Academic literature on the topic 'Computational methods in fluid flow'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Computational methods in fluid flow.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Computational methods in fluid flow"

1

Peyret, Roger, Thomas D. Taylor, and Stanley A. Berger. "Computational Methods for Fluid Flow." Physics Today 39, no. 7 (July 1986): 70–71. http://dx.doi.org/10.1063/1.2815085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

ILIE, Marcel, Augustin Semenescu, Gabriela Liliana STROE, and Sorin BERBENTE. "NUMERICAL COMPUTATIONS OF THE CAVITY FLOWS USING THE POTENTIAL FLOW THEORY." ANNALS OF THE ACADEMY OF ROMANIAN SCIENTISTS Series on ENGINEERING SCIENCES 13, no. 2 (2021): 78–86. http://dx.doi.org/10.56082/annalsarscieng.2021.2.78.

Full text
Abstract:
Computational fluid dynamics of turbulent flows requires large computational resources or are not suitable for the computations of transient flows. Therefore methods such as Reynolds-averaged Navier-Stokes equations are not suitable for the computation of transient flows. The direct numerical simulation provides the most accurate solution, but it is not suitable for high-Reynolds number flows. Large-eddy simulation (LES) approach is computationally less demanding than the DNS but still computationally expensive. Therefore, alternative computational methods must be sought. This research concerns the modelling of inviscid incompressible cavity flow using the potential flow. The numerical methods employed the finite differences approach. The time and space discretization is achieved using second-order schemes. The studies reveal that the finite differences approach is a computationally efficient approach and large computations can be performed on a single computer. The analysis of the flow physics reveals the presence of the recirculation region inside the cavity as well at the corners of the cavity
APA, Harvard, Vancouver, ISO, and other styles
3

TAKIZAWA, KENJI, and TAYFUN E. TEZDUYAR. "SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS." Mathematical Models and Methods in Applied Sciences 22, supp02 (July 25, 2012): 1230001. http://dx.doi.org/10.1142/s0218202512300013.

Full text
Abstract:
Since its introduction in 1991 for computation of flow problems with moving boundaries and interfaces, the Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) formulation has been applied to a diverse set of challenging problems. The classes of problems computed include free-surface and two-fluid flows, fluid–object, fluid–particle and fluid–structure interaction (FSI), and flows with mechanical components in fast, linear or rotational relative motion. The DSD/SST formulation, as a core technology, is being used for some of the most challenging FSI problems, including parachute modeling and arterial FSI. Versions of the DSD/SST formulation introduced in recent years serve as lower-cost alternatives. More recent variational multiscale (VMS) version, which is called DSD/SST-VMST (and also ST-VMS), has brought better computational accuracy and serves as a reliable turbulence model. Special space–time FSI techniques introduced for specific classes of problems, such as parachute modeling and arterial FSI, have increased the scope and accuracy of the FSI modeling in those classes of computations. This paper provides an overview of the core space–time FSI technique, its recent versions, and the special space–time FSI techniques. The paper includes test computations with the DSD/SST-VMST technique.
APA, Harvard, Vancouver, ISO, and other styles
4

Bazilevs, Yuri, Kenji Takizawa, and Tayfun E. Tezduyar. "Computational analysis methods for complex unsteady flow problems." Mathematical Models and Methods in Applied Sciences 29, no. 05 (May 2019): 825–38. http://dx.doi.org/10.1142/s0218202519020020.

Full text
Abstract:
In this lead paper of the special issue, we provide a brief summary of the stabilized and multiscale methods in fluid dynamics. We highlight the key features of the stabilized and multiscale scale methods, and variational methods in general, that make these approaches well suited for computational analysis of complex, unsteady flows encountered in modern science and engineering applications. We mainly focus on the recent developments. We discuss application of the variational multiscale (VMS) methods to fluid dynamics problems involving computational challenges associated with high-Reynolds-number flows, wall-bounded turbulent flows, flows on moving domains including subdomains in relative motion, fluid–structure interaction (FSI), and complex-fluid flows with FSI.
APA, Harvard, Vancouver, ISO, and other styles
5

Dukowicz, John K. "A review of: Computational methods for fluid flow." Transport Theory and Statistical Physics 14, no. 3 (August 1985): 383–84. http://dx.doi.org/10.1080/00411458508211683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Welss, N. O. "A review of: “Computational methods for fluid flow”." Geophysical & Astrophysical Fluid Dynamics 31, no. 3-4 (February 1985): 346–48. http://dx.doi.org/10.1080/03091928508219275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alves, M. A., P. J. Oliveira, and F. T. Pinho. "Numerical Methods for Viscoelastic Fluid Flows." Annual Review of Fluid Mechanics 53, no. 1 (January 5, 2021): 509–41. http://dx.doi.org/10.1146/annurev-fluid-010719-060107.

Full text
Abstract:
Complex fluids exist in nature and are continually engineered for specific applications involving the addition of macromolecules to a solvent, among other means. This imparts viscoelasticity to the fluid, a property responsible for various flow instabilities and major modifications to the fluid dynamics. Recent developments in the numerical methods for the simulation of viscoelastic fluid flows, described by continuum-level differential constitutive equations, are surveyed, with a particular emphasis on the finite-volume method. This method is briefly described, and the main benchmark flows currently used in computational rheology to assess the performance of numerical methods are presented. Outstanding issues in numerical methods and novel and challenging applications of viscoelastic fluids, some of which require further developments in numerical methods, are discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

Lyu, Chaoyang, Wei Li, Mathieu Desbrun, and Xiaopei Liu. "Fast and versatile fluid-solid coupling for turbulent flow simulation." ACM Transactions on Graphics 40, no. 6 (December 2021): 1–18. http://dx.doi.org/10.1145/3478513.3480493.

Full text
Abstract:
The intricate motions and complex vortical structures generated by the interaction between fluids and solids are visually fascinating. However, reproducing such a two-way coupling between thin objects and turbulent fluids numerically is notoriously challenging and computationally costly: existing approaches such as cut-cell or immersed-boundary methods have difficulty achieving physical accuracy, or even visual plausibility, of simulations involving fast-evolving flows with immersed objects of arbitrary shapes. In this paper, we propose an efficient and versatile approach for simulating two-way fluid-solid coupling within the kinetic (lattice-Boltzmann) fluid simulation framework, valid for both laminar and highly turbulent flows, and for both thick and thin objects. We introduce a novel hybrid approach to fluid-solid coupling which systematically involves a mesoscopic double-sided bounce-back scheme followed by a cut-cell velocity correction for a more robust and plausible treatment of turbulent flows near moving (thin) solids, preventing flow penetration and reducing boundary artifacts significantly. Coupled with an efficient approximation to simplify geometric computations, the whole boundary treatment method preserves the inherent massively parallel computational nature of the kinetic method. Moreover, we propose simple GPU optimizations of the core LBM algorithm which achieve an even higher computational efficiency than the state-of-the-art kinetic fluid solvers in graphics. We demonstrate the accuracy and efficacy of our two-way coupling through various challenging simulations involving a variety of rigid body solids and fluids at both high and low Reynolds numbers. Finally, comparisons to existing methods on benchmark data and real experiments further highlight the superiority of our method.
APA, Harvard, Vancouver, ISO, and other styles
9

Acharya, S., B. R. Baliga, K. Karki, J. Y. Murthy, C. Prakash, and S. P. Vanka. "Pressure-Based Finite-Volume Methods in Computational Fluid Dynamics." Journal of Heat Transfer 129, no. 4 (January 7, 2007): 407–24. http://dx.doi.org/10.1115/1.2716419.

Full text
Abstract:
Pressure-based finite-volume techniques have emerged as the methods of choice for a wide variety of industrial applications involving incompressible fluid flow. In this paper, we trace the evolution of this class of solution techniques. We review the basics of the finite-volume method, and trace its extension to unstructured meshes through the use of cell-based and control-volume finite-element schemes. A critical component of the solution of incompressible flows is the issue of pressure-velocity storage and coupling. The development of staggered-mesh schemes and segregated solution techniques such as the SIMPLE algorithm are reviewed. Co-located storage schemes, which seek to replace staggered-mesh approaches, are presented. Coupled multigrid schemes, which promise to replace segregated-solution approaches, are discussed. Extensions of pressure-based techniques to compressible flows are presented. Finally, the shortcomings of existing techniques and directions for future research are discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Saye, Robert. "Interfacial gauge methods for incompressible fluid dynamics." Science Advances 2, no. 6 (June 2016): e1501869. http://dx.doi.org/10.1126/sciadv.1501869.

Full text
Abstract:
Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Computational methods in fluid flow"

1

Zeybek, Birol. "Numerical simulation of flow induced by a spinning sphere using spectral methods." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1997. http://handle.dtic.mil/100.2/ADA331206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pitman, Mark William. "An investigation of flow structure interactions on a finite compliant surface using computational methods." Thesis, Curtin University, 2007. http://hdl.handle.net/20.500.11937/625.

Full text
Abstract:
A study of the interaction of one-sided flow over a compliant surface is presented. When fluid passes over a flexible surface the simultaneous interaction between the flow and structure gives rise to vibrations and instabilities on the surface as well as in the fluid. The fluid-structure interaction (FSI) has potential to be used in the control of boundary layer dynamics to achieve drag reduction through transition delay. The modelling and control of FSI systems apply to many fields of engineering beyond drag reduction, for example: the modelling and analysis of biomechanical systems; natural environmental systems; aero-elastics; and other areas where flow interacts moving or compliant boundaries. The investigation is performed through numerical simulation. This returns more detail than could be resolved through experiments, while also permitting the study of finite compliant surfaces that are prohibitively difficult, or impossible, to study with analytical techniques. In the present work, novel numerical modelling methods are developed from linear system analysis through to nonlinear disturbances and viscous effects.Two numerical modelling techniques are adopted to approach the analysis of the FSI system. A potential-flow method is used for the modelling of flows in the limit of infinite Reynolds numbers, while a grid-free Discrete Vortex Method (DVM) is used for the modelling of the rotational boundary-layer flow at moderate Reynolds numbers. In both inviscid and viscous studies, significant contributions are made to the numerical modelling techniques. The application of these methods to the study of flow over compliant panels gives new insight to the nature of the FSI system. In the linear inviscid model, a novel hybrid computational/theoretical method is developed that evaluates the eigenvalues and eigenmodes from a discretised FSI system. The results from the non-linear inviscid model revealed that the steady-state of the non-linear wall motion is independent of initial excitation. For the viscous case, the first application of a DVM to model the interaction of a viscous, rotational flow with a compliant surface is developed. This DVM is successfully applied to model boundary-layer flow over a finite compliant surface.
APA, Harvard, Vancouver, ISO, and other styles
3

Rudgyard, Michael A. "Cell vertex methods for compressible gas flows." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Robbins, David James. "Development of computational fluid dynamics methods for low-speed flows." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

MazHer, A. Hamid K. "A computational method for three dimensional, internal viscous flows with separation and secondary flow patterns." Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/12338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pitman, Mark William. "An investigation of flow structure interactions on a finite compliant surface using computational methods." Curtin University of Technology, Department of Mechanical Engineering, 2007. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=17209.

Full text
Abstract:
A study of the interaction of one-sided flow over a compliant surface is presented. When fluid passes over a flexible surface the simultaneous interaction between the flow and structure gives rise to vibrations and instabilities on the surface as well as in the fluid. The fluid-structure interaction (FSI) has potential to be used in the control of boundary layer dynamics to achieve drag reduction through transition delay. The modelling and control of FSI systems apply to many fields of engineering beyond drag reduction, for example: the modelling and analysis of biomechanical systems; natural environmental systems; aero-elastics; and other areas where flow interacts moving or compliant boundaries. The investigation is performed through numerical simulation. This returns more detail than could be resolved through experiments, while also permitting the study of finite compliant surfaces that are prohibitively difficult, or impossible, to study with analytical techniques. In the present work, novel numerical modelling methods are developed from linear system analysis through to nonlinear disturbances and viscous effects.
Two numerical modelling techniques are adopted to approach the analysis of the FSI system. A potential-flow method is used for the modelling of flows in the limit of infinite Reynolds numbers, while a grid-free Discrete Vortex Method (DVM) is used for the modelling of the rotational boundary-layer flow at moderate Reynolds numbers. In both inviscid and viscous studies, significant contributions are made to the numerical modelling techniques. The application of these methods to the study of flow over compliant panels gives new insight to the nature of the FSI system. In the linear inviscid model, a novel hybrid computational/theoretical method is developed that evaluates the eigenvalues and eigenmodes from a discretised FSI system. The results from the non-linear inviscid model revealed that the steady-state of the non-linear wall motion is independent of initial excitation. For the viscous case, the first application of a DVM to model the interaction of a viscous, rotational flow with a compliant surface is developed. This DVM is successfully applied to model boundary-layer flow over a finite compliant surface.
APA, Harvard, Vancouver, ISO, and other styles
7

Gariba, Munir Antonio. "Visualisation methods for the analysis of blood flow using magnetic resonance imaging and computational fluid dynamics." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Peña, Monferrer Carlos. "Computational fluid dynamics multiscale modelling of bubbly flow. A critical study and new developments on volume of fluid, discrete element and two-fluid methods." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/90493.

Full text
Abstract:
The study and modelling of two-phase flow, even the simplest ones such as the bubbly flow, remains a challenge that requires exploring the physical phenomena from different spatial and temporal resolution levels. CFD (Computational Fluid Dynamics) is a widespread and promising tool for modelling, but nowadays, there is no single approach or method to predict the dynamics of these systems at the different resolution levels providing enough precision of the results. The inherent difficulties of the events occurring in this flow, mainly those related with the interface between phases, makes that low or intermediate resolution level approaches as system codes (RELAP, TRACE, ...) or 3D TFM (Two-Fluid Model) have significant issues to reproduce acceptable results, unless well-known scenarios and global values are considered. Instead, methods based on high resolution level such as Interfacial Tracking Method (ITM) or Volume Of Fluid (VOF) require a high computational effort that makes unfeasible its use in complex systems. In this thesis, an open-source simulation framework has been designed and developed using the OpenFOAM library to analyze the cases from microescale to macroscale levels. The different approaches and the information that is required in each one of them have been studied for bubbly flow. In the first part, the dynamics of single bubbles at a high resolution level have been examined through VOF. This technique has allowed to obtain accurate results related to the bubble formation, terminal velocity, path, wake and instabilities produced by the wake. However, this approach has been impractical for real scenarios with more than dozens of bubbles. Alternatively, this thesis proposes a CFD Discrete Element Method (CFD-DEM) technique, where each bubble is represented discretely. A novel solver for bubbly flow has been developed in this thesis. This includes a large number of improvements necessary to reproduce the bubble-bubble and bubble-wall interactions, turbulence, velocity seen by the bubbles, momentum and mass exchange term over the cells or bubble expansion, among others. But also new implementations as an algorithm to seed the bubbles in the system have been incorporated. As a result, this new solver gives more accurate results as the provided up to date. Following the decrease on resolution level, and therefore the required computational resources, a 3D TFM have been developed with a population balance equation solved with an implementation of the Quadrature Method Of Moments (QMOM). The solver is implemented with the same closure models as the CFD-DEM to analyze the effects involved with the lost of information due to the averaging of the instantaneous Navier-Stokes equation. The analysis of the results with CFD-DEM reveals the discrepancies found by considering averaged values and homogeneous flow in the models of the classical TFM formulation. Finally, for the lowest resolution level approach, the system code RELAP5/MOD3 is used for modelling the bubbly flow regime. The code has been modified to reproduce properly the two-phase flow characteristics in vertical pipes, comparing the performance of the calculation of the drag term based on drift-velocity and drag coefficient approaches.
El estudio y modelado de flujos bifásicos, incluso los más simples como el bubbly flow, sigue siendo un reto que conlleva aproximarse a los fenómenos físicos que lo rigen desde diferentes niveles de resolución espacial y temporal. El uso de códigos CFD (Computational Fluid Dynamics) como herramienta de modelado está muy extendida y resulta prometedora, pero hoy por hoy, no existe una única aproximación o técnica de resolución que permita predecir la dinámica de estos sistemas en los diferentes niveles de resolución, y que ofrezca suficiente precisión en sus resultados. La dificultad intrínseca de los fenómenos que allí ocurren, sobre todo los ligados a la interfase entre ambas fases, hace que los códigos de bajo o medio nivel de resolución, como pueden ser los códigos de sistema (RELAP, TRACE, etc.) o los basados en aproximaciones 3D TFM (Two-Fluid Model) tengan serios problemas para ofrecer resultados aceptables, a no ser que se trate de escenarios muy conocidos y se busquen resultados globales. En cambio, códigos basados en alto nivel de resolución, como los que utilizan VOF (Volume Of Fluid), requirieren de un esfuerzo computacional tan elevado que no pueden ser aplicados a sistemas complejos. En esta tesis, mediante el uso de la librería OpenFOAM se ha creado un marco de simulación de código abierto para analizar los escenarios desde niveles de resolución de microescala a macroescala, analizando las diferentes aproximaciones, así como la información que es necesaria aportar en cada una de ellas, para el estudio del régimen de bubbly flow. En la primera parte se estudia la dinámica de burbujas individuales a un alto nivel de resolución mediante el uso del método VOF (Volume Of Fluid). Esta técnica ha permitido obtener resultados precisos como la formación de la burbuja, velocidad terminal, camino recorrido, estela producida por la burbuja e inestabilidades que produce en su camino. Pero esta aproximación resulta inviable para entornos reales con la participación de más de unas pocas decenas de burbujas. Como alternativa, se propone el uso de técnicas CFD-DEM (Discrete Element Methods) en la que se representa a las burbujas como partículas discretas. En esta tesis se ha desarrollado un nuevo solver para bubbly flow en el que se han añadido un gran número de nuevos modelos, como los necesarios para contemplar los choques entre burbujas o con las paredes, la turbulencia, la velocidad vista por las burbujas, la distribución del intercambio de momento y masas con el fluido en las diferentes celdas por cada una de las burbujas o la expansión de la fase gaseosa entre otros. Pero también se han tenido que incluir nuevos algoritmos como el necesario para inyectar de forma adecuada la fase gaseosa en el sistema. Este nuevo solver ofrece resultados con un nivel de resolución superior a los desarrollados hasta la fecha. Siguiendo con la reducción del nivel de resolución, y por tanto los recursos computacionales necesarios, se efectúa el desarrollo de un solver tridimensional de TFM en el que se ha implementado el método QMOM (Quadrature Method Of Moments) para resolver la ecuación de balance poblacional. El solver se desarrolla con los mismos modelos de cierre que el CFD-DEM para analizar los efectos relacionados con la pérdida de información debido al promediado de las ecuaciones instantáneas de Navier-Stokes. El análisis de resultados de CFD-DEM permite determinar las discrepancias encontradas por considerar los valores promediados y el flujo homogéneo de los modelos clásicos de TFM. Por último, como aproximación de nivel de resolución más bajo, se investiga el uso uso de códigos de sistema, utilizando el código RELAP5/MOD3 para analizar el modelado del flujo en condiciones de bubbly flow. El código es modificado para reproducir correctamente el flujo bifásico en tuberías verticales, comparando el comportamiento de aproximaciones para el cálculo del término d
L'estudi i modelatge de fluxos bifàsics, fins i tot els més simples com bubbly flow, segueix sent un repte que comporta aproximar-se als fenòmens físics que ho regeixen des de diferents nivells de resolució espacial i temporal. L'ús de codis CFD (Computational Fluid Dynamics) com a eina de modelatge està molt estesa i resulta prometedora, però ara per ara, no existeix una única aproximació o tècnica de resolució que permeta predir la dinàmica d'aquests sistemes en els diferents nivells de resolució, i que oferisca suficient precisió en els seus resultats. Les dificultat intrínseques dels fenòmens que allí ocorren, sobre tots els lligats a la interfase entre les dues fases, fa que els codis de baix o mig nivell de resolució, com poden ser els codis de sistema (RELAP,TRACE, etc.) o els basats en aproximacions 3D TFM (Two-Fluid Model) tinguen seriosos problemes per a oferir resultats acceptables , llevat que es tracte d'escenaris molt coneguts i se persegueixen resultats globals. En canvi, codis basats en alt nivell de resolució, com els que utilitzen VOF (Volume Of Fluid), requereixen d'un esforç computacional tan elevat que no poden ser aplicats a sistemes complexos. En aquesta tesi, mitjançant l'ús de la llibreria OpenFOAM s'ha creat un marc de simulació de codi obert per a analitzar els escenaris des de nivells de resolució de microescala a macroescala, analitzant les diferents aproximacions, així com la informació que és necessària aportar en cadascuna d'elles, per a l'estudi del règim de bubbly flow. En la primera part s'estudia la dinàmica de bambolles individuals a un alt nivell de resolució mitjançant l'ús del mètode VOF. Aquesta tècnica ha permès obtenir resultats precisos com la formació de la bambolla, velocitat terminal, camí recorregut, estela produida per la bambolla i inestabilitats que produeix en el seu camí. Però aquesta aproximació resulta inviable per a entorns reals amb la participació de més d'unes poques desenes de bambolles. Com a alternativa en aqueix cas es proposa l'ús de tècniques CFD-DEM (Discrete Element Methods) en la qual es representa a les bambolles com a partícules discretes. En aquesta tesi s'ha desenvolupat un nou solver per a bubbly flow en el qual s'han afegit un gran nombre de nous models, com els necessaris per a contemplar els xocs entre bambolles o amb les parets, la turbulència, la velocitat vista per les bambolles, la distribució de l'intercanvi de moment i masses amb el fluid en les diferents cel·les per cadascuna de les bambolles o els models d'expansió de la fase gasosa entre uns altres. Però també s'ha hagut d'incloure nous algoritmes com el necessari per a injectar de forma adequada la fase gasosa en el sistema. Aquest nou solver ofereix resultats amb un nivell de resolució superior als desenvolupat fins la data. Seguint amb la reducció del nivell de resolució, i per tant els recursos computacionals necessaris, s'efectua el desenvolupament d'un solver tridimensional de TFM en el qual s'ha implementat el mètode QMOM (Quadrature Method Of Moments) per a resoldre l'equació de balanç poblacional. El solver es desenvolupa amb els mateixos models de tancament que el CFD-DEM per a analitzar els efectes relacionats amb la pèrdua d'informació a causa del promitjat de les equacions instantànies de Navier-Stokes. L'anàlisi de resultats de CFD-DEM permet determinar les discrepàncies ocasionades per considerar els valors promitjats i el flux homogeni dels models clàssics de TFM. Finalment, com a aproximació de nivell de resolució més baix, s'analitza l'ús de codis de sistema, utilitzant el codi RELAP5/MOD3 per a analitzar el modelatge del fluxos en règim de bubbly flow. El codi és modificat per a reproduir correctament les característiques del flux bifàsic en canonades verticals, comparant el comportament d'aproximacions per al càlcul del terme de drag basades en velocitat de drift flux model i de les basades en coe
Peña Monferrer, C. (2017). Computational fluid dynamics multiscale modelling of bubbly flow. A critical study and new developments on volume of fluid, discrete element and two-fluid methods [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90493
TESIS
APA, Harvard, Vancouver, ISO, and other styles
9

Izard, Edouard. "Modélisation numérique des écoulements granulaires denses immergés dans un fluide." Phd thesis, Toulouse, INPT, 2014. http://oatao.univ-toulouse.fr/12186/1/izard.pdf.

Full text
Abstract:
Ce travail de thèse concerne la modélisation numérique fine des processus locaux dans le transport sédimentaire, à l'échelle d'un à plusieurs centaines de grains. Une méthode aux éléments discrets (DEM) basée sur la méthode dite des sphères molles et prenant en compte les contacts entre les grains a été développée et couplée à une méthode de frontière immergée (IBM) qui calcule l'écoulement autour d'objets solides mobiles dans un fluide Newtonien incompressible. Dans ce couplage, une force de lubrification est incluse pour représenter les interactions entre le fluide et les particules proches d'un contact. Il est montré que la méthode numérique reproduit de manière satisfaisante le coefficient de restitution effective mesuré dans des expériences de rebonds normal et oblique d'un grain sur un plan, ainsi que de rebond entre deux grains dans un fluide visqueux. Deux modèles analytiques associés au phénomène de rebond sont proposés et montrent l'importance de la rugosité de surface du grain et du nombre de Stokes sur le phénomène. La méthode numérique est ensuite utilisée pour simuler deux configurations tridimensionnelles d'écoulements granulaires pilotés par la gravité en milieu fluide : l'avalanche de grains sur un plan incliné rugueux et l'effondrement d'une colonne de grains. Dans le premier cas, les résultats permettent de caractériser les différents régimes d'écoulement granulaires (visqueux, inertiel et sec) observés dans les expériences en fonction du rapport de masse volumique grain-fluide et du nombre de Stokes. En particulier, les simulations apportent des informations originales quant aux profils de vitesse de grains et du fluide ainsi qu'aux forces prédominantes dans chacun des régimes. Dans le second cas, les résultats sont en bon accord avec les expériences et le mécanisme dit de « pore pressure feedback », qui dépend de la compacité initiale de la colonne, est pour la première fois observé dans des simulations numériques directes.
APA, Harvard, Vancouver, ISO, and other styles
10

Roberge, Jennifer Anne. "Use of Computational Fluid Dynamics (CFD) to Model Flow at Pump Intakes." Digital WPI, 1999. https://digitalcommons.wpi.edu/etd-theses/1046.

Full text
Abstract:
"This thesis presents a series of physical experiments and numerical simulations intended to determine whether the use of commercially available computational fluid dynamics (CFD) software may provide a viable alternative to the use of physical models for predicting the occurrence of vortices and swirl in pump intakes. The physical experiments were set up at Alden Research Laboratories, Inc. (ARL) of Holden, Massachusetts, using a simple pump intake model donated by ARL for use in this study. Swirl and velocity measurements and dye injections were used to characterize the flow in the physical model. Three flow conditions were chosen for the physical experiments because they demonstrated swirl and vortices developing at the pump intake. Once the physical experiments were performed, FIDAP, a general-purpose finite-element CFD package, was used to simulate the circulation patterns in the vicinity of a pump intake. The model configuration and scale were selected to simulate experimental conditions in the physical pump intake model. Some similarities were also identified in the locations of the models predicted vortex characteristics and the vortex characteristics that were observed in the experimental facility. However, the characteristics of swirl within the pump intake differed from experimental observations. Therefore, additional simulations were conducted to analyze the sensitivity of simulations to model assumptions. These additional simulations showed that the assumptions related to these model parameters have minor affects on the general nature of the predicted vortices, but do affect the predicted vortex strength. This thesis represents a first step in addressing the discrepancies between numerical and experimental results. Additional investigations are recommended to clarify the applicability of CFD to address pump intake problems."
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Computational methods in fluid flow"

1

Peyret, Roger. Computational methods for fluid flow. 2nd ed. New York: Springer-Verlag, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peyret, Roger. Computational methods for fluid flow. 3rd ed. New York: Springer-Verlag, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Steiner, O., and A. Gautschy, eds. Computational Methods for Astrophysical Fluid Flow. Berlin/Heidelberg: Springer-Verlag, 1998. http://dx.doi.org/10.1007/3-540-31632-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

1955-, LeVeque Randall J., Steiner O. 1955-, Gautschy A. 1962-, and Schweizerische Gesellschaft für Astrophysik und Astronomie., eds. Computational methods for astrophysical fluid flow. Berlin: Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

J, Felcman, and Straškraba I, eds. Mathematical and computational methods for compressible flow. Oxford: Clarendon Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

A, Mammoli A., Brebbia C. A, Wessex Institute of Technology, and University of New Mexico, eds. Computational methods in multiphase flow II. Southampton ; Boston: WIT, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Technology), International Conference on Computational Methods in Multiphase and Complex Flow (6th 2011 Wessex Institute of. Computational Methods in Multiphase Flow VI. Southampton [U.K.]: WIT Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1971-, Pannala Sreekanth, Syamial Madhave, and O'Brien Thomas J. 1941-, eds. Computational gas-solids flows and reacting systems: Theory, methods and practice. Hershey, PA: Engineering Science Reference, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zeybek, Birol. Numerical simulation of flow induced by a spinning sphere using spectral methods. Monterey, Calif: Naval Postgraduate School, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pannala, Sreekanth. Computational gas-solids flows and reacting systems: Theory, methods and practice. Hershey, PA: Engineering Science Reference, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Computational methods in fluid flow"

1

Hess, J. L., K. Kuwahara, M. D. Salas, Terry L. Holst, and Thomas H. Pulliam. "Computational Methods for Inviscid Flow." In Handbook of Fluid Dynamics and Fluid Machinery, 1385–430. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470172643.ch20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mehta, Unmeel B., U. Ghia, K. N. Ghia, and Saad Ragab. "Computational Methods for Viscous Flow." In Handbook of Fluid Dynamics and Fluid Machinery, 1431–539. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470172643.ch21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ferziger, Joel H., Milovan Perić, and Robert L. Street. "Compressible Flow." In Computational Methods for Fluid Dynamics, 421–45. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-99693-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ferziger, Joel H., and Milovan Perić. "Compressible Flow." In Computational Methods for Fluid Dynamics, 291–310. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-98037-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ferziger, Joel H., and Milovan Perić. "Compressible Flow." In Computational Methods for Fluid Dynamics, 309–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56026-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ferziger, Joel H., and Milovan Perić. "Compressible Flow." In Computational Methods for Fluid Dynamics, 283–301. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-97651-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wright, N. G. "Introduction to Numerical Methods for Fluid Flow." In Computational Fluid Dynamics, 147–68. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470015195.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Filippova, Olga, and Dieter Hänel. "Flow Prediction by Lattice-Boltzmann Methods." In Computational Fluid Dynamics 2000, 523–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56535-9_79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ferziger, Joel H., Milovan Perić, and Robert L. Street. "Basic Concepts of Fluid Flow." In Computational Methods for Fluid Dynamics, 1–21. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-99693-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ferziger, Joel H., and Milovan Perić. "Basic Concepts of Fluid Flow." In Computational Methods for Fluid Dynamics, 1–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-98037-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Computational methods in fluid flow"

1

TURKEL, E., and A. ARNONE. "Pseudo-compressibility methods for the incompressible flow equations." In 11th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

BELL, JOHN, PHILLIP COLELLA, JOHN TRANGENSTEIN, and MICHAEL WELCOME. "Adaptive methods for high Mach number reacting flow." In 8th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-1168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

HASSAN, O., K. MORGAN, E. PROBERT, J. PERAIRE, and R. THAREJA. "Adaptive unstructured mesh methods for steady viscous flow." In 10th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-1538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

May, Georg, and Antony Jameson. "High-Order Accurate Methods for High-Speed Flow." In 17th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-5251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

PEMBER, RICHARD, JOHN BELL, PHILLIP COLELLA, WILLIAM CRUTCHFIELD, and MICHAEL WELCOME. "Adaptive Cartesian grid methods for representing geometry in inviscid compressible flow." In 11th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Leep-Apolloni, Laurine, Gary Strumolo, and David Dowling. "The Vortex-Boundary Element Method - New pressure methods for application to the external flow noise problem." In 14th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schwer, Douglas, and William Green, Jr. "Split-operator methods for computing steady-state reacting flow-fields." In 15th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-2635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Birken, Philipp. "Designing optimal smoothers for multigrid methods for unsteady flow problems." In 20th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-3233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dadone, Andrea, Guangchu Hu, and Bernard Grossman. "Towards a better understanding of vorticity confinement methods in compressible flow." In 15th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-2639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Proot, Michael, Marc Gerritsma, and Margreet Nool. "Application of Least-Squares Spectral Element Methods to Incompressible Flow Problems." In 16th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-3685.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Computational methods in fluid flow"

1

Hindman, Richard G. Computational Fluid Dynamics Research On Dynamically Adaptive Mesh Methods For Transonic Flows. Fort Belvoir, VA: Defense Technical Information Center, November 1992. http://dx.doi.org/10.21236/ada264833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Woodward, P. R. Piecewise - Parabolic Methods for Parallel Computation with Applications to Unstable Fluid Flow in 2 and 3 Dimensions. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/836589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pullammanappallil, Pratap, Haim Kalman, and Jennifer Curtis. Investigation of particulate flow behavior in a continuous, high solids, leach-bed biogasification system. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600038.bard.

Full text
Abstract:
Recent concerns regarding global warming and energy security have accelerated research and developmental efforts to produce biofuels from agricultural and forestry residues, and energy crops. Anaerobic digestion is a promising process for producing biogas-biofuel from biomass feedstocks. However, there is a need for new reactor designs and operating considerations to process fibrous biomass feedstocks. In this research project, the multiphase flow behavior of biomass particles was investigated. The objective was accomplished through both simulation and experimentation. The simulations included both particle-level and bulk flow simulations. Successful computational fluid dynamics (CFD) simulation of multiphase flow in the digester is dependent on the accuracy of constitutive models which describe (1) the particle phase stress due to particle interactions, (2) the particle phase dissipation due to inelastic interactions between particles and (3) the drag force between the fibres and the digester fluid. Discrete Element Method (DEM) simulations of Homogeneous Cooling Systems (HCS) were used to develop a particle phase dissipation rate model for non-spherical particle systems that was incorporated in a two-fluid CFDmultiphase flow model framework. Two types of frictionless, elongated particle models were compared in the HCS simulations: glued-sphere and true cylinder. A new model for drag for elongated fibres was developed which depends on Reynolds number, solids fraction, and fibre aspect ratio. Schulze shear test results could be used to calibrate particle-particle friction for DEM simulations. Several experimental measurements were taken for biomass particles like olive pulp, orange peels, wheat straw, semolina, and wheat grains. Using a compression tester, the breakage force, breakage energy, yield force, elastic stiffness and Young’s modulus were measured. Measurements were made in a shear tester to determine unconfined yield stress, major principal stress, effective angle of internal friction and internal friction angle. A liquid fludized bed system was used to determine critical velocity of fluidization for these materials. Transport measurements for pneumatic conveying were also assessed. Anaerobic digestion experiments were conducted using orange peel waste, olive pulp and wheat straw. Orange peel waste and olive pulp could be anaerobically digested to produce high methane yields. Wheat straw was not digestible. In a packed bed reactor, anaerobic digestion was not initiated above bulk densities of 100 kg/m³ for peel waste and 75 kg/m³ for olive pulp. Interestingly, after the digestion has been initiated and balanced methanogenesis established, the decomposing biomass could be packed to higher densities and successfully digested. These observations provided useful insights for high throughput reactor designs. Another outcome from this project was the development of low cost devices to measure methane content of biogas for off-line (US$37), field (US$50), and online (US$107) applications.
APA, Harvard, Vancouver, ISO, and other styles
4

Garabedian, Paul R. Computational Fluid Dynamics and Transonic Flow. Fort Belvoir, VA: Defense Technical Information Center, October 1994. http://dx.doi.org/10.21236/ada288962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Garabedian, Paul R. Computational Fluid Dynamics and Transonic Flow. Fort Belvoir, VA: Defense Technical Information Center, October 1994. http://dx.doi.org/10.21236/ada292797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chou, So-Hsiang. Computational Methods for Problems in Fluid Dynamics. Fort Belvoir, VA: Defense Technical Information Center, February 1989. http://dx.doi.org/10.21236/ada221946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gibson, J. S. Joint Research on Computational Fluid Dynamics and Fluid Flow Control. Fort Belvoir, VA: Defense Technical Information Center, November 1995. http://dx.doi.org/10.21236/ada308103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Murman, Earll M., and Judson R. Baron. Computational Methods for Complex Flow Fields. Fort Belvoir, VA: Defense Technical Information Center, June 1986. http://dx.doi.org/10.21236/ada172727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Walker, James. Computational and Analytical Methods in Nonlinear Fluid Dynamics. Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada272722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Homicz, Gregory Francis. Computational Fluid Dynamic simulations of pipe elbow flow. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/919140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography