To see the other types of publications on this topic, follow the link: Computational fluid dynamics; Wave loading.

Dissertations / Theses on the topic 'Computational fluid dynamics; Wave loading'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 35 dissertations / theses for your research on the topic 'Computational fluid dynamics; Wave loading.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Saalehi, Ahmad. "Quadtree-based finite element modelling of laminar separated flow past a cylinder." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chun, Sangeon. "Nonlinear Fluid-Structure Interaction in a Flexible Shelter under Blast Loading." Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/29849.

Full text
Abstract:
Recently, numerous flexible structures have been employed in various fields of industry. Loading conditions sustained by these flexible structures are often not described well enough for engineering analyses even though these conditions are important. Here, a flexible tent with an interior Collective Protection System, which is subjected to an explosion, is analyzed. The tent protects personnel from biological and chemical agents with a pressurized liner inside the tent as an environmental barrier. Field tests showed unexpected damage to the liner, and most of the damage occurred on tent's leeward side. To solve this problem, various tests and analyses have been performed, involving material characteristics of the liner, canvas, and zip seals, modeling of the blast loading over the tent and inside the tent, and structural response of the tent to the blast loading as collaborative research works with others. It was found that the blast loading and the structural response can not be analyzed separately due to the interaction between the flexible structure and the dynamic pressure loading. In this dissertation, the dynamic loadings imposed on both the interior and the exterior sides of the tent structure due to the airblasts and the resulting dynamic responses were studied. First, the blast loadings were obtained by a newly proposed theoretical method of analytical/empirical models which was developed into a FORTRAN program. Then, a numerical method of an iterative Fluid-Structure Interaction using Computational Fluid Dynamics and Computational Structural Dynamics was employed to simulate the blast wave propagation inside and outside the flexible structure and to calculate the dynamic loads on it. All the results were compared with the field test data conducted by the Air Force Research Laboratory. The experimental pressure data were gathered from pressure gauges attached to the tent surfaces at different locations. The comparison showed that the proposed methods can be a good design tool to analyze the loading conditions for rigid or flexible structures under explosive loads. In particular, the causes of the failure of the liner on the leeward were explained. Also, the results showed that the effect of fluid-structure interaction should be considered in the pressure load calculation on the structure where the structural deflection rate can influence the solution of the flow field surrounding the structure.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Guodong. "Cartesian mesh techniques for moving body problems and shock wave modelling." Thesis, Manchester Metropolitan University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Horko, Michael. "CFD optimisation of an oscillating water column wave energy converter." University of Western Australia. School of Mechanical Engineering, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0089.

Full text
Abstract:
Although oscillating water column type wave energy devices are nearing the stage of commercial exploitation, there is still much to be learnt about many facets of their hydrodynamic performance. This research uses the commercially available FLUENT computational fluid dynamics flow solver to model a complete OWC system in a two dimensional numerical wave tank. A key feature of the numerical modelling is the focus on the influence of the front wall geometry and in particular the effect of the front wall aperture shape on the hydrodynamic conversion efficiency. In order to validate the numerical modelling, a 1:12.5 scale experimental model has been tested in a wave tank under regular wave conditions. The effects of the front lip shape on the hydrodynamic efficiency are investigated both numerically and experimentally and the results compared. The results obtained show that with careful consideration of key modelling parameters as well as ensuring sufficient data resolution, there is good agreement between the two methods. The results of the testing have also illustrated that simple changes to the front wall aperture shape can provide marked improvements in the efficiency of energy capture for OWC type devices.
APA, Harvard, Vancouver, ISO, and other styles
5

Kalsi, Hardeep Singh. "Numerical modelling of shock wave boundary layer interactions in aero-engine intakes at incidence." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/284394.

Full text
Abstract:
Aero-engine intakes play a critical role in the performance of modern high-bypass turbofan engines. It is their function to provide uniformly distributed, steady air flow to the engine fan face under a variety of flow conditions. However, during situations of high incidence, high curvature of the intake lip can accelerate flow to supersonic speeds, terminating with a shock wave. This produces undesirable shock wave boundary layer interactions (SWBLIs). Reynolds-Averaged Navier Stokes (RANS) turbulence models have been shown to be insensitive to the effects of boundary layer relaminarisation present in these highly-accelerated flows. Further, downstream of the SWBLI, RANS methods fail to capture the distorted flow that propagates towards the engine fan face. The present work describes simulations of a novel experimental intake rig model that replicates the key physics found in a real intake- namely acceleration, shock and SWBLI. The model is a simple geometric configuration resembling a lower intake lip at incidence. Simulations are carried out at two angles of attack, $\alpha=23^{\circ}$ and $\alpha=25^{\circ}$, with the more aggressive $\alpha=25^{\circ}$ possessing a high degree of shock oscillation. RANS, Large Eddy Simulations (LES) and hybrid RANS-LES are carried out in this work. Modifications to the one-equation Spalart-Allmaras (SA) RANS turbulence model are proposed to account for the effects of re-laminarisation and curvature. The simulation methods are validated against two canonical test cases. The first is a subsonic hump model where RANS modifications give a noticeable improvement in surface pressure predictions, even for this mild acceleration case. However, RANS is shown to over-predict the separation size. LES performs much better here, as long as the Smagorinsky-Lilly SGS model is not used. The $\sigma$-SGS model is found to perform best, and is used to run a hybrid RANS-LES that predicts a separation bubble size within $4\%$ of LES. The second canonical test case is a transonic hump that features a normal shockwave and SWBLI. RANS performs well here, predicting shock location, surface pressure and separation with good agreement with experimental measurements. Hybrid RANS-LES also performs well, but predicts a shock downstream of that measured by experiment. The use of an improved shock sensor here is able to maintain solution accuracy. Simulations of the intake rig are then run. RANS modifications provide a significant improvement in prediction of the shock location and lip surface pressure compared to the standard SA model. However, RANS models fail to reproduce the post shock interaction flow well, giving incorrect shape of the flow distortion. Further, RANS is inherently unable to capture the unsteady shock oscillations and related flow features. LES and hybrid RANS-LES predict the shock location and SWBLI well, with the downstream flow distortion also in very good agreement with experimental measurements. LES and hybrid RANS-LES are able to reproduce the time averaged smearing of the shock which RANS cannot. However, shock oscillations in the $\alpha=25^{\circ}$ case present a particular challenge for costly LES, requiring long simulation time to obtain time averaged flow statistics. Hybrid RANS-LES offers a significant saving in computational expense, costing approximately $20\%$ of LES. The work proposes recommendations for simulation strategy for intakes at incidence based on computational cost and performance of simulation methods.
APA, Harvard, Vancouver, ISO, and other styles
6

Raj, Piyush. "Influence of Fuel Inhomogeneity and Stratification Length Scales on Detonation Wave Propagation in a Rotating Detonation Combustor (RDC)." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103185.

Full text
Abstract:
The detonation-based engine has the key advantage of increased thermodynamic efficiency over the traditional constant pressure combustor. These detonation-based engines are also known as Pressure Gain Combustion systems (PGC) and Rotating Detonation Combustor (RDC) is a form of PGC, in which the detonation wave propagates azimuthally around an annular combustor. Prior researchers have performed a high fidelity 3-D numerical simulation of a rotating detonation combustor (RDC) to understand the flow physics such as detonation wave velocity, pressure profile, wave structure; however, performing these 3-D simulations is computationally expensive. 2-D simulations are a potential alternative to reduce computational cost. In most RDCs, fuel and oxidizer are injected discretely from separate plenums, and this discrete fuel/air injection results in inhomogeneous mixing within the domain. Due to the discrete fuel injection locations, fuel/oxidizer will stratify to form localized pockets of rich and lean mixtures. The motivation of the present study is to investigate the impact of unmixedness and stratification length scales on the performance of an RDC using a 2-D numerical approach. Unmixedness, which is defined as the standard deviation of equivalence ratio normalized by the mean global equivalence ratio, is a measure of the degree of fuel-oxidizer inhomogeneity. To model the effect of unmixedness in a 2-D domain, a lognormal distribution of the fuel mass fraction is generated with a mean equivalence ratio of 1 and varying standard deviations at the inlet boundary as a numerical source term. Moreover, to model the effects of stratification length scales, fuel mass fraction at the inlet boundary cells is bundled for a given length scale, and the mass fractions for these bundles are updated based on the lognormal distribution after every three-time steps. Using this methodology, 2-D numerical analyses are carried out to investigate the performance of an RDC for an H2-air mixture with varying unmixedness and stratification length scales. Results show that mean detonation velocity decreases and wave speed variation increases with an increase in unmixedness. However, with an increase in stratification length scale mean velocity remain relatively unchanged but variation in local velocity increases. The detonation wave front corrugation also increases with an increase in mixture inhomogeneity. The mean detonation cell size increases with an increase in unmixedness. The cell shape becomes more distorted and irregular with an increase in stratification length scale and unmixedness. The combined effect of unmixedness and stratification length scale leads to a decrease in pressure gain. Overall, this concept is able to elucidate the effects of varying unmixedness and stratification length scales on the performance of an RDC.
Master of Science
Pressure Gain Combustion (PGC) system has gained significant focus in recent years due to its increased thermodynamic efficiency over a constant pressure Brayton Cycle. Rotating Detonation Combustor (RDC) is a type of PGC system, which is thermodynamically more efficient than the conventional gas turbine combustor. One of the main aspects of the detonation process is the rapid burning of the fuel-oxidizer mixture, which occurs so fast that there is not enough time for pressure to equilibrate. Therefore, the process is thermodynamically closer to a constant volume process rather than a constant pressure process. A constant volume cycle is thermodynamically more efficient than a constant pressure Brayton cycle. In an RDC, a mixture of fuel and air is injected axially, and a detonation wave propagates continuously through the circumferential section. Numerical simulation of an RDC provides additional flexibility over experiments in understanding the flow physics, detonation wave structure, and analyzing the physical and chemical processes involved in the detonation cycle. Prior researchers have utilized a full-scale 3-D numerical simulation for understanding the performance of an RDC. However, the major challenge with 3-D analyses is the computational expense. Thus, to overcome this, an inexpensive 2-D simulation is used to model the flow physics of an RDC. In most RDCs, the fuel and oxidizer are injected discretely from separate plenums. Due to the discrete fuel injection, the fuel/air mixture is never perfectly premixed and results in a stratified flow field. The objective of the current work is to develop a novel approach to independently investigate the effects of varying unmixedness and stratification length scales on RDC performance using a 2-D simulation.
APA, Harvard, Vancouver, ISO, and other styles
7

Medina-López, Encarnación. "Thermodynamic processes involved in wave energy extraction." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31422.

Full text
Abstract:
Wave energy is one of the most promising renewable energy sources for future exploitation. This thesis focuses on thermodynamic effects within Oscillating Water Column (OWC) devices equipped withWells turbines, particularly humidity effects. Previous theoretical studies of the operation of OWCs have resulted in expressions for the oscillation of the water surface in the chamber of an OWC based on linear wave theory, and the air expansion{compression cycle inside the air chamber based on ideal gas theory. Although in practice high humidity levels occur in OWC devices open to the sea, the influence of atmospheric conditions such as temperature and moisture on the performance of Wells turbines has not yet been studied in the field of ocean energy. Researchers have reported substantial differences between predicted and measured power output, and performance rates of OWCs presently coming into operation. The effect of moisture in the air chamber of the OWC causes variations on the atmospheric conditions near the turbine, modifying its performance and efficiency. Discrepancies in available power to the turbine are believed to be due to the humid air conditions, which had not been modelled previously. This thesis presents a study of the influence of humid air on the performance of an idealised Wells turbine in the chamber of an OWC using a real gas model. A new formulation is presented, including a modified adiabatic index, and subsequent modified thermodynamic state variables such as enthalpy, entropy and specific heat. The formulation is validated against experimental data, and found to exhibit better agreement than the ideal approach. The analysis indicates that the real gas behaviour can be explained by a non{dimensional number which depends on the local pressure and temperature in the OWC chamber. A first approach to the OWC formulation through the calculation of real air flow in the OWC is given, which predicts a 6% decrease in efficiency with respect to the ideal case when it is tested with a hypothetical pulse of pressure. This is important because accurate prediction of efficiency is essential for the optimal design and management of OWC converters. A numerical model has also been developed using computational fluid dynamics (CFD) to simulate the OWC characteristics in open sea. The performance of an OWC turbine is studied through the implementation of an actuator disk model in Fluent®. A set of different regular wave tests is developed in a 2D numerical wave flume. The model is tested using information obtained from experimental tests on a Wells{type turbine located in a wind tunnel. Linear response is achieved in terms of pressure drop and air flow in all cases, proving effectively the applicability of the actuator disk model to OWC devices. The numerical model is applied first to an OWC chamber containing dry air, and then to an OWC chamber containing humid air. Results from both cases are compared, and it is found that the results are sensitive to the degree of humidity of the air. Power decreases when humidity increases. Finally, results from the analytical real gas and numerical ideal gas models are compared. Very satisfactory agreement is obtained between the analytical and the numerical models when humidity is inserted in the gaseous phase. Both analytical and numerical models with humid air show considerable differences with the numerical model when dry air is considered. However, at the resonance frequency, results are independent of the gas model used. At every other frequency analysed, the real gas model predicts reduced values of power that can fall to 50% of the ideal power value when coupled to the radiation-diffraction model for regular waves. It is recommended that real gas should be considered in future analyses of Wells turbines in order to calculate accurately the efficiency and expected power of OWC devices.
APA, Harvard, Vancouver, ISO, and other styles
8

Krus, Kristofer. "Wave Model and Watercraft Model for Simulation of Sea State." Thesis, Linköpings universitet, Teoretisk Fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-102959.

Full text
Abstract:
The problem of real-time simulation of ocean surface waves, ship movement and the coupling in between is tackled, and a number of different methods are covered and discussed. Among these methods, the finite volume method has been implemented in an attempt to solve the problem, along with the compressible Euler equations, an octree based staggered grid which allows for easy adaptive mesh refinement, the volume of fluid method and a variant of the Hyper-C advection scheme for compressible flows for advection of the phase fraction field. The process of implementing the methods that were chosen proved to be tricky in many ways, as they involve a large number of advanced topics, and the implementation that was implemented in this thesis work suffered from numerous issues. There were for example problems with keeping the interface intact, as well as a harsh restriction on the time step size due to the CFL condition. Improvements required to make the method sustainable for real-time applications are discussed, and a few suggestions on alternative approaches that are already in use for similar purposes are also given and discussed. Furthermore, a method for compensating for gain/loss of mass when solving the incompressible flow equations with an inaccurately solved pressure Poisson equation is presented and discussed. A momentum conservative method for transporting the velocity field on staggered grids without introducing unnecessary smearing is also presented and implemented. A simple, physically based illumination model for sea surfaces is derived, discussed and compared to the Blinn–Phong shading model, although it is never implemented. Finally, a two-dimensional partial differential equation in the spatial domain for simulating water surface waves for mildly varying bottom topography is derived and discussed, although it is deemed to be too slow for real-time purposes and is therefore never implemented.

This publication differs from the printed version of the report in the sense that links are blue in this version and black in the printed version.

APA, Harvard, Vancouver, ISO, and other styles
9

Waindim, Mbu. "On Unsteadiness in 2-D and 3-D Shock Wave/Turbulent Boundary Layer Interactions." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1511734224701396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

加藤, 由博, Yoshihiro KATO, Igor MEN'SHOV, 佳朗 中村, and Yoshiaki NAKAMURA. "非圧縮性流れ場と音場に分離された方程式による円柱まわりの空力音の計算." 日本機械学会, 2005. http://hdl.handle.net/2237/9088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

加藤, 由博, Yoshihiro KATO, Igor MEN'SHOV, 佳朗 中村, and Yoshiaki NAKAMURA. "地面板上の角柱から発生する空力音の計算." 日本機械学会, 2006. http://hdl.handle.net/2237/9090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zakrzewski, Sam Mechanical &amp Manufacturing Engineering Faculty of Engineering UNSW. "A Numerical and Experimental Investigation of High-Speed Liquid Jets - Their Characteristics and Dynamics." Awarded by:University of New South Wales. Mechanical and Manufacturing Engineering, 2002. http://handle.unsw.edu.au/1959.4/18653.

Full text
Abstract:
A comprehensive understanding of high-speed liquid jets is required for their introduction into engine and combustion applications. Their transient nature, short lifetime, unique characteristics and the inability to take many experimental readings, has inhibited this need. This study investigates the outflow of a high-speed liquid jet into quiescent atmospheric air. The key characteristics present are, a bow shock wave preceding the jet head, an enhanced mixing layer and the transient deformation of the liquid jet core. The outflow regime is studied in an experimental and numerical manner. In the experimental investigation, a high-speed liquid water jet is generated using the momentum exchange by impact method. The jet velocity is supersonic with respect to the impinged gaseous medium. The resulting jet speed is Mach 1.8. The jet is visualised with the use of shadowgraph apparatus. Visualisation takes place over a variety of time steps in the liquid jet???s life span and illustrates the four major development stages. The stages progress from initial rapid core jet expansion to jet stabilisation and characteristic uniform gradient formation. The visualisation shows that at all stages of the jet???s life it is axi-symmetric. One dimensional nozzle analysis and a clean bow shock wave indicate that the pulsing jet phenomenon can be ignored. In the numerical investigation, a time marching finite volume scheme is employed. The bow shock wave characteristics are studied with the use of a blunt body analogy. The jet at a specific time frame is considered a solid body. The jet shape is found to have an important influence on the shock position and shape. Analysis of the results indicates a shock stand-off similar to that seen in experimental observations and the prediction of shock data. The jet life span is modelled using a species dependent density model. The transient calculations reproduce the key jet shape characteristics shown in experimental visualisation. The mushrooming effect and large mixing layer are shown to develop. These effects are strongest when the shock wave transience has yet to stabilise. Quantitative analysis of the mixing layer at varying time steps is presented.
APA, Harvard, Vancouver, ISO, and other styles
13

Li, Zhisong. "Advanced Computational Modeling for Marine Tidal Turbine Farm." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1337889611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

加藤, 由博, Yoshihiro KATO, Igor MEN'SHOV, 佳朗 中村, and Yoshiaki NAKAMURA. "自動車のドアミラーから発生する空力音の計算." 日本機械学会, 2006. http://hdl.handle.net/2237/13862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Drazin, William. "Blast propagation and damage in urban topographies." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274900.

Full text
Abstract:
For many years, terrorism has threatened life, property and business. Targets are largely in urban areas where there is a greater density of life and economic value. Governments, insurers and engineers have sought to mitigate these threats through understanding the effects of urban bombings, increasing the resilience of buildings and improving estimates of financial loss for insurance purposes. This has led to a desire for an improved approach to the prediction of blast propagation in urban cityscapes. Urban geometry has a significant impact on blast wave propagation. Presently, only computational fluid dynamics (CFD) methods adequately simulate these effects. However, for large-scale urban domains, these methods are both challenging to use and are computationally expensive. Adaptive mesh refinement (AMR) methods alleviate the problem, but are difficult to use for the non-expert and require significant tuning. We aim to make CFD urban blast simulation a primary choice for governments, insurers and engineers through improvements to AMR and by studying the performance of CFD in relation to other methods used by the industry. We present a new AMR flagging approach based on a second derivative error norm for compressive shocks (ENCS). This is compared with existing methods and is shown to lead to a reduction in overall refinement without affecting solution quality. Significant improvements to feature tracking over long distances are demonstrated, making the method easier to tune and less obtuse to non-experts. In the chapter that follows, we consider blast damage in urban areas. We begin with a validation and a numerical study, investigating the effects of simple street geometry on blast resultants. We then investigate the sensitivity of their distribution to the location of the charge. We find that moving the charge by a small distance can lead to a significant change in peak overpressures and creates a highly localised damage field due to interactions between the blast wave and the geometry. We then extend the investigation to the prediction of insured losses following a large-scale bombing in London. A CFD loss model is presented and compared with simpler approaches that do not account for urban geometry. We find that the simpler models lead to significant over-predictions of loss, equivalent to several hundred million pounds for the scenario considered. We use these findings to argue for increased uptake of CFD methods by the insurance industry. In the final chapter, we investigate the influence of urban geometry on the propagation of blast waves. An earlier study on the confinement effects of narrow streets is repeated at a converged resolution and we corroborate the findings. We repeat the study, this time introducing a variable porosity into the building facade. We observe that the effect of this porosity is as significant as the confinement effect, and we recommend to engineers that they consider porosity effects in certain cases. We conclude the study by investigating how alterations to building window layout can improve the protective effects of a facade. Maintaining the window surface area constant, we consider a range of layouts and observe how some result in significant reductions to blast strength inside the building.
APA, Harvard, Vancouver, ISO, and other styles
16

Higuera, Caubilla Pablo. "Aplicación de la dinámica de fluidos computacional a la acción del oleaje sobre estructuras . Application of computational fluid dynamics to wave action on structures." Doctoral thesis, Universidad de Cantabria, 2015. http://hdl.handle.net/10803/288368.

Full text
Abstract:
El diseño de estructuras costeras se fundamenta tradicionalmente en dos pilares: formulaciones semiempíricas y modelado físico a escala reducida. El modelado numérico, introducido recientemente en este campo, puede ayudar en el proceso de diseño, como una herramienta avanzada complementaria a las técnicas nombradas. En esta tesis se presenta IHFOAM, un modelo numérico tridimensional nuevo para la simulación de procesos de transformación del oleaje y de interacción con las estructuras. Para ello se detalla el proceso de desarrollo de todos los elementos que permiten la aplicación en este campo. Las características distintivas de este modelo son: generación y absorción activas del oleaje funcionando en los contornos, flujo en el interior de medios porosos y mallado dinámico. Asimismo, se pone especial énfasis en la validación del modelo para un gran número de procesos físicos relevantes, así como en el desarrollo de una metodología híbrida que permita su aplicación en el proceso de diseño. Finalmente, se demuestran las capacidades del modelo con una simulación de una estructura real a escala de prototipo: el dique exterior del Puerto de Laredo (Cantabria).
The design of coastal structures has been traditionally addressed by means of semiempirical formulations and small-scale physical modelling. Numerical modelling has been recently introduced in this field and can assist in the design process as an advanced tool, complementary to the mentioned techniques. In this thesis, IHFOAM is presented as a new three-dimensional numerical model to simulate wave transformation and wave-structure interaction processes. In order to do so, the full development details for the modules that enable the simulation of these applications are given. The distinctive features of the model are: wave generation and active wave absorption at the boundaries, flow inside porous media and dynamic meshing. Moreover, especial emphasis is given to the validation process, involving a large number of physical processes and, furthermore, in developing a hybrid methodology to design real structures with the model. Finally, IHFOAM capabilities are demonstrated with a simulation of a real structure at prototype scale: the exterior breakwater at the Port of Laredo (Spain).
APA, Harvard, Vancouver, ISO, and other styles
17

Ackerman, Paul Henry. "Air turbine design study for a wave energy conversion system." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Khan, Muhammad Ahsan. "CFD Applications for Wave Energy Conversion Devices (MoonWEC) and Turbulent Fountains for Environmental Fluid Mechanics." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Find full text
Abstract:
This thesis is based on two studies that are related to floating wave energy conversion (WEC) devices and turbulent fountains. The ability of the open-source CFD software OpenFOAM® has been studied to simulate these phenomena. The CFD model has been compared with the physical experimental results. The first study presents a model of a WEC device, called MoonWEC, which is patented by the University of Bologna. The CFD model of the MoonWEC under the action of waves has been simulated using OpenFOAM and the results are promising. The reliability of the CFD model is confirmed by the laboratory experiments, conducted at the University of Bologna, for which a small-scale prototype of the MoonWEC was made from wood and brass. The second part of the thesis is related to the turbulent fountains which are formed when a heavier source fluid is injected upward into a lighter ambient fluid, or else a lighter source fluid is injected downward into a heavier ambient fluid. For this study, the first case is considered for laboratory experiments and the corresponding CFD model. The vertical releases of the source fluids into a quiescent, uniform ambient fluid, from a circular source, were studied with different densities in the laboratory experiments, conducted at the University of Parma. The CFD model has been set up for these experiments. Favourable results have been observed from the OpenFOAM simulations for the turbulent fountains as well, indicating that it can be a reliable tool for the simulation of such phenomena.
APA, Harvard, Vancouver, ISO, and other styles
19

Owowo, Julius. "Simulation, measurement and detection of leakage and blockage in fluid pipeline systems." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/simulation-measurement-and-detection-of-leakage-and-blockage-in-fluid-pipeline-systems(f165fb02-a6fb-4063-a63d-3caa129c29f4).html.

Full text
Abstract:
Leakage and blockage of oil and gas pipeline systems, water pipelines, pipe-work of process plants and other pipe networks can cause serious environmental, health and economic problems. There are a number of non-destructive testing (NDT) methods for detecting these defects in pipeline systems such as radiographic, ultrasonic, magnetic particle inspection, pressure transient and acoustic wave methods. In this study, the acoustic wave method and a modal frequency technique, which based on a roving mass method, are used. The aim of the thesis is to employ acoustic wave propagation based methods in conjunction with stationary wavelet transform (SWT) to identify leakage and blockage in pipe systems. Moreover, the research is also aimed at using the difference of modal frequencies of fluid-filled pipes with and without defects and a roving mass, and consequently, to develop a roving mass-based defect detection method for pipelines. In the study, the acoustic finite-element analysis (AFEA) method is employed to simulate acoustic wave propagation in small and large air-filled water-filled straight pipe and pipe networks with leakage and blockage but without flow. Computational fluid dynamics (CFD) analysis was also employed to simulate acoustic wave propagation in air-and water-filled pipes with flow, leakage and blockage. In addition, AFEA was used to predict the modal frequencies of air- and water-filled pipes with leakage and blockage in the presence of a roving mass that was traversed along the axis of the pipes. Experimental testing was conducted to validate some of the numerical results. Two major experiments were performed. The first set of experiments consisted of the measurement of acoustic wave propagation in a straight air-filled pipe with leakage and blockage. The second set of experiments concerned the measurement of acoustic wave propagation in an air-filled pipe network comprising straight pipe, elbows and T-piece and flange. The AFEA and CFD analysis of fluid-filled pipe can be used to simulate the acoustic wave propagation and acoustic wave reflectometry of a fluid-filled pipe with leakage and blockage of different sizes down to a small leakage size of 1mm diameter and a blockage depth of 1.2mm in a pipe. Similarly, the AFEA method of a static fluid-filled pipe can be used to simulate acoustic wave modal frequency analysis of a fluid-filled pipe with leakage and blockage of different sizes down to a leakage of 1mm diameter and a blockage depth of 1.2mm. Moreover, the measured signal of acoustic wave propagation in an air-filled can be successfully decomposed and de-noised using the SWT method to identify and locate leakages of different sizes down to 5mm diameter, and small blockage depth of 1.2mm. Also, the SWT approximation coefficient, detail and de-noised detail coefficient curves of an air-filled pipe with leakage and blockage and a roving mass give leakage and blockage indications that can be used to identify, locate and estimate the size of leakage and blockage in a pipe.
APA, Harvard, Vancouver, ISO, and other styles
20

Velez, Carlos Alberto Busto. "CFD analysis of a uni-directional impulse turbine for wave energy conversion." Master's thesis, University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4714.

Full text
Abstract:
Ocean energy research has grown in popularity in the past decade and has produced various designs for wave energy extraction. This thesis focuses on the performance analysis of a uni-directional impulse turbine for wave energy conversion. Uni-directional impulse turbines can produce uni-directional rotation in bi-directional flow, which makes it ideal for wave energy extraction as the motion of ocean waves are inherently bi-directional. This impulse turbine is currently in use in four of the world's Oscillating Wave Columns (OWC). Current research to date has documented the performance of the turbine but little research has been completed to understand the flow physics in the turbine channel. An analytical model and computational fluid dynamic simulations are used with reference to experimental results found in the literature to develop accurate models of the turbine performance. To carry out the numerical computations various turbulence models are employed and compared. The comparisons indicate that a low Reynolds number Yang-shih K-Epsilon turbulence model is the most computationally efficient while providing accurate results. Additionally, analyses of the losses in the turbine are isolated and documented. Results indicate that large separation regions occur on the turbine blades which drastically affect the torque created by the turbine, the location of flow separation is documented and compared among various flow regimes. The model and simulations show good agreement with the experimental results and the two proposed solutions enhance the performance of the turbine showing an approximate 10% increase in efficiency based on simulation results.
ID: 030646261; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (M.S.A.E.)--University of Central Florida, 2011.; Includes bibliographical references (p. 81-82).
M.S.A.E.
Masters
Mechanical and Aerospace Engineering
Engineering and Computer Science
Aerospace Engineering; Thermofluid Aerodynamics Systems Track
APA, Harvard, Vancouver, ISO, and other styles
21

Sousa, Alves Joao. "Experimental and CFD Analysis of a Biplane Wells Turbine for Wave Energy Harnessing." Thesis, KTH, Mekanik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-124070.

Full text
Abstract:
Several alternative ways of producing energy came up as the world took conscience of the finite availability of fossil fuels and the environmental consequences of its use and processing. Wave and tidal energy are among the so called green energies. Wave energy converters have been under research for the past two decades and yet there hasn’t been one technology that gathered everyone’s acceptance as being the most suitable one. The present work is focused on a self-rectifying turbine for wave energy harnessing. It’s a self-rectifying biplane Wells with an intermediate stator. The main goal is to evaluate the performance of such a turbine. Two different analyses were performed: experimental and computational. The experimental tests were made so that efficiency, velocity profiles and loss coefficients could be calculated. To do so scaled-down prototypes were built from scratch and tested experimentally. The 3D numerical analysis was possible by using a CFD commercial code: Fluent 6.3. Several simulations were performed for different flow coefficients. Three different degrees of mesh refinement were applied and k-ε turbulence model was the one chosen to simulate the viscous behavior of the flow through the turbine. A steady-state analysis is due and two mixing planes were used at the interfaces between the rotors and the stator. In the end comparisons are made between the experimental and numerical results
APA, Harvard, Vancouver, ISO, and other styles
22

Sakib, Salman. "Design Optimization and Field Performance Evaluation of the Wave Suppression and Sediment Collection (WSSC) System| Computational Fluid Dynamics (CFD) Modeling, Surface Elevation Table (SET) Survey, and Marker Clay Study." Thesis, University of Louisiana at Lafayette, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10618338.

Full text
Abstract:

Coastal erosion is an issue of concern for Louisiana, in the United States, and for all other coastal communities in the world. Among many coastal protection and restoration technologies, shoreline protection structures focus on wave reductions to prevent waves from hitting the coastal landforms directly. A novel technology called the Wave Suppression and Sediment Collection (WSSC) system focuses on solving the limitations of conventional shoreline protection structures regarding mobility, constructability, and sustainability. The primary goals of this study are to optimize the WSSC units for wave reduction and sediment transport and to verify the performance of this technology in an actual field environment. Computational Fluid Dynamics (CFD) simulations were carried out to optimize the designs of the units in terms of pipe diameters and face slope. Results have indicated that increasing pipe diameters decreases wave reduction and increases sediment transport ability of the units. Further, it was found that increasing the face slope decreases the wave reduction ability; however, no effect was found on the sediment transport efficiency. Parametric optimization suggested that a porosity (open-to-total area ratio) of 30% should yield satisfactory wave reduction and balanced sediment transport by the units. For better output from the units, the designs should be modified according to site-specific requirements. Field site investigations involved Surface Elevation Table (SET) surveying and marker clay experiments. SET surveys showed significant sediment accumulation over eleven months behind the units. Also, no significant change was observed at the control site over three months, which proves the effectiveness of the technology in stopping erosion and facilitating land building. Marker clay experiments validated the SET measurements and proved that there was a significant amount of sediment deposition over the white Feldspar clay layer over six months. This strengthens the conclusion that the WSSC units can be used successfully in a Louisiana marsh environment to battle coastal erosion and land loss.

APA, Harvard, Vancouver, ISO, and other styles
23

Kuechler, Sebastian. "Wave Propagation in an Elastic Half-Space with Quadratic Nonlinearity." Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19823.

Full text
Abstract:
This study investigates wave propagation in an elastic half-space with quadratic nonlinearity due to a line load on the surface. The consideration of this problem is one of the well known Lamb problems. Even since Lamb's original solution, numerous investigators have obtained solutions to many different variants of the Lamb problem. However, most of the solutions existing in the current literature are limited to wave propagation in a linear elastic half-space. In this work, the Lamb problem in an elastic half-space with quadratic nonlinearity is considered. For this, the problem is first formulated as a hyperbolic system of conservation laws, which is then solved numerically using a semi-discrete central scheme. The numerical method is implemented using the package CentPack. The accuracy of the numerical method is first studied by comparing the numerical solution with the analytical solution for a half-space with linear response (the original Lamb's problem). The numerical results for the half-space with quadratic nonlinearity are than studied using signal-processing tools such as the fast Fourier transform (FFT) in order to analyze and interpret any nonlinear effects. This in particular gives the possibility to evaluate the excitation of higher order harmonics whose amplitude is used to infer material properties. To quantify and compare the nonlinearity of different materials, two parameters are introduced; these parameters are similar to the acoustical nonlinearity parameter for plane waves.
APA, Harvard, Vancouver, ISO, and other styles
24

Dean, Cayla Whitney. "Turbulent and Electromagnetic Signature of Small- and Fine-scale Biological and Oceanographic Processes." Diss., NSUWorks, 2018. https://nsuworks.nova.edu/occ_stuetd/492.

Full text
Abstract:
Small- and fine-scale biological and oceanographic processes may have a measurable electromagnetic signature. These types of processes inherently involve turbulence and three-dimensional dynamics. Traditional models of the electromagnetic signature of oceanographic processes are of an analytical nature, do not account for three-dimensional boundary layer dynamics or turbulence, self-inductance, and may not describe the variety of the environmental conditions occurring in the ocean. In order to address this problem, I have implemented magnetohydrodynamic (MHD) computational fluid dynamics (CFD) tools, which has allowed for the evaluation of the electromagnetic signature of a number of small- and fine-scale biological and oceanographic processes in the ocean. The suite of computational tools has included the commercial models ANSYS Fluent, coupled with the MHD module, and ANSYS Maxwell. These computational tools have been well-established in fluid and electromagnetic engineering. The application of CFD and MHD tools in oceanography is new but is undergoing rapid development. In this work, substantial effort was made toward the CFD, MHD, and magnetostatic model verification and identification of model limitations. Verifications of the CFD, MHD, and magnetostatic models were conducted by successfully comparing their results with the field measurements and laboratory experiments. Comparison with the traditional (analytical) models for surface and internal waves, has revealed their limitations related to bottom boundary layer physics, effect of self-inductance, and, to a lesser extent, the magnetic permeability difference at the air-sea interface. These limitations become important for shallow water internal waves. As a result, the traditional models significantly overestimate the magnetic signature of internal waves observed at the Electromagnetic Observatory. After model verification with the field and laboratory data, the computational models were then applied to evaluate the magnetic signature of diel vertical migration (DVM) of zooplankton, surface waves, internal wave solitons, freshwater lens spreading, and Langmuir circulation. The quantitative estimates have been made for typical environmental conditions. In other environmental conditions, their magnetic signature may be somewhat different. The suite of computational models developed in this dissertation work allows for the estimation of the magnetic signature of fine- and small-scale oceanographic processes in virtually any environmental conditions (e.g., in oil emulsions). I anticipate the result of this study will have Naval, environmental, and oil exploration applications.
APA, Harvard, Vancouver, ISO, and other styles
25

McCallum, Peter Duncan. "Numerical methods for modelling the viscous effects on the interactions between multiple wave energy converters." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28906.

Full text
Abstract:
The vast and rich body of literature covering the numerical modelling of hydrodynamic floating body systems has demonstrated their great power and versatility when applied to offshore marine energy systems. It is possible to model almost any type of physical phenomenon which could be expected within such a system, however, limitations of computing power continue to restrict the usage of the most comprehensive models to very narrow and focused design applications. Despite the continued evolution of parallel computing, one major issue that users of computational tools invariably face is how to simplify their modelled systems in order to achieve practically the necessary computations, whilst capturing enough of the pertinent physics, with great enough ‘resolution’, to give robust results. The challenge is, in particular, to accurately deliver a complete spectrum of results, that account for all of the anticipated sea conditions and allow for the optimisation of different control scenarios. This thesis examines the uncertainty associated with the effects of viscosity and nonlinear behaviour on a small scale model of an oscillating system. There are a wide range of Computational Fluid Dynamics (CFD) methods which capture viscous effects. In general however, the oscillating, six degree-of-freedom floating body problem is best approached using a linear potential flow based Boundary Element Method (BEM), as the time taken to process an equivalent model will differ by several orders of magnitude. For modelling control scenarios and investigating the effects of different sea states, CFD is highly impractical. As potential flows are inviscid by definition, it is therefore important to know how much of an impact viscosity has on the solution, particularly when different scales are of interest during device development. The first aim was to develop verified and validated solutions for a generic type decaying system. The arrangement studied was adapted from an array tank test experiment which was undertaken in 2013 by an external consortium (Stratigaki et al., 2014). Solutions were delivered for various configurations and gave relatively close approximations of the experimental measurements, with the modelling uncertainties attributed to transient nonlinear effects and to dissipative effects. It was not possible however to discern the independent damping processes. A set of CFD models was then developed in order to investigate the above discrepancies, by numerically capturing the nonlinear effects, and the effects of viscosity. The uncontrolled mechanical effects of the experiment could then be deduced by elimination, using known response patterns from the measurements and derived results from the CFD simulations. The numerical uncertainty however posed a significant challenge, with the outcomes supported by verification evidence, and detailed discussions relating to the model configuration. Finally, the impact of viscous and nonlinear effects were examined for two different interacting systems – for two neighbouring devices, and an in-line array of five devices. The importance of interaction behaviour was tested by considering the transfer of radiation forces between the model wave energy converters, due to the widely accepted notion that array effects can impact on energy production yields. As there are only very limited examples of multi-body interaction analysis of wave energy devices using CFD, the results with this work provide important evidence to substantiate the use of CFD for power production evaluations of wave energy arrays. An effective methodology has been outlined in this thesis for delivering specific tests to examine the effects of viscosity and nonlinear processes on a particular shape of floating device. By evaluating both the inviscid and viscous solutions using a nonlinear model, the extraction of systematic mechanical effects from experimental measurements can be achieved. As these uncontrolled frictional effects can be related to the device motion in a relatively straightforward manner, they can be accommodated within efficient potential flow model, even if it transpires that they are nonlinear. The viscous effects are more complex; however, by decomposing into shear and pressure components, it may in some situations be possible to capture partially the dynamics as a further damping term in the efficient time-domain type solver. This is an area of further work.
APA, Harvard, Vancouver, ISO, and other styles
26

Wood, Dylan M. "Finite Element Modeling for Assessing Flood Barrier Risks and Failures due to Storm Surges and Waves." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595572799377091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Dombre, Emmanuel. "Modélisation non-linéaire des interactions vague-structure appliquée à des flotteurs d'éoliennes off-shore." Thesis, Paris Est, 2015. http://www.theses.fr/2015PEST1050/document.

Full text
Abstract:
Cette thèse est consacrée à l'étude numérique des interactions non-linéaires entre des vagues et un corps rigide perçant la surface libre. La méthode développée repose sur un modèle d'éléments de frontière qui réduit la dimensionnalité du problème d'une dimension. Dans un premier temps, un modèle2D est appliqué à des géométries simples et permet de démontrer la pertinence de l'approche envisagée pour la prédiction des mouvements d'une structure flottante soumise à des vagues monochromatiques régulières. Dans un second temps, en nous inspirant d'un modèle potentiel non-linéaire 3D développé par Grilli textit{et al.}~cite{grilli2001fully}, nous proposons une généralisation de la méthode pour des maillages triangulaires non-structurés de surfaces 3D. Le modèle développé permet de traiter des configurations arbitraires de plusieurs cylindres verticaux en interaction avec les vagues. Nous présentons des cas de validation de nature académique qui permettent d'apprécier le comportement du modèle numérique. Puis nous nous tournons vers l'application visée par EDF R&D, qui concerne le dimensionnement d'éoliennes off-shore flottantes. Un flotteur de type semi-submersible est évalué à l'aide du modèle non-linéaire
This PhD work is devoted to the study of nonlinear interactions between waves and floating rigid structures. The developed model relies on a boundary element method which reduces the dimensionality of the problem by one. First, a 2D model is applied to basic geometries and allows us to demonstrate the validity of the method for predicting the motion of a floating structrure subject to incoming monochromatic regular waves. Secondly, getting inspired by the 3D fully nonlinear potential flow model of Grilli textit{et al.}~cite{grilli2001fully}, we propose a novel model which generalizes the method for unstructured triangular meshes of 3D surfaces. The proposed model is able to deal with arbitrary configurations of multiple vertical cylinders interacting with the waves. We present academic validation test cases which show how the model works and behaves. Finally, we study situations of interest for EDF R&D related to floating off-shore wind turbines. A semi-submersible platform is evaluated with the nonlinear model
APA, Harvard, Vancouver, ISO, and other styles
28

Ravikumar, Devaki. "2D Compressible Viscous Flow Computations Using Acoustic Flux Vector Splitting (AFVS) Scheme." Thesis, Indian Institute of Science, 2001. http://hdl.handle.net/2005/277.

Full text
Abstract:
The present work deals with the extension of Acoustic Flux Vector Splitting (AFVS) scheme for the Compressible Viscous flow computations. Accurate viscous flow computations require much finer grids with adequate clustering of grid points in certain regions. Viscous flow computations are performed on unstructured triangulated grids. Solving Navier-Stokes equations involves the inviscid Euler part and the viscous part. The inviscid part of the fluxes are computed using the Acoustic Flux Vector Splitting scheme and the viscous part which is diffusive in nature does not require upwinding and is taken care using a central difference type of scheme. For these computations both the cell centered and the cell vertex finite volume methods are used. Higher order accuracy on unstructured meshes is achieved using the reconstruction procedure. Test cases are chosen in such a way that the performance of the scheme can be evaluated for different range of mach numbers. We demonstrate that higher order AFVS scheme in conjunction with a suitable grid adaptation strategy produce results that compare well with other well known schemes and the experimental data. An assessment of the relative performance of the AFVS scheme with the Roe scheme is also presented.
APA, Harvard, Vancouver, ISO, and other styles
29

(6620447), Yen-Chen Chiang. "Studies on Aboveground Storgae Tanks Subjeected to Wind Loading: Static, Dynamic, and Computational Fluid Dynamics Analyses." Thesis, 2019.

Find full text
Abstract:

Due to the slender geometries of aboveground storage tanks, maintaining the stability under wind gusts of these tanks has always been a challenge. Therefore, this thesis aims to provide a through insight on the behavior of tanks under wind gusts using finite element analysis and computational fluid dynamic (CFD) analysis. The present thesis is composed of three independent studies, and different types of analysis were conducted. In Chapter 2, the main purpose is to model the wind loading dynamically and to investigate whether a resonance can be triggered. Research on tanks subjected to static wind load have thrived for decades, while only few studies consider the wind loading dynamically. Five tanks with different height (H) to diameter (D) ratios, ranging from 0.2 to 4, were investigated in this chapter. To ensure the quality of the obtained solution, a study on the time step increment of an explicit dynamic analysis, and a on the mesh convergence were conducted before the analyses were performed. The natural vibration frequencies and the effective masses of the selected tanks were first solved. Then, the tanks were loaded with wind gusts with the magnitude of the pressure fluctuating at the frequency associating with the most effective mass and other frequencies. Moreover, tanks with eigen-affine imperfections were also considered. It was concluded that resonance was not observed in any of these analyses. However, since the static buckling capacity and the dynamic buckling capacity has a relatively large difference for tall tanks (H/D ≥ 2.0), a proper safety factor shall be included during the design if a static analysis is adopted.

Chapter 3 focus on the effect of an internal pressure generated by wind gusts on open-top tanks. Based on boundary layer wind tunnel tests (BLWT), a significant pressure would be generated on the internal side of the tank shell when a gust of wind blow through an open-top tank. This factor so far has not been sufficiently accounted for by either ASCE-7 or API 650, despite the fact that this internal pressure may almost double the design pressure. Therefore, to investigate the effect of the wind profile along with the internal pressure, multiple wind profiles specified in different design documents were considered. The buckling capacities of six tanks with aspect ratios (H/D) ranging from 0.1 to 4 were analyzed adopting geometrically nonlinear analysis with imperfection using an arc-length algorithm (Riks analysis). Material nonlinearity was also included in some analyses. It was observed that the buckling capacity of a tank obtained using ASCE-7/API 650 wind profile is higher than buckling capacities obtained through any other profiles. It was then concluded that the wind profile dictated by the current North American design documents may not be conservative enough and may need a revision.

Chapter 4 investigates how CFD can be applied to obtain the wind pressure distribution on tanks. Though CFD has been widely employed in different research areas, to the author’s best knowledge, only one research has been dedicated to investigate the interaction between wind gusts and tanks using CFD. Thus, a literature review on the guideline of selecting input parameter for CFD and a parametric study as how to choose proper input parameters was presented in Chapter 4. A tank with an aspect ratio of 0.5 and a flat roof was employed for the parametric study. To ensure the validity of the input parameters, the obtained results were compared with published BLWT results. After confirming that the selected input parameters produces acceptable results, tanks with aspect ratio ranging from 0.4 to 2 were adopted and wind pressure distribution on such tanks were reported. It was concluded that the established criteria for deciding the input parameters were able to guarantee converged results, and the obtained pressure coefficients agree well with the BLWT results available in the literature.

APA, Harvard, Vancouver, ISO, and other styles
30

Bovard, Luke. "Short-wave vortex instabilities in stratified flow." Thesis, 2013. http://hdl.handle.net/10012/8097.

Full text
Abstract:
Density stratification is one of the essential underlying physical mechanisms for atmospheric and oceanic flow. As a first step to investigating the mechanisms of stratified turbulence, linear stability plays a critical role in determining under what conditions a flow remains stable or unstable. In the study of transition to stratified turbulence, a common vortex model, known as the Lamb-Chaplygin dipole, is used to investigate the conditions under which stratified flow transitions to turbulence. Numerous investigations have determined that a critical length scale, known as the buoyancy length, plays a key role in the breakdown and transition to stratified turbulence. At this buoyancy length scale, an instability unique to stratified flow, the zigzag instability, emerges. However investigations into sub-buoyancy length scales have remained unexplored. In this thesis we discover and investigate a new instability of the Lamb-Chaplyin dipole that exists at the sub-buoyancy scale. Through numerical linear stability analysis we show that this short-wave instability exhibits growth rates similar to that of the zigzag instability. We conclude with nonlinear studies of this short-wave instability and demonstrate this new instability saturates at a level proportional to the cube of the aspect ratio.
APA, Harvard, Vancouver, ISO, and other styles
31

(11022453), Akshay Deshpande. "Unsteady Dynamics of Shock-Wave Boundary-Layer Interactions." Thesis, 2021.

Find full text
Abstract:
Shock-wave/turbulent boundary-layer interactions (SWTBLIs) are characterized by low-frequency unsteadiness, amplified aerothermal loads, and a complex three-dimensional flowfield. Presence of a broad range of length and time-scales associated with compressible turbulence generates additional gasdynamic features that interact with different parts of the flowfield via feedback mechanisms. Determining the physics of such flows is of practical importance as they occur frequently in different components of a supersonic/hypersonic aircraft such as inlets operating in both on- and off-design conditions, exhaust nozzles, and control surfaces. SWTBLIs can cause massive flow separation which may trigger unstart by choking the flow in an inlet. On control surfaces, fatigue loading caused by low-frequency shock unsteadiness, coupled with high skin-friction and heat transfer at the surface, can result in failure of the structure.

The objective of this study is twofold. The first aspect involves examining the causes of unsteadiness in SWTBLIs associated with two geometries – a backward facing step flow reattaching on to a ramp, and a highly confined duct flow. Signal processing and statistical techniques are performed on the results obtained from Delayed Detached-Eddy Simulations (DDES) and Implicit Large-Eddy Simulations (ILES). Dynamic Mode Decomposition (DMD) is used as a complement to this analysis, by obtaining a low-dimensional approximation of the flowfield and associating a discrete frequency value to individual modes.

In case of the backward facing step, Fourier analysis of wall-pressure data brought out several energy dominant frequency bands such as separation bubble breathing, oscillations of the reattachment shock, shear-layer flapping, and shedding of vortices from the recirculation zone. The spectra of reattachment shock motion suggested a broadband nature of the oscillations, wherein separation bubble breathing affected the low-frequency motion and shear-layer flapping, and vortex shedding correlated well at higher frequencies. A similar exercise was carried out on the highly confined duct flow which featured separation on the floor and sidewalls. In addition to the low-frequency shock motions, the entire interaction exhibited a cohesive back-and-forth in the streamwise direction as well as a left-right motion along the span. Mode reconstruction using DMD was used in this case to recover complex secondary flows induced by the presence of sidewalls.

For the final aspect of this study, a flow-control actuator was computationally modeled as a sinusoidally varying body-force function. Effects of high-frequency forcing at F+ =1.6 on the flowfield corresponding to a backward facing step flow reattaching on to a ramp were examined. Conditionally averaged profile of streamwise velocity fluctuations, based on reattachment shock position, was used for the formulation of spatial distribution of the actuator. The forcing did not change the mean and RMS profiles significantly, but affected the unsteadiness of the interaction significantly. The effects of forcing were localized to the recirculation zone and did not affect the evolution of the shear-layer. The acoustic disturbances propagating through the freestream and recirculation zone drove the motion of the reattachment shock, and did not alter the low-frequency dynamics of the interaction.
APA, Harvard, Vancouver, ISO, and other styles
32

Kishor, Dubasi Krishna. "Novel Finite Element Formulations For Dynamics Of Acoustic Fluids." Thesis, 2010. http://etd.iisc.ernet.in/handle/2005/1984.

Full text
Abstract:
Fluid-structure interaction (FSI) as the name suggests, is the study of dynamic interaction of both fluid and structure motions. Fluid-structure interaction exists in almost all engineering and science fields. Moreover, the random loading caused by fluid motions in uncertain environment conditions present new challenges to the designers. The objective of the present research work is to develop efficient and robust finite element models to solve fluid structure interaction problems effectively. A key advantage of the displacement based FE M is the flexibility and easiness in modifying the existing efficient numerical solvers, and can also be extended easily to a number of problems. The research work carried out in this thesis can be divided into three parts. In the first part, development of displacement based Lagrangian FE models for acoustic fluids is presented. Here, the displacement fields of the 2-D and 3-DFEs are derived based on the consistently assumed constrained strain fields satisfying irrotationality and incompressibility constraints simultaneously. These elements’ behaviour, in terms of number of zero energy modes, non-zero spurious modes, and the integration order is studied. The inf-sup test is carried out on all the elements to examine the performance of each formulated element. Next, a new class of FEs based on Legendre polynomials is presented. The node point locations in this case are obtained by calculating the zero’s of equation(1- ξ2)L’n(ξ) =0,where,Ln is the Legendre polynomial of order n in one dimension. In the second part, the development of a spectral layer element for studying wave propagation in acoustic fluids is presented. Laplace transform based spectral finite element formulation is developed for studying acoustic wave propagation. The partial differential equations(PDE)are converted to ordinary differential equations(ODE) by taking Laplace transform. The Laplace damping parameter is introduced for easy handling of the numerical Laplace transform(NLT).This Laplace damping parameter removes the “wraparound”problem which is present in shortwave guides due to periodicity of the Fourier transform. Later, a technique is developed through which SFEM stiffness matrix can be added to the FEM dynamic stiffness matrix in the frequency domain. Finally, Uncertainty analysis is carried out to understand the effect of randomness in the design parameters on the system response variability. Here, standard uncertainty analysis procedure called Monte Carlo simulation (MCS) is considered first and later Polynomial chaos expansion(PCE). In this analysis, the gravitational forces, bulk modulus of the fluid, and Young’s modulus of the structure are considered as random input variables in the study. The randomness in the system output is measured in terms of coefficient of variation for each random variable considered.
APA, Harvard, Vancouver, ISO, and other styles
33

Lee, Curtis. "A New Method for Modeling Free Surface Flows and Fluid-structure Interaction with Ocean Applications." Diss., 2016. http://hdl.handle.net/10161/12894.

Full text
Abstract:

The computational modeling of ocean waves and ocean-faring devices poses numerous challenges. Among these are the need to stably and accurately represent both the fluid-fluid interface between water and air as well as the fluid-structure interfaces arising between solid devices and one or more fluids. As techniques are developed to stably and accurately balance the interactions between fluid and structural solvers at these boundaries, a similarly pressing challenge is the development of algorithms that are massively scalable and capable of performing large-scale three-dimensional simulations on reasonable time scales. This dissertation introduces two separate methods for approaching this problem, with the first focusing on the development of sophisticated fluid-fluid interface representations and the second focusing primarily on scalability and extensibility to higher-order methods.

We begin by introducing the narrow-band gradient-augmented level set method (GALSM) for incompressible multiphase Navier-Stokes flow. This is the first use of the high-order GALSM for a fluid flow application, and its reliability and accuracy in modeling ocean environments is tested extensively. The method demonstrates numerous advantages over the traditional level set method, among these a heightened conservation of fluid volume and the representation of subgrid structures.

Next, we present a finite-volume algorithm for solving the incompressible Euler equations in two and three dimensions in the presence of a flow-driven free surface and a dynamic rigid body. In this development, the chief concerns are efficiency, scalability, and extensibility (to higher-order and truly conservative methods). These priorities informed a number of important choices: The air phase is substituted by a pressure boundary condition in order to greatly reduce the size of the computational domain, a cut-cell finite-volume approach is chosen in order to minimize fluid volume loss and open the door to higher-order methods, and adaptive mesh refinement (AMR) is employed to focus computational effort and make large-scale 3D simulations possible. This algorithm is shown to produce robust and accurate results that are well-suited for the study of ocean waves and the development of wave energy conversion (WEC) devices.


Dissertation
APA, Harvard, Vancouver, ISO, and other styles
34

Obed, Samuelraj I. "Micro-Blast Waves." Thesis, 2011. http://hdl.handle.net/2005/2375.

Full text
Abstract:
The near field blast–wave propagation dynamics has been a subject of intense research in recent past. Since experiments on a large scale are difficult to carry out, focus has been directed towards recreating these blast waves inside the laboratory by expending minuscule amounts of energy(few joules),which have been termed here as micro–blast waves. In the present study, micro-blast waves are generated from the open end of a small diameter polymer tube (Inner Diameter of 1.3 mm)coated on its inner side with negligible amounts of HMX explosive (~18 mg/m), along with traces of aluminium powder. Experimental, numerical, and analytical approaches have been adopted in this investigation to understand the generation and subsequent propagation of these micro–blast waves in the open domain. Time–resolved schlieren flow visualization experiments, using a high speed digital camera, and dynamic pressure measurements (head–on and side–on pressures) have been carried out. Quasi one dimensional numerical modeling of the detonation process inside the tube, has been carried out by considering the reaction kinetics of a single(HMX) reaction to account for the reaction dynamics of HMX. The one dimensional numerical model is then coupled to a commercial Navier– Stokes equation solver to understand the propagation of the blast wave from the open end of the tube. A theory that is valid for large scale explosions of intermediate strength was then used for the first time to understand the propagation dynamics of these micro–blast waves. From the experiments, the trajectory of the blast wave was mapped, and its initial Mach number was found to be about 3.7. The side–on overpressure was found to be 5.5 psi at a distance of 20 mm from the tube, along an axis, offset by 30 mm from the tube axis. These values were found to compare quite well with the numerically obtained data in the open domain. From the numerical model of the tube, the energy in the blast wave was inferred to be 1.5 J. This value was then used in the analytical theory and excellent correlation was obtained, suggesting the exciting possibility of using such theories, validated for large-scale explosions, to describe these micro–blasts. Considering the uncertainties in the approximate model, a better estimate of energy was obtained by working back the energy(using the analytical model) from the trajectory data as 1.25 J. The average TNT equivalent, a measure of its strength relative to a TNT explosion, was found to be 0.3. A few benchmark experiments, demonstrating the capability of this novel blast device have also been done by comparing them against the extant large–scale explosion database, suggesting the possibility of using these micro–blast waves to study certain aspects of large–scale explosions.
APA, Harvard, Vancouver, ISO, and other styles
35

Zingan, Valentin Nikolaevich. "Discontinuous Galerkin Finite Element Method for the Nonlinear Hyperbolic Problems with Entropy-Based Artificial Viscosity Stabilization." Thesis, 2012. http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-10845.

Full text
Abstract:
This work develops a discontinuous Galerkin finite element discretization of non- linear hyperbolic conservation equations with efficient and robust high order stabilization built on an entropy-based artificial viscosity approximation. The solutions of equations are represented by elementwise polynomials of an arbitrary degree p > 0 which are continuous within each element but discontinuous on the boundaries. The discretization of equations in time is done by means of high order explicit Runge-Kutta methods identified with respective Butcher tableaux. To stabilize a numerical solution in the vicinity of shock waves and simultaneously preserve the smooth parts from smearing, we add some reasonable amount of artificial viscosity in accordance with the physical principle of entropy production in the interior of shock waves. The viscosity coefficient is proportional to the local size of the residual of an entropy equation and is bounded from above by the first-order artificial viscosity defined by a local wave speed. Since the residual of an entropy equation is supposed to be vanishingly small in smooth regions (of the order of the Local Truncation Error) and arbitrarily large in shocks, the entropy viscosity is almost zero everywhere except the shocks, where it reaches the first-order upper bound. One- and two-dimensional benchmark test cases are presented for nonlinear hyperbolic scalar conservation laws and the system of compressible Euler equations. These tests demonstrate the satisfactory stability properties of the method and optimal convergence rates as well. All numerical solutions to the test problems agree well with the reference solutions found in the literature. We conclude that the new method developed in the present work is a valuable alternative to currently existing techniques of viscous stabilization.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography