Academic literature on the topic 'Computational inference method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Computational inference method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Computational inference method"
Jha, Kunal, Tuan Anh Le, Chuanyang Jin, Yen-Ling Kuo, Joshua B. Tenenbaum, and Tianmin Shu. "Neural Amortized Inference for Nested Multi-Agent Reasoning." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 1 (March 24, 2024): 530–37. http://dx.doi.org/10.1609/aaai.v38i1.27808.
Full textMartina Perez, Simon, Heba Sailem, and Ruth E. Baker. "Efficient Bayesian inference for mechanistic modelling with high-throughput data." PLOS Computational Biology 18, no. 6 (June 21, 2022): e1010191. http://dx.doi.org/10.1371/journal.pcbi.1010191.
Full textZhang, Chendong, and Ting Chen. "Bayesian slip inversion with automatic differentiation variational inference." Geophysical Journal International 229, no. 1 (October 29, 2021): 546–65. http://dx.doi.org/10.1093/gji/ggab438.
Full textKoblents, Eugenia, Inés P. Mariño, and Joaquín Míguez. "Bayesian Computation Methods for Inference in Stochastic Kinetic Models." Complexity 2019 (January 20, 2019): 1–15. http://dx.doi.org/10.1155/2019/7160934.
Full textBeaumont, Mark A., Wenyang Zhang, and David J. Balding. "Approximate Bayesian Computation in Population Genetics." Genetics 162, no. 4 (December 1, 2002): 2025–35. http://dx.doi.org/10.1093/genetics/162.4.2025.
Full textLi, Ziyue, Kan Ren, Yifan Yang, Xinyang Jiang, Yuqing Yang, and Dongsheng Li. "Towards Inference Efficient Deep Ensemble Learning." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 7 (June 26, 2023): 8711–19. http://dx.doi.org/10.1609/aaai.v37i7.26048.
Full textLi, Benchong, Shoufeng Cai, and Jianhua Guo. "A computational algebraic-geometry method for conditional-independence inference." Frontiers of Mathematics in China 8, no. 3 (March 25, 2013): 567–82. http://dx.doi.org/10.1007/s11464-013-0295-9.
Full textSpringer, Sebastian, Heikki Haario, Jouni Susiluoto, Aleksandr Bibov, Andrew Davis, and Youssef Marzouk. "Efficient Bayesian inference for large chaotic dynamical systems." Geoscientific Model Development 14, no. 7 (July 9, 2021): 4319–33. http://dx.doi.org/10.5194/gmd-14-4319-2021.
Full textZhang, Xinfang, Miao Li, Bomin Wang, and Zexian Li. "A Parameter Correction method of CFD based on the Approximate Bayesian Computation technique." Journal of Physics: Conference Series 2569, no. 1 (August 1, 2023): 012076. http://dx.doi.org/10.1088/1742-6596/2569/1/012076.
Full textZhang, Chi, Yilun Wang, Lili Zhang, and Huicheng Zhou. "A fuzzy inference method based on association rule analysis with application to river flood forecasting." Water Science and Technology 66, no. 10 (November 1, 2012): 2090–98. http://dx.doi.org/10.2166/wst.2012.420.
Full textDissertations / Theses on the topic "Computational inference method"
Bergmair, Richard. "Monte Carlo semantics : robust inference and logical pattern processing with natural language text." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609713.
Full textGuo, Wenbin. "Computational analysis and method development for high throughput transcriptomics and transcriptional regulatory inference in plants." Thesis, University of Dundee, 2018. https://discovery.dundee.ac.uk/en/studentTheses/3f14dd8e-0c6c-4b46-adb0-bbb10b0cbe19.
Full textStrid, Ingvar. "Computational methods for Bayesian inference in macroeconomic models." Doctoral thesis, Handelshögskolan i Stockholm, Ekonomisk Statistik (ES), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hhs:diva-1118.
Full textWarne, David James. "Computational inference in mathematical biology: Methodological developments and applications." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/202835/1/David_Warne_Thesis.pdf.
Full textDahlin, Johan. "Accelerating Monte Carlo methods for Bayesian inference in dynamical models." Doctoral thesis, Linköpings universitet, Reglerteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-125992.
Full textBorde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.
Lienart, Thibaut. "Inference on Markov random fields : methods and applications." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:3095b14c-98fb-4bda-affc-a1fa1708f628.
Full textWang, Tengyao. "Spectral methods and computational trade-offs in high-dimensional statistical inference." Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/260825.
Full textPardo, Jérémie. "Méthodes d'inférence de cibles thérapeutiques et de séquences de traitement." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG011.
Full textNetwork controllability is a major challenge in network medicine. It consists in finding a way to rewire molecular networks to reprogram the cell fate. The reprogramming action is typically represented as the action of a control. In this thesis, we extended the single control action method by investigating the sequential control of Boolean networks. We present a theoretical framework for the formal study of control sequences.We consider freeze controls, under which the variables can only be frozen to 0, 1 or unfrozen. We define a model of controlled dynamics where the modification of the control only occurs at a stable state in the synchronous update mode. We refer to the inference problem of finding a control sequence modifying the dynamics to evolve towards a desired state or property as CoFaSe. Under this problem, a set of variables are uncontrollable. We prove that this problem is PSPACE-hard. We know from the complexity of CoFaSe that finding a minimal sequence of control by exhaustively exploring all possible control sequences is not practically tractable. By studying the dynamical properties of the CoFaSe problem, we found that the dynamical properties that imply the necessity of a sequence of control emerge from the update functions of uncontrollable variables. We found that the length of a minimal control sequence cannot be larger than twice the number of profiles of uncontrollable variables. From this result, we built two algorithms inferring minimal control sequences under synchronous dynamics. Finally, the study of the interdependencies between sequential control and the topology of the interaction graph of the Boolean network allowed us to investigate the causal relationships that exist between structure and control. Furthermore, accounting for the topological properties of the network gives additional tools for tightening the upper bounds on sequence length. This work sheds light on the key importance of non-negative cycles in the interaction graph for the emergence of minimal sequences of control of size greater than or equal to two
Angulo, Rafael Villa. "Computational methods for haplotype inference with application to haplotype block characterization in cattle." Fairfax, VA : George Mason University, 2009. http://hdl.handle.net/1920/4558.
Full textVita: p. 123. Thesis director: John J. Grefenstette. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Bioinformatics and Computational Biology. Title from PDF t.p. (viewed Sept. 8, 2009). Includes bibliographical references (p. 114-122). Also issued in print.
Ruli, Erlis. "Recent Advances in Approximate Bayesian Computation Methods." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423529.
Full textL'approccio bayesiano all'inferenza statistica è fondamentalmente probabilistico. Attraverso il calcolo delle probabilità, la distribuzione a posteriori estrae l'informazione rilevante offerta dai dati e produce una descrizione completa e coerente dell'incertezza condizionatamente ai dati osservati. Tuttavia, la descrizione della distribuzione a posteriori spesso richiede il computo di integrali multivariati e complicati. Un'ulteriore difficoltà dell'approccio bayesiano è legata alla funzione di verosimiglianza e nasce quando quest'ultima è matematicamento o computazionalmente intrattabile. In questa direzione, notevoli sviluppi sono stati compiuti dalla cosiddetta teaoria di Approximate Bayesian Computations (ABC). Questa tesi si focalizza su metodi computazionali per l'approssimazione della distribuzione a posteriori e propone sei contributi originali. Il primo contributo concerne l'approssimazione della distributione a posteriori marginale per un parametro scalare. Combinando l'approssimazione di ordine superiore per tail-area con il metodo della simulazione per inversione, si ottiene l'algorimo denominato HOTA, il quale può essere usato per simulare in modo indipendente da un'approssimazione della distribuzione a posteriori. Il secondo contributo si propone di estendere l'uso dell'algoritmo HOTA in contesti di distributioni pseudo-posterior, ovvero una distribuzione a posteriori ottenuta attraverso la combinazione di una pseudo-verosimiglianza con una prior, tramite il teorema di Bayes. Il terzo contributo estende l'uso dell'approssimazione di tail-area in contesti con parametri multidimensionali e propone un metodo per calcolare delle regioni di credibilità le quali presentano buone proprietà di copertura frequentista. Il quarto contributo presenta un'approssimazione di Laplace di terzo ordine per il calcolo della verosimiglianza marginale. Il quinto contributo si focalizza sulla scelta delle statistiche descrittive per ABC e propone un metodo parametrico, basato sulla funzione di score composita, per la scelta di tali statistiche. Infine, l'ultimo contributo si focalizza sulla scelta di una distribuzione di proposta da defalut per algoritmi ABC, dove la procedura di derivazione di tale distributzione è basata sulla nozione della quasi-verosimiglianza.
Books on the topic "Computational inference method"
Istrail, Sorin, Michael Waterman, and Andrew Clark, eds. Computational Methods for SNPs and Haplotype Inference. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b96286.
Full textLearning and inference in computational systems biology. Cambridge, Mass: MIT Press, 2010.
Find full textNeil, Lawrence, ed. Learning and inference in computational systems biology. Cambridge, MA: MIT Press, 2010.
Find full textHeard, Nick. An Introduction to Bayesian Inference, Methods and Computation. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82808-0.
Full textLo, Andrew W. Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation. Cambridge, MA: National Bureau of Economic Research, 2000.
Find full textWorkshop for Dialogue on Reverse Engineering Assessment and Methods (2006 New York, N.Y.). Reverse engineering biological networks: Opportunities and challenges in computational methods for pathway inference. Boston, Mass: Published by Blackwell Publishing on behalf of the New York Academy of Sciences, 2007.
Find full textSorin, Istrail, Waterman Michael S, and Clark Andrew G. 1954-, eds. Computational methods for SNPs and Haplotype inference: DIMACS/RECOMB satellite workshop, Piscataway, NJ, USA, November 21-22, 2002 : revised papers. Berlin: Springer-Verlag, 2004.
Find full textDiagrams 2010 (2010 Portland, Or.). Diagrammatic representation and inference: 6th international conference, Diagrams 2010, Portland, OR, USA, August 9-11, 2010 : proceedings. Berlin: Springer, 2010.
Find full textVarlamov, Oleg. Mivar databases and rules. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1508665.
Full textDesmarais, Bruce A., and Skyler J. Cranmer. Statistical Inference in Political Networks Research. Edited by Jennifer Nicoll Victor, Alexander H. Montgomery, and Mark Lubell. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780190228217.013.8.
Full textBook chapters on the topic "Computational inference method"
Revell, Jeremy, and Paolo Zuliani. "Stochastic Rate Parameter Inference Using the Cross-Entropy Method." In Computational Methods in Systems Biology, 146–64. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99429-1_9.
Full textLilik, Ferenc, and László T. Kóczy. "The Determination of the Bitrate on Twisted Pairs by Mamdani Inference Method." In Studies in Computational Intelligence, 59–74. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03206-1_5.
Full textIzumi, Satoru, Yusuke Kobayashi, Hideyuki Takahashi, Takuo Suganuma, Tetsuo Kinoshita, and Norio Shiratori. "An Effective Inference Method Using Sensor Data for Symbiotic Healthcare Support System." In Computational Science and Its Applications – ICCSA 2010, 152–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12189-0_14.
Full textBumee, Somkid, Chalothorn Liamwirat, Treenut Saithong, and Asawin Meechai. "Extended Constraint-Based Boolean Analysis: A Computational Method in Genetic Network Inference." In Communications in Computer and Information Science, 71–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16750-8_7.
Full textZolkepli, Maslina Binti, and Teh Noranis Binti Mohd Aris. "Cross Domain Recommendations Based on the Application of Fuzzy AHP and Fuzzy Inference Method in Establishing Transdisciplinary Collaborations." In Computational and Experimental Simulations in Engineering, 397–412. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27053-7_36.
Full textHeard, Nick. "Computational Inference." In An Introduction to Bayesian Inference, Methods and Computation, 39–60. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82808-0_5.
Full textAlvo, Mayer. "Bayesian Computation Methods." In Statistical Inference and Machine Learning for Big Data, 385–410. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06784-6_13.
Full textLong, Quan. "Computational Haplotype Inference from Pooled Samples." In Methods in Molecular Biology, 309–19. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6750-6_15.
Full textKlingner, Marvin, and Tim Fingscheidt. "Improved DNN Robustness by Multi-task Training with an Auxiliary Self-Supervised Task." In Deep Neural Networks and Data for Automated Driving, 149–70. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01233-4_5.
Full textClark, Andrew G., Emmanouil T. Dermitzakis, and Stylianos E. Antonarakis. "Trisomic Phase Inference." In Computational Methods for SNPs and Haplotype Inference, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24719-7_1.
Full textConference papers on the topic "Computational inference method"
Kimura, Shuhei, Masato Tokuhisa, and Mariko Okada-Hatakeyama. "Simultaneous execution method of gene clustering and network inference." In 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, 2016. http://dx.doi.org/10.1109/cibcb.2016.7758123.
Full textVu, Luong H., Benjamin N. Passow, Daniel Paluszczyszyn, Lipika Deka, and Eric Goodyer. "Neighbouring link travel time inference method using artificial neural network." In 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2017. http://dx.doi.org/10.1109/ssci.2017.8285221.
Full textZhou, Lina, Yin Qing, Liehui Jiang, Wenjian Yin, and Tieming Liu. "A Method of Type Inference Based on Dataflow Analysis for Decompilation." In 2009 International Conference on Computational Intelligence and Software Engineering. IEEE, 2009. http://dx.doi.org/10.1109/cise.2009.5362985.
Full textKoul, Nimrita. "Method for Feature Selection Based on Inference of Gene Regulatory Networks." In 2023 2nd International Conference on Computational Systems and Communication (ICCSC). IEEE, 2023. http://dx.doi.org/10.1109/iccsc56913.2023.10143012.
Full textKimura, Shuhei, Kazuki Sota, and Masato Tokuhisa. "Inference of Genetic Networks using Random Forests: A Quantitative Weighting Method for Gene Expression Data." In 2022 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, 2022. http://dx.doi.org/10.1109/cibcb55180.2022.9863035.
Full textLiu, Xiaohong, Xianyi Zeng, Yang Xu, and Ludovic Koehl. "A method of experiment design based on IOWA operator inference in sensory evaluation." In Multiconference on "Computational Engineering in Systems Applications. IEEE, 2006. http://dx.doi.org/10.1109/cesa.2006.4281644.
Full textXianzhi, Tang, and Wang Qingnian. "Driving Intention Intelligent Identification Method for Hybrid Vehicles Based on Fuzzy Logic Inference." In 2010 3rd International Symposium on Computational Intelligence and Design (ISCID). IEEE, 2010. http://dx.doi.org/10.1109/iscid.2010.11.
Full textGuan, Yu. "Regularization Method for Rule Reduction in Belief Rule-based SystemRegularization Method for Rule Reduction in Belief Rule-based System." In 8th International Conference on Computational Science and Engineering (CSE 2020). AIRCC Publishing Corporation, 2020. http://dx.doi.org/10.5121/csit.2020.101705.
Full textWright, Stephen, Avinash Ravikumar, Laura Redmond, Benjamin Lawler, Matthew Castanier, Eric Gingrich, and Michael Tess. "Data Reduction Methods to Improve Computation Time for Calibration of Piston Thermal Models." In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0112.
Full textGuan, Jiaqi, Yang Liu, Qiang Liu, and Jian Peng. "Energy-efficient Amortized Inference with Cascaded Deep Classifiers." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/302.
Full textReports on the topic "Computational inference method"
Giacomini, Raffaella, Toru Kitagawa, and Matthew Read. Identification and Inference under Narrative Restrictions. Reserve Bank of Australia, October 2023. http://dx.doi.org/10.47688/rdp2023-07.
Full textArthur, Jennifer Ann. Subcritical Neutron Multiplication Inference Benchmarks for Nuclear Data and Computational Methods Validation. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1485365.
Full textKoop, Gary, Jamie Cross, and Aubrey Poon. Introduction to Bayesian Econometrics in MATLAB. Instats Inc., 2022. http://dx.doi.org/10.61700/t3wrch7yujr7a469.
Full textKoop, Gary, Jamie Cross, and Aubrey Poon. Introduction to Bayesian Econometrics in MATLAB. Instats Inc., 2023. http://dx.doi.org/10.61700/aebi3thp50fr3469.
Full textde Kemp, E. A., H. A. J. Russell, B. Brodaric, D. B. Snyder, M. J. Hillier, M. St-Onge, C. Harrison, et al. Initiating transformative geoscience practice at the Geological Survey of Canada: Canada in 3D. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/331097.
Full textde Kemp, E. A., H. A. J. Russell, B. Brodaric, D. B. Snyder, M. J. Hillier, M. St-Onge, C. Harrison, et al. Initiating transformative geoscience practice at the Geological Survey of Canada: Canada in 3D. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331871.
Full text