications. Shock-bubble interaction is studied and the effect of the different thermodynamic closures is assessed. Interaction between single-drops and a wall is simulated. Sticking and the onset of splashing are observed. In addition, the solver is used to simulate turbulent flows, where the high-order of accuracy clearly shows its benefits. Finally, the methodology is challenged with the simulation of a liquid jet in cross flow.
APA, Harvard, Vancouver, ISO, and other styles
19

Cai, Shang-Gui. "Computational fluid-structure interaction with the moving immersed boundary method." Thesis, Compiègne, 2016. http://www.theses.fr/2016COMP2276/document.

Full text
Abstract:
Dans cette thèse, une nouvelle méthode de frontières immergées a été développée pour la simulation d'interaction fluide-structure, appelée la méthode de frontières immergées mobiles (en langage anglo-saxon: MIBM). L'objectif principal de cette nouvelle méthode est de déplacer arbitrairement les solides à géométrie complexe dans un fluide visqueux incompressible, sans remailler le domaine fluide. Cette nouvelle méthode a l'avantage d'imposer la condition de non-glissement à l'interface d'une manière exacte via une force sans introduire des constantes artificielles modélisant la structure rigide. Cet avantage conduit également à la satisfaction de la condition CFL avec un pas de temps plus grand. Pour un calcul précis de la force induite par les frontières mobiles, un système linéaire a été introduit et résolu par la méthode de gradient conjugué. La méthode proposée peut être intégrée facilement dans des solveurs résolvant les équations de Navier-Stokes. Dans ce travail la MIBM a été mise en œuvre en couplage avec un solveur fluide utilisant une méthode de projection adaptée pour obtenir des solutions d'ordre deux en temps et en espace. Le champ de pression a été obtenu par l'équation de Poisson qui a été résolue à l'aide de la méthode du gradient conjugué préconditionné par la méthode multi-grille. La combinaison de ces deux méthodes a permis un gain de temps considérable par rapport aux méthodes classiques de la résolution des systèmes linéaires. De plus le code de calcul développé a été parallélisé sur l'unité graphique GPU équipée de la bibliothèque CUDA pour aboutir à des hautes performances de calcul. Enfin, comme application de nos travaux sur la MIBM, nous avons étudié le couplage "fort" d'interaction fluide-structure (IFS). Pour ce type de couplage, un schéma implicite partitionné a été adopté dans lequel les conditions à l'interface sont satisfaites via un schéma de type "point fixe". Pour réduire le temps de calcul inhérent à cette application, un nouveau schéma de couplage a été proposé pour éviter la résolution de l'équation de Poisson durant les itérations du "point fixe". Cette nouvelle façon de résoudre les problèmes IFS a montré des performances prometteuses pour des systèmes en IFS complexe
In this thesis a novel non-body conforming mesh formulation is developed, called the moving immersed boundary method (MIBM), for the numerical simulation of fluid-structure interaction (FSI). The primary goal is to enable solids of complex shape to move arbitrarily in an incompressible viscous fluid, without fitting the solid boundary motion with dynamic meshes. This novel method enforces the no-slip boundary condition exactly at the fluid-solid interface with a boundary force, without introducing any artificial constants to the rigid body formulation. As a result, large time step can be used in current method. To determine the boundary force more efficiently in case of moving boundaries, an additional moving force equation is derived and the resulting system is solved by the conjugate gradient method. The proposed method is highly portable and can be integrated into any fluid solver as a plug-in. In the present thesis, the MIBM is implemented in the fluid solver based on the projection method. In order to obtain results of high accuracy, the rotational incremental pressure correction projection method is adopted, which is free of numerical boundary layer and is second order accurate. To accelerate the calculation of the pressure Poisson equation, the multi-grid method is employed as a preconditioner together with the conjugate gradient method as a solver. The code is further parallelized on the graphics processing unit (GPU) with the CUDA library to enjoy high performance computing. At last, the proposed MIBM is applied to the study of two-way FSI problem. For stability and modularity reasons, a partitioned implicit scheme is selected for this strongly coupled problem. The interface matching of fluid and solid variables is realized through a fixed point iteration. To reduce the computational cost, a novel efficient coupling scheme is proposed by removing the time-consuming pressure Poisson equation from this fixed point interaction. The proposed method has shown a promising performance in modeling complex FSI system
APA, Harvard, Vancouver, ISO, and other styles
20

Cureton, Christopher Wayne. "The implementation of four additional inviscid flux methods in the U²NCLE parallel unstructured Navier-Stokes solver." Master's thesis, Mississippi State : Mississippi State University, 2007. http://library.msstate.edu/etd/show.asp?etd=etd-04032007-221145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

El-Ibrahim, Salah Jamil Saleh. "Prediction of the effects of aerofoil surface irregularities at high subsonic speeds using the Viscous Garabedian and Korn (VKG) method." Thesis, University of Hertfordshire, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Tai, Anna On-No. "Simulating flow around deforming bodies with an element boundary method." Thesis, University of Bath, 2009. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.524058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Gao, Haotian. "POD-Galerkin based ROM for fluid flow with moving boundaries and the model adaptation in parametric space." Diss., Kansas State University, 2018. http://hdl.handle.net/2097/38776.

Full text
Abstract:
Doctor of Philosophy
Department of Mechanical and Nuclear Engineering
Mingjun Wei
In this study, a global Proper Orthogonal Decomposition (POD)-Galerkin based Reduced Order model (ROM) is proposed. It is extended from usual fixed-domain problems to more general fluid-solid systems with moving boundaries/interfaces. The idea of the extension is similar to the immersed boundary method in numerical simulations which uses embedded forcing terms to represent boundary motions and domain changes. This immersed boundary method allows a globally defined fixed domain including both fluid and solid, where POD-Galerkin projection can be directly applied. However, such a modified approach cannot get away with the unsteadiness of boundary terms which appear as time-dependent coefficients in the new Galerkin model. These coefficients need to be pre-computed for prescribed periodic motion, or worse, to be computed at each time step for non-prescribed (e.g. with fluid-structure interaction) or non-periodic situations. Though computational time for each unsteady coefficient is smaller than the coefficients in a typical Galerkin model, because the associated integration is only in the close neighborhood of moving boundaries. The time cost is still much higher than a typical Galerkin model with constant coefficients. This extra expense for moving-boundary treatment eventually undermines the value of using ROMs. An aggressive approach is to decompose the moving boundary/domain to orthogonal modes and derive another low-order model with fixed coefficients for boundary motion. With this domain decomposition, an approach including two coupled low-order models both with fixed coefficients is proposed. Therefore, the new global ROM with decomposed approach is more efficient. Though the model with the domain decomposition is less accurate at the boundary, it is a fair trade-off for the benefit on saving computational cost. The study further shows, however, that the most time-consuming integration in both approaches, which come from the unsteady motion, has almost negligible impact on the overall dynamics. Dropping these time-consuming terms reduces the computation cost by at least one order while having no obvious effect on model accuracy. Based on this global POD-Galerkin based ROM with forcing term, an improved ROM which can handle the parametric variation of body motions in a certain range is also presented. This study shows that these forcing terms not only represent the moving of the boundary, but also decouple the moving parameters from the computation of model coefficients. The decoupling of control parameters provides the convenience to adapt the model for the prediction on states under variation of control parameters. An improved ROM including a shit mode seems promising in model adaptation for typical problems in a fixed domain. However, the benefit from adding a shit mode to model diminishes when the method is applied to moving-boundary problems. Instead, a combined model, which integrates data from a different set of parameters to generate the POD modes, provides a stable and accurate ROM in a certain range of parametric space for moving-boundary problems. By introducing more data from a different set of parameters, the error of the new model can be further reduced. This shows that the combined model can be trained by introducing more and more information. With the idea of the combined model, the improved global ROM with forcing terms shows impressive capability to predict problems with different unknown moving parameters, and can be used in future parametric control and optimization problems.
APA, Harvard, Vancouver, ISO, and other styles
24

Katamine, Eiji, Hideyuki Azegami, and Akiyoshi Okitsu. "Shape Optimization Analysis of Flow Field : Growth-Strain Method Approach." 日本機械学会, 1994. http://hdl.handle.net/2237/12157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Thorne, Jonathan L. "Extensions of High-order Flux Correction Methods to Flows With Source Terms at Low Speeds." DigitalCommons@USU, 2015. https://digitalcommons.usu.edu/etd/4594.

Full text
Abstract:
A novel high-order finite volume scheme using flux correction methods in conjunction with structured finite difference schemes is extended to low Mach and incompressible flows on strand grids. Flux correction achieves high-order by explicitly canceling low-order truncation error terms in the finite volume cell. The flux correction method is applied in unstructured layers of the strand grid. The layers are then coupled together using a source term containing the derivatives in the strand direction. Proper source term discretization is verified. Strand-direction derivatives are obtained by using summation-by-parts operators for the first and second derivatives. A preconditioner is used to extend the method to low Mach and incompressible flows. We further extend the method to turbulent flows with the Spalart Allmaras model. We verify high-order accuracy via the method of manufactured solutions, method of exact solutions, and physical problems. Results obtained compare well to analytical solutions, numerical studies, and experimental data. It is foreseen that future application in the Naval field will be possible.
APA, Harvard, Vancouver, ISO, and other styles
26

Makgata, Katlego Webster. "Computational analysis and optimisation of the inlet system of a high-performance rally engine." Diss., Pretoria : [s.n.], 2005. http://upetd.up.ac.za/thesis/available/etd-01242006-123639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Boukanga, Noel Rupert Thierry. "Three dimensional modelling of generalized Newtonian fluids in domains including obstructions." Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/6936.

Full text
Abstract:
Three dimensional flow regimes are encountered in many types of industrial flow processes such as filtration, mixing, reaction engineering, polymerization and polymer forming as well as environmental systems. Thus, the analyses of phenomena involved fluid flow are of great importance and have been subject of numerous ongoing research projects. The analysis of these important phenomena can be conducted in laboratory through experiments or simply by using the emerging computational fluid dynamics (CFD) techniques. But when dealing with three dimensional fluid flow problems, the complexities encountered make the analysis via the traditional experimental techniques a daunting task. For this reason, researchers often prefer to use the CFD techniques which with some care taken, often produce accurate and stable results while maintaining cost as low as possible. Many CFD codes have been developed and tested in the past decades and the results have been successful and thus encouraging researchers to develop new codes and/or improve existing codes for the solutions of real world problems. In this present project, CFD techniques are used to simulate the fluid flow phenomena of interest by solving the flow governing equations numerically through the use of a personal computer. The aim of this present research is to develop a robust and reliable technique which includes a novel aspect for the solution of three dimensional generalized Newtonian fluids in domains including obstructions, and this must be done bearing in mind that both accuracy and cost efficiency have to be achieved. To this end, the finite element method (FEM) is chosen as the CFD computational method. There are many existing FEM techniques namely the streamline upwind Petrov-Galerkin methods, the streamline diffusion methods, the Taylor-Galerkin methods, among others. But after a thorough analysis of the physical conditions (geometries, governing equations, boundary conditions, assumptions …) of the fluid flow problems to be solve in this project, the appropriate scheme chosen is the UVWP family of the mixed finite element methods. It is scheme originally developed to solve two dimensional fluid flow problems but since the scheme produced accurate and stable results for two dimensional problems, then attempt is made in this present study to develop a new version of the UVWP scheme for the numerical analysis of three dimensional fluid flow problems. But, after some initial results obtained using the developed three dimensional scheme, investigations were made during the course of this study on how to speed up solutions' convergence without affecting the cost efficiency of the scheme. The outcomes of these investigations yield to the development of a novel scheme named the modified three dimensional UVWP scheme. Thus a computer model based on these two numerical schemes (UVWP and the Modified UVWP) is developed, tested, and validated through some benchmark problems, and then the model is used to solve some complicated tests problems in this study. Results obtained are accurate, and stable, moreover, the cost efficiency of the computer model must be mentioned because all the simulations carried out are done using a simple personal computer.
APA, Harvard, Vancouver, ISO, and other styles
28

Myers, Alexandra. "A computational study of the effect of cross wind on the flow of fire fighting agent." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Jun%5FMyers.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Åkerberg, Andreas. "CFD analyses of the gas flow inside the vessel of a hot isostatic press." Thesis, KTH, Kraft- och värmeteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-101168.

Full text
Abstract:
Hot isostatic pressing (HIP) is a thermal treatment method that is used to consolidate, densify or bondcomponents and materials. Argon gas is commonly used as the pressure medium and is isostaticallyapplied to the material with an excess pressure of 500-2000 bar and a temperature of 500-2200oC. WithHIP treatment being a well-established technology for the last decades, one is now striving to obtain anincreased understanding of local details in the internal gas flow and heat flux inside the HIP apparatus.The main objective of this work is to assess the potential of using computational fluid dynamics (CFD) asa reliable tool for future HIP development. Two simulations are being performed of which the first one isa steady-state analysis of a phase in the HIP-cycle called sustained state. The second simulation is atransient analysis, aiming to describe the cooling phase in the HIP-cycle. The most suitable modelingapproaches are determined through testing and evaluation of methods, models, discretization schemes andother solver parameters. To validate the sustained state simulation, the solution is compared tomeasurements of operating pressure, heat dissipation rate out through the HIP vessel and localtemperature by the vessel wall. However, no validation of the cooling simulations has been conducted. Asensitivity analysis was also performed, from which it could be established that a mesh refinement ofstrong temperature gradients resulted in an increase of wall heat dissipation rate by 1.8%. Both of thesimulation models have shown to yield satisfactory solutions that are consistent with the reality. With theachieved results, CFD has now been introduced into the HIP field and the presented modeling methodsmay serve as guidelines for future simulations.
APA, Harvard, Vancouver, ISO, and other styles
30

Shcherbakov, Victor. "Localised Radial Basis Function Methods for Partial Differential Equations." Doctoral thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-332715.

Full text
Abstract:
Radial basis function methods exhibit several very attractive properties such as a high order convergence of the approximated solution and flexibility to the domain geometry. However the method in its classical formulation becomes impractical for problems with relatively large numbers of degrees of freedom due to the ill-conditioning and dense structure of coefficient matrix. To overcome the latter issue we employ a localisation technique, namely a partition of unity method, while the former issue was previously addressed by several authors and was of less concern in this thesis. In this thesis we develop radial basis function partition of unity methods for partial differential equations arising in financial mathematics and glaciology. In the applications of financial mathematics we focus on pricing multi-asset equity and credit derivatives whose models involve several stochastic factors. We demonstrate that localised radial basis function methods are very effective and well-suited for financial applications thanks to the high order approximation properties that allow for the reduction of storage and computational requirements, which is crucial in multi-dimensional problems to cope with the curse of dimensionality. In the glaciology application we in the first place make use of the meshfree nature of the methods and their flexibility with respect to the irregular geometries of ice sheets and glaciers. Also, we exploit the fact that radial basis function methods are stated in strong form, which is advantageous for approximating velocity fields of non-Newtonian viscous liquids such as ice, since it allows to avoid a full coefficient matrix reassembly within the nonlinear iteration. In addition to the applied problems we develop a least squares radial basis function partition of unity method that is robust with respect to the node layout. The method allows for scaling to problem sizes of a few hundred thousand nodes without encountering the issue of large condition numbers of the coefficient matrix. This property is enabled by the possibility to control the coefficient matrix condition number by the rate of oversampling and the mode of refinement.
APA, Harvard, Vancouver, ISO, and other styles
31

MacLean, Matthew. "A Numerical Study of Internal Flow Effects on Skin Friction Gages." Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/27114.

Full text
Abstract:
This work examines the detailed flow characteristics of direct measuring skin friction gages with computational methods. This type of device uses a small movable head mounted flush to a wall such that the head is assumed to be exposed to the same shear stress from the flow as the surrounding wall. The force caused by the action of the shear stress on the head deflects a flexure system monitored by instruments such as strain gages mounted at the base of a beam. The goal of the study was to develop an understanding of the effects that the geometric design and installation parameters of the sensor have on the surrounding flow and the ability of the sensor to reflect the undisturbed shear stress value. Disruption of the external flow due to poor design and/or improper installation of the sensor can take the form of intrusion into the flow, recession into the wall, and/or tilted alignment of the sensor such that the head is not flat in the plane of the wall, as well as flow into or out of the small gap surrounding the sensing head. Further, the performance of a direct measuring skin friction sensor in the presence of a pressure gradient has always been a concern. These effects are studied here with a three-dimensional, Navier-Stokes code based on a finite element method technique. Numerical solutions for cases in which one or more design parameters were varied are shown for a variety of flow situations. These situations include: (a) a laminar fully-developed channel flow at a low Reynolds number, (b) a turbulent flat plate boundary layer flow at a high Reynolds number, and (c) strong favorable and adverse pressure gradient turbulent boundary layer flows created by converging and diverging channels at high Reynolds number. Reported results for all cases include detailed flow visualization and stress field imagery, and total surface forces on the sensing head and gage flexure. Under ideal circumstances, these total forces should reflect as accurately as possible the average value of undisturbed shear stress times the exposed sensing head area (the friction force). Any deviation from this value was considered an â errorâ in the simulated measurement. The laminar channel flow case with a strong favorable pressure gradient showed the importance of proper alignment of the sensor. Protrusion or recession of the sensing head proved to be the dominant effect on resulting forces seen by the gage, changing the output by up to 15% for head protrusion and 10% for head recession for misalignments up to +/-1% of the head diameter. The thickness of the lip on the edge of the head also proved to have a significant effect on the output, with a smaller lip thickness generally showing better performance than a large one. Zero lip thickness indicated accuracy to within 1% of the desired wall shear result, since the pressure differences had little influence on the sensing head. Finally, the assumption of a linear pressure variation from the surface to the cavity along the lip as has been suggested in the past was investigated. The results indicate that the linear assumption works well only for large ratios of lip thickness to gap size, a fact which is correlated with previous experimental results. For the turbulent external flat plate case, misalignment remained the dominant effect on the sensor response. Results indicated that, in general, protrusion is more costly than the same level of recession, and a protrusion of +1% of the head diameter was shown to cause in excess of 100% error in indicated wall shear output. Both protrusion and recession produced large variations in both force and moment on the sensing flexure, but the outcome was that for protrusion the errors caused by these two effects tended to sum together, while for recession they tended to partially cancel out. The gap size played an increased role in the high Reynolds number boundary layer cases. Gap sizes of 1.67% up to 6.67% of the head diameter were studied and were shown to produce output errors between 4% and 22% (with larger errors corresponding to larger gap sizes), thus showing the importance of minimizing the gap for high Reynolds number flows. The lip was shown to have no significant effect for a flow without a pressure gradient. Finally, the favorable and adverse pressure gradient flows showed reasonable performance of the skin friction gage. Errors in output were shown to be -6% for the favorable pressure gradient case and 17% for the adverse pressure gradient case. Only the baseline gage design was studied for these situations, but the results from the two cases indicate that further reducing the lip thickness may not improve the performance of the gage. The error in output was caused almost entirely by applied moment for the adverse pressure gradient, while the applied force and applied moment had a cancellation effect in the favorable pressure gradient case. As a general result, the use of computational fluid dynamics has been shown to be an effective tool in the design and analysis of skin friction gages. Using a computational approach has the advantage of being able to resolve the small, confined gap regions of the gage, providing information that has been shown to be unavailable from previous experimental studies. This work has contributed to a much better understanding of the detailed flow over, in, and around skin friction gages. This will lead to improved gage design and reduced uncertainty in these important measurements.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
32

Stewart, Dawn L. "Numerical Methods for Accurate Computation of Design Sensitivities." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30561.

Full text
Abstract:
This work is concerned with the development of computational methods for approximating sensitivities of solutions to boundary value problems. We focus on the continuous sensitivity equation method and investigate the application of adaptive meshing and smoothing projection techniques to enhance the basic scheme. The fundamental ideas are first developed for a one dimensional problem and then extended to 2-D flow problems governed by the incompressible Navier-Stokes equations. Numerical experiments are conducted to test the algorithms and to investigate the benefits of adaptivity and smoothing.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
33

Mokos, Athanasios Dorotheos. "Multi-phase modelling of violent hydrodynamics using Smoothed Particle Hydrodynamics (SPH) on Graphics Processing Units (GPUs)." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/multiphase-modelling-of-violent-hydrodynamics-using-smoothed-particle-hydrodynamics-sph-on-graphics-processing-units-gpus(a82b8187-f81a-400b-8bd2-9a74c502a953).html.

Full text
Abstract:
This thesis investigates violent air-water flows in two and three dimensions using a smoothed particle hydrodynamics (SPH) model accelerated using the parallel architecture of graphics processing units (GPUs). SPH is a meshless Lagrangian technique for CFD simulations, whose major advantage for multi-phase flows is that the highly nonlinear behaviour of the motion of the interface can be implicitly captured with a sharp interface. However, prior to this thesis performing multi-phase simulations of large scale air-water flows has been prohibitive due to the inherent high computational cost. The open source code DualSPHysics, a hybrid central processing unit (CPU) and GPU code, is heavily modified in order to be able to handle flows with multiple fluids by implementing a weakly compressible multi-phase model that is simple to implement on GPUs. The computational runtime shows a clear improvement over a conventional serial code for both two- and three dimensional cases enabling simulations with millions of particles. An investigation into different GPU algorithms focuses on optimising the multi-phase SPH implementation for the first time, leading to speedups of up to two orders of magnitude compared to a CPU-only simulation. Detailed comparison of different GPU algorithms reveals a further 12% improvement on the computational runtime. Enabling the modelling of cases with millions of fluid particles demonstrates some previously unreported problems regarding the simulation of the air phase. A new particle shifting algorithm has been proposed for multi-phase flows enabling the air, initially simulated as a highly compressible liquid, to expand rapidly as a gas and prevent the formation of unphysical voids. The new shifting algorithm is validated using dam break flows over a dry bed where good agreement is obtained with experimental data and reference solutions published in the literature. An improvement over a corresponding single-phase SPH simulation is also shown. Results for dam break flows over a wet bed are shown for different resolutions performing simulations that were unfeasible prior to the GPU multi-phase SPH code. Good agreement with the experimental results and a clear improvement over the single-phase model are obtained with the higher resolution showing closer agreement with the experimental results. Sloshing inside a rolling tank was also examined and was found to be heavily dependent on the viscosity model and the speed of sound of the phases. A sensitivity analysis was performed for a range of different values comparing the results to experimental data with the emphasis on the pressure impact on the wall. Finally, a 3-D gravity-driven flow where water is impacting an obstacle was studied comparing results with published experimental data. The height of the water at different points in the domain and the pressure on the side of the obstacle are compared to a state-of-the-art single-phase GPU SPH simulation. The results obtained were generally in good agreement with the experiment with closer results obtained for higher resolutions and showing an improvement on the single-phase model.
APA, Harvard, Vancouver, ISO, and other styles
34

Koc, Gencer. "Simulation Of Flow Transients In Liquid Pipeline Systems." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/2/12609018/index.pdf.

Full text
Abstract:
ABSTRACT SIMULATION OF FLOW TRANSIENTS IN LIQUID PIPELINE SYSTEMS Koç
, Genç
er M.S., Department of Mechanical Engineering Supervisor: Prof. Dr. O. Cahit Eralp November 2007, 142 pages In liquid pipeline systems, transient flow is the major cause of pipeline damages. Transient flow is a situation where the pressure and flow rate in the pipeline rapidly changes with time. Flow transients are also known as surge and Waterhammer which originates from the hammering sound of the water in the taps or valves. In liquid pipelines, preliminary design parameters are chosen for steady state operations, but a transient check is always necessary. There are various types of transient flow situations such as valve closures, pump trips and flow oscillations. During a transient flow, pressure inside the pipe may increase or decrease in an unexpected way that cannot be foreseen by a steady state analysis. Flow transients should be considered by a complete procedure that simulates possible transient flow scenarios and by the obtained results, precautions should be taken. There are different computational methods that can be used to solve and simulate flow transients in computer environment. All computational methods utilize basic v flow equations which are continuity and momentum equations. These equations are nonlinear differential equations and some mathematical tools are necessary to make these equations linear. In this thesis a computer program is coded that utilizes &ldquo
Method of Characteristics&rdquo
which is a numerical method in solving partial differential equations. In pipeline hydraulics, two partial differential equations, continuity and momentum equations are solved together, in order to obtain the pressure and flow rate values in the pipeline, during transient flow. In this thesis, MATLAB 7.1 is used as the programming language and obtained code is converted to a C# language to be able to integrate the core of the program with a user friendly Graphical User Interface (GUI). The Computer program is verified for different scenarios with the available real pipeline data and results of various reputable agencies. The output of the computer program is the tabulated pressure and flow rate values according to time indexes and graphical representations of these values. There are also prompts for users warning about possible dangerous operation modes of the pipeline components.
APA, Harvard, Vancouver, ISO, and other styles
35

Sjölund, Johannes. "Real-time Thermal Flow Predictions for Data Centers : Using the Lattice Boltzmann Method on Graphics Processing Units for Predicting Thermal Flow in Data Centers." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-70530.

Full text
Abstract:
The purpose of this master thesis is to investigate the usage of the Lattice Boltzmann Method (LBM) of Computational Fluid Dynamics (CFD) for real-time prediction of indoor air flows inside a data center module. Thermal prediction is useful in data centers for evaluating the placement of heat-generating equipment and air conditioning. To perform the simulation a program called RAFSINE was used, written by Nicholas Delbosc at the University of Leeds, which implemented LBM on Graphics Processing Units (GPUs) using NVIDIA CUDA. The program used the LBM model called Bhatnagar-Gross-Krook (BGK) on a 3D lattice and had the capability of executing thermal simulations in real-time or faster than real-time. This fast rate of execution means a future application for this simulation could be as a predictive input for automated air conditioning control systems, or for fast generation of training data sets for automatic fault detection systems using machine learning. In order to use the LBM CFD program even from hardware not equipped with NVIDIA GPUs it was deployed on a remote networked server accessed through Virtual Network Computing (VNC). Since RAFSINE featured interactive OpenGL based 3D visualization of thermal evolution, accessing it through VNC required use of the VirtualGL toolkit which allowed fast streaming of visualization data over the network. A simulation model was developed describing the geometry, temperatures and air flows of an experimental data center module at RISE SICS North in Luleå, Sweden, based on measurements and equipment specifications. It was then validated by comparing it with temperatures recorded from sensors mounted in the data center. The thermal prediction was found to be accurate on a room-level within ±1° C when measured as the average temperature of the air returning to the cooling units, with a maximum error of ±2° C on an individual basis. Accuracy at the front of the server racks varied depending on the height above the floor, with the lowest points having an average accuracy of ±1° C, while the middle and topmost points had an accuracy of ±2° C and ±4° C respectively. While the model had a higher error rate than the ±0.5° C accuracy of the experimental measurements, further improvements could allow it to be used as a testing ground for air conditioning control or automatic fault detection systems.
APA, Harvard, Vancouver, ISO, and other styles
36

Guarendi, Andrew N. "Numerical Investigations of Magnetohydrodynamic Hypersonic Flows." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1365985409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Rajaguru, Mudiyanselage Thilanki Maneesha Dahigamuwa. "Enhancement of Rainfall-Triggered Shallow Landslide Hazard Assessment at Regional and Site Scales Using Remote Sensing and Slope Stability Analysis Coupled with Infiltration Modeling." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7562.

Full text
Abstract:
Landslides cause significant damage to property and human lives throughout the world. Rainfall is the most common triggering factor for the occurrence of landslides. This dissertation presents two novel methodologies for assessment of rainfall-triggered shallow landslide hazard. The first method focuses on using remotely sensed soil moisture and soil surface properties in developing a framework for real-time regional scale landslide hazard assessment while the second method is a deterministic approach to landslide hazard assessment of the specific sites identified during first assessment. In the latter approach, landslide inducing transient seepage in soil during rainfall and its effect on slope stability are modeled using numerical analysis. Traditionally, the prediction of rainfall-triggered landslides has been performed using pre-determined rainfall intensity-duration thresholds. However, it is the infiltration of rainwater into soil slopes which leads to an increase of porewater pressure and destruction of matric suction that causes a reduction in soil shear strength and slope instability. Hence, soil moisture, pore pressure and infiltration properties of soil must be direct inputs to reliable landslide hazard assessment methods. In-situ measurement of pore pressure for real-time landslide hazard assessment is an expensive endeavor and thus, the use of more practical remote sensing of soil moisture is constantly sought. In past studies, a statistical framework for regional scale landslide hazard assessment using remotely sensed soil moisture has not been developed. Thus, the first major objective of this study is to develop a framework for using downscaled remotely sensed soil moisture available on a daily basis to monitor locations that are highly susceptible to rainfall- triggered shallow landslides, using a well-structured assessment procedure. Downscaled soil moisture, the relevant geotechnical properties of saturated hydraulic conductivity and soil type, and the conditioning factors of elevation, slope, and distance to roads are used to develop an improved logistic regression model to predict the soil slide hazard of soil slopes using data from two geographically different regions. A soil moisture downscaling model with a proven superior prediction accuracy than the downscaling models that have been used in previous landslide studies is employed in this study. Furthermore, this model provides satisfactory classification accuracy and performs better than the alternative water drainage-based indices that are conventionally used to quantify the effect that elevated soil moisture has upon the soil sliding. Furthermore, the downscaling of soil moisture content is shown to improve the prediction accuracy. Finally, a technique that can determine the threshold probability for identifying locations with a high soil slide hazard is proposed. On the other hand, many deterministic methods based on analytical and numerical methodologies have been developed in the past to model the effects of infiltration and subsequent transient seepage during rainfall on the stability of natural and manmade slopes. However, the effects of continuous interplay between surface and subsurface water flows on slope stability is seldom considered in the above-mentioned numerical and analytical models. Furthermore, the existing seepage models are based on the Richards equation, which is derived using Darcy’s law, under a pseudo-steady state assumption. Thus, the inertial components of flow have not been incorporated typically in modeling the flow of water through the subsurface. Hence, the second objective of this study is to develop a numerical model which has the capability to model surface, subsurface and infiltration water flows based on a unified approach, employing fundamental fluid dynamics, to assess slope stability during rainfall-induced transient seepage conditions. The developed model is based on the Navier-Stokes equations, which possess the capability to model surface, subsurface and infiltration water flows in a unified manner. The extended Mohr-Coulomb criterion is used in evaluating the shear strength reduction due to infiltration. Finally, the effect of soil hydraulic conductivity on slope stability is examined. The interplay between surface and subsurface water flows is observed to have a significant impact on slope stability, especially at low hydraulic conductivity values. The developed numerical model facilitates site-specific calibration with respect to saturated hydraulic conductivity, remotely sensed soil moisture content and rainfall intensity to predict landslide inducing subsurface pore pressure variations in real time.
APA, Harvard, Vancouver, ISO, and other styles
38

Suo, Jin. "Investigation of blood flow patterns and hemodynamics in the human ascending aorta and major trunks of right and left coronary arteries using magnetic resonance imaging and computational fluid dynamics." Diss., Available online, Georgia Institute of Technology, 2005, 2005. http://etd.gatech.edu/theses/available/etd-01192005-121529/unrestricted/suo%5Fjin%5F200505%5Fphd.pdf.

Full text
Abstract:
Thesis (Ph. D.)--Biomedical Engineering, Georgia Institute of Technology, 2005.
Giddens, P. Don, Committee Chair ; Vito, P. Raymond, Committee Member ; Taylor, Robert, W., Committee Member ; Oshinski, John, Committee Member ; Bao, Gang, Committee Member. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
39

Volk, Annette. "Quantification of Numerical and Modeling Errors in Simulation of Fluid Flow through a Fixed Particle Bed." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1448275079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Volk, Annette. "Quantification and Assessment of Numerical Error in Coupled Computational Fluid Dynamics - Discrete Element Method Simulations of Gas Flow through Granular Solids." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1543139366302536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Amoignon, Olivier. "Numerical Methods for Aerodynamic Shape Optimization." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bourg, David M. "Development of the Distributed Points Method with Application to Cavitating Flow." ScholarWorks@UNO, 2008. http://scholarworks.uno.edu/td/904.

Full text
Abstract:
A mesh-less method for solving incompressible, multi-phase flow problems has been developed and is discussed along with the presentation of benchmark results showing good agreement with theoretical and experimental results. Results of a systematic, parametric study of the single phase flow around a 2D circular cylinder at Reynolds numbers up to 1000 are presented and discussed. Simulation results show good agreement with experimental results. Extension of the method to deal with multiphase flow including liquid-to-vapor phase transition along with applications to cavitating flow are discussed. Insight gleaned from numerical experiments of the cavity closure problem are discussed along with recommendations for additional research. Several conclusions regarding the use of the method are made.
APA, Harvard, Vancouver, ISO, and other styles
43

Kilimnik, Alexander. "Cross stream migration of compliant capsules in microfluidic channels." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43669.

Full text
Abstract:
An understanding of the motion of soft capsules in microchannels is useful for a number applications. This knowledge can be used to develop devices to sort biological cells based on their size and stiffness. For example, cancer cells have a different stiffness from healthy cells and thus can be readily identified. Additionally, devices can be developed to detect flaws in synthetic particles. Using a 3D hybrid lattice Boltzmann and lattice spring method, the motion of rigid and soft capsules in a pressure-driven microfluidic flow was probed. The effect of inertial drift is evaluated in channels different Reynolds numbers. Other system parameters such as capsule elasticity and channel size are also varied to determine their effect. The equilibrium position of capsules in the channel is also obtained. The equilibrium position of rigid and soft capsules depends on the relative particle size. If the capsule is small, the equilibrium position is found to be closer to the channel wall. Conversely, for larger capsules, the equilibrium position is closer to the channel centerline. The capsule stiffness affects the magnitude of the cross-stream drift velocity. For a given Reynolds number, the equilibrium position of softer capsules is closer to the channel centerline. However, It is found that the equilibrium position of soft capsules is insensitive to the magnitude of the Reynolds number.
APA, Harvard, Vancouver, ISO, and other styles
44

Serson, Douglas. "Numerical study of wings with wavy leading and trailing edges." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/3/3150/tde-03032017-110359/.

Full text
Abstract:
Inspired by the pectoral flippers of the humpback whale, the use of spanwise waviness in wings has been considered in the literature as a possible way of delaying the stall, and possibly also reducing the drag coefficient, allowing for improved aerodynamic characteristics. In order to provide a better understanding of this flow control mechanism, the present work investigates numerically the effect of the waviness on the flow around infinite wings with a NACA0012 profile. The study consists of direct numerical simulations employing the spectral/hp method, which is available through the nektar++ library. Considering the high computational cost of the simulations performed, several improvements were introduced to the method, making it more efficient and allowing higher Reynolds numbers to be analysed. These improvements to the method include a coordinate transformation technique to treat the waviness, changes to the parallelism strategy, and an adaptive polynomial order refinement procedure. Initially, simulations were performed for a very low value of the Reynolds number Re = 1, 000, allowing the three-dimensional flow structures to be observed in de- tail. In this case, the results show that the waviness leads to a decrease in the lift-to-drag ratio, accompanied by a strong reduction in the fluctuations of the lift force. The reduction in the lift-to-drag ratio is the combined effect of lower drag and lift forces, and is associated with a regime where the flow remains attached behind the peaks of the leading edge while there are distinct regions of flow separation behind the troughs. Then, simulations with Re = 10, 000 were considered. For high angles of attack, the results for this case are similar to the lower Re, with the waviness leading to separation behind the troughs and reducing both the lift and the drag. However, for a lower angle of attack the waviness leads to a large increase in the lift coefficient. This was observed to be related to the fact that flow around the straight wing is laminar in this case, with the waviness inducing transition to a turbulent state. Finally, the case Re = 50, 000 was considered, with the results showing a good agreement with experiments presented in the literature.
Inspirado na nadadeira peitoral da baleia jubarte, o uso de ondulações ao longo da envergadura de asas tem sido considerado na literatura como uma possível maneira de atrasar o estol, e possivelmente também reduzir o arrasto, levando a melhores características aerodinâmicas. Com o objetivo de obter um melhor entendimento desse mecanismo de controle do escoamento, o presente trabalho investiga numericamente o efeito de ondulações no escoamento ao redor de asas infinitas com o perfil NACA0012. O estudo consiste de simulações diretas do escoamento usando o método espectral/hp, que está disponível através da biblioteca nektar++. Considerando o alto custo computacional das simulações realizadas, diversas melhorias foram introduzidas no método, tornando-o mais eficiente e permitindo que números de Reynolds mais elevados fossem analisados. Essas melhorias ao método incluem uma técnica de mudança de coordenadas para tratar a ondulação, mudanças na estratégia de paralelismo e um procedimento de refinamento usando ordem polinomial variável. Inicialmente, simulações foram realizadas para um número de Reynolds muito baixo Re = 1, 000, o que permitiu observar as estruturas tridimensionais do escoamento em detalhe. Nesse caso, os resultados mostram que a ondulação leva a uma diminuição da razão sustentação-arrasto, combinada com uma forte redução das flutuações da força de sustentação. A redução da razão sustentação-arrasto é consequência de uma combinação de arrasto e sustentação mais baixos e está associada a um regime no qual o escoamento permanece colado atrás dos picos do bordo de ataque, enquanto que regiões distintas de escoamento separado estão presentes atrás dos vales. Em seguida, simulações com Re = 10, 000 foram consideradas. Para ângulos de ataque elevados, os resultados neste caso são similares àqueles com Re mais baixo, com a ondulação levando a separação atrás dos vales e provocando reduções na sustentação e no arrasto. No entanto, para um ângulo de ataque mais baixo a ondulação leva a um grande aumento na força de sustentação. Foi observado que isso está relacionado ao fato de que o escoamento ao redor da asa lisa é laminar neste caso, com a ondulação induzindo a transição para um estado turbulento. Finalmente, o caso Re = 50, 000 foi considerado, com os resultados apresentando uma boa concordância com experimentos apresentados na literatura.
APA, Harvard, Vancouver, ISO, and other styles
45

Ravikumar, Devaki. "2D Compressible Viscous Flow Computations Using Acoustic Flux Vector Splitting (AFVS) Scheme." Thesis, Indian Institute of Science, 2001. http://hdl.handle.net/2005/277.

Full text
Abstract:
The present work deals with the extension of Acoustic Flux Vector Splitting (AFVS) scheme for the Compressible Viscous flow computations. Accurate viscous flow computations require much finer grids with adequate clustering of grid points in certain regions. Viscous flow computations are performed on unstructured triangulated grids. Solving Navier-Stokes equations involves the inviscid Euler part and the viscous part. The inviscid part of the fluxes are computed using the Acoustic Flux Vector Splitting scheme and the viscous part which is diffusive in nature does not require upwinding and is taken care using a central difference type of scheme. For these computations both the cell centered and the cell vertex finite volume methods are used. Higher order accuracy on unstructured meshes is achieved using the reconstruction procedure. Test cases are chosen in such a way that the performance of the scheme can be evaluated for different range of mach numbers. We demonstrate that higher order AFVS scheme in conjunction with a suitable grid adaptation strategy produce results that compare well with other well known schemes and the experimental data. An assessment of the relative performance of the AFVS scheme with the Roe scheme is also presented.
APA, Harvard, Vancouver, ISO, and other styles
46

Pretorius, Johannes Jacobus. "A network approach for the prediction of flow and flow splits within a gas turbine combustor." Diss., University of Pretoria, 2005. http://hdl.handle.net/2263/26712.

Full text
Abstract:
The modern gas turbine engine industry needs a simpler and faster method to facilitate the design of gas turbine combustors due to the enormous costs of experimental test rigging and detailed computational fluid dynamics (CFD) simulations. Therefore, in the initial design phase, a couple of preliminary designs are conducted to establish initial values for combustor performance and geometric characteristics. In these preliminary designs, various one-dimensional models using analytical and empirical formulations may be used. One of the disadvantages of existing models is that they are typically geometric dependant, i.e. they apply only to the geometry they are derived for. Therefore the need for a more versatile design tool exists. In this work, which constitutes the first step in the development of such a versatile design tool, a single equation-set network simulation model to describe both steady state compressible and incompressible isothermal flow is developed. The continuity and momentum equations are solved through a hybrid type network model analogy which makes use of the SIMPLE pressure correction methodology. The code has the capability to efficiently compute flow through elements where the loss factor K is highly flow dependant and accurately describes variable area duct flow in the case of incompressible flow. The latter includes ducts with discontinuously varying flow sectional areas. Proper treatment of flow related non-linearities, such as flow friction, is facilitated in a natural manner in the proposed methodology. The proposed network method is implemented into a Windows based simulation package with a user interface. The ability of the proposed method to accurately model both compressible and incompressible flow is demonstrated through the analyses of a number of benchmark problems. It will be shown that the proposed methodology yields similar or improved results as compared to other’s work. The proposed method is applied to a research combustor to solve for isothermal flows and flow splits. The predicted flows were in relatively close agreement with measured data as well as detailed CFD analysis.
Dissertation (MEng (Mechanical Engineering))--University of Pretoria, 2005.
Mechanical and Aeronautical Engineering
unrestricted
APA, Harvard, Vancouver, ISO, and other styles
47

Vanon, Riccardo. "Zonal flows in accretion discs and their role in gravito-turbulence." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267991.

Full text
Abstract:
This thesis focuses on the evolution of zonal flows in self-gravitating accretion discs and their resulting effect on disc stability; it also studies the process of disc gravito-turbulence, with particular emphasis given to the way the turbulent state is able to extract energy from the background flow and sustain itself by means of a feedback. Chapters 1 and 2 provide an overview of systems involving accretion discs and a theoretical introduction to the theory of accretion discs, along with potential methods of angular momentum transport to explain the observed accretion rates. To address the issue of the gravito-turbulence self-sustenance, a compressible non-linear spectral code (dubbed CASPER) was developed from scratch in C; its equations and specifications are laid out in Chapter 3. In Chapter 4 an ideal (no viscosities or cooling) linear stability analysis to non-axisymmetric perturbations is carried out when a zonal flow is present in the flow. This yields two instabilities: a Kelvin-Helmholtz instability (active only if the zonal flow wavelength is sufficiently small) and one driven by self-gravity. A stability analysis of the zonal flow itself is carried out in Chapter 5 by means of an axisymmetric linear analysis, using non-ideal conditions. This considers instability due to both density wave modes (which give rise to overstability) and slow modes (which result in thermal or viscous instability) and, thanks a different perturbation wavelength regime, represents an extension to the classical theory of thermal and viscous instabilities. The slow mode instability is found to be aided by high Prandtl numbers and adiabatic index γ values, while quenched by fast cooling. The overstability is likewise stabilised by fast cooling, and occurs in a non-self-gravitational regime only if γ ≲ 1.305. Lastly, Chapter 6 illustrates the results of the non-linear simulations carried out using the CASPER code. Here the system settles into a state of gravito-turbulence, which appears to be linked to a spontaneously-developing zonal flow. Results show that this zonal flow is driven by the slow mode instability discussed in Chapter 5, and that the presence of zonal flows triggers a non-axisymmetric instability, as seen in Chapter 4. The role of the latter is to constrain the zonal flow amplitude, with the resulting zonal flow disruption providing a generation of shearing waves which permits the self-sustenance of the turbulent state.
APA, Harvard, Vancouver, ISO, and other styles
48

Suzuki, Kosuke. "An immersed boundary-lattice Boltzmann method for moving boundary flows and its application to flapping flight." 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/188584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hodapp, Maximilian Joachim. "Modelagem e simulação de um leito fluidizado : um estudo comparativo." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266452.

Full text
Abstract:
Orientador: Milton Mori
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-12T20:09:08Z (GMT). No. of bitstreams: 1 Hodapp_MaximilianJoachim_M.pdf: 3485880 bytes, checksum: 79b4777bac2b444262795c5ddaaa44ac (MD5) Previous issue date: 2009
Resumo: O objetivo deste trabalho foi o estudo comparativo de duas modelagens para representação de um escoamento gás-sólido. Na primeira modelagem avaliou-se uma correlação de arraste apresentada recentemente na literatura, baseada em simulações lattice Boltzmann, aplicada a escoamentos gás-sólido. Na segunda observou-se o efeito da variação do coeficiente de especularidade na condição de contorno na parede sobre os perfis de velocidade da fase particulada. Grande atenção tem sido dada a modelagem matemática de escoamentos multifásicos, em especial ao gás-sólido, uma vez que vários processos industriais utilizam-se desta operação. Porém o desenvolvimento de modelos analíticos que incluam todos os fenômenos de transferência de massa, energia e quantidade de movimento não encontra-se disponível, devido principalmente a grande complexidade dos fenômenos envolvidos. Neste aspecto a fluidodinâmica computacional (CFD) tem demonstrado ser uma boa alternativa para o estudo de sistemas complexos, sendo diversos estudos, não somente de engenharia, aplicando esta técnica, publicados todos os anos. Como forma de validar os resultados obtidos por este método numérico, escolheu-se um caso de estudo em escala de laboratório. Os softwares comerciais ANSYS CFX 10 e FLUENT 6.3 foram utilizados para a definição e resolução do problema, além do pós-processamento. Os resultados obtidos foram comparados com os dados numéricos de um trabalho de mestrado do PQGe, bem como com dados experimentais da literatura. Pode-se perceber que os resultados, para a primeira abordagem não apresentaram melhoras em relação a outras modelagens das forças entre e intra-partículas, além do maior tempo computacional requerido. A segunda abordagem demonstrou valores adequados para o coeficiente estudado
Abstract: The aim of this work was a comparative study of two different modeling to represent a gas-solid flow. The first approach consists of a new drag correlation presented in the literature. This relation was obtained through lattice Boltzmann simulations of gas-solid flow, thus not depending on empirical data. The second looked for the effects of the variation of the specularity coefficient at the wall boundary condition. Multiphase flow modeling is gathering great attention, especially to gas-solid flows, due to its importance in industrial processes. However analytical models that take into account the mass, momentum and energy transfers are not available, mainly because of the complexities evolved in such systems. Therefore Computational Fluid Dynamics (CFD) has proved to be a viable alternative, having a large number of scientific works been published in recent years. In order to validate the results a comparison with other simulations using different modeling, done by another member of the PQGe laboratory, and with experimental data was carried out. The commercial softwares ANSYS CFX 10 and FLUENT 6.3 were used to define and numerically solve the problem, also to post process the results. For the first approach, the comparison showed that the studied drag correlation gave no improvement upon the other two models analyzed. Also a longer computational time was required, which can not be ignored as an important parameter in CFD simulations. As for the second approach, it was possible to obtain adequate values for the specularity coefficient
Mestrado
Desenvolvimento de Processos Químicos
Mestre em Engenharia Química
APA, Harvard, Vancouver, ISO, and other styles
50

YAMAMOTO, Kazuhiro, and 和弘 山本. "メタルハニカム内のディーゼル微粒子燃焼シミュレーション." 一般社団法人 日本機械学会, 2008. http://hdl.handle.net/2237/19798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography