Dissertations / Theses on the topic 'Computational biology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Computational biology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Istrail, Sorin. "Computational molecular biology /." Amsterdam [u.a.] : Elsevier, 2003. http://www.loc.gov/catdir/toc/fy037/2003051360.html.
Full textStegle, Oliver. "Probabilistic models in computational biology." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611560.
Full textAthanasakis, D. "Feature selection in computational biology." Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1432346/.
Full textWu, Yichao Hurd Harry L. Ji Chuanshu. "Probability approximations with applications in computational finance and computational biology." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2006. http://dc.lib.unc.edu/u?/etd,247.
Full textTitle from electronic title page (viewed Oct. 10, 2007). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Statistics and Operations Research." Discipline: Statistics and Operations Research; Department/School: Statistics and Operations Research.
Ranjard, Louis. "Computational biology of bird song evolution." e-Thesis University of Auckland, 2010. http://hdl.handle.net/2292/5719.
Full textLanctôt, J. Kevin. "Some string problems in computational biology." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0023/NQ51207.pdf.
Full textMiller, David J. Ghosh Avijit. "New methods in computational systems biology /." Philadelphia, Pa. : Drexel University, 2008. http://hdl.handle.net/1860/2810.
Full textLi, Limin, and 李丽敏. "Machine learning methods for computational biology." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44546749.
Full textVialette, Stéphane. "Algorithmic Contributions to Computational Molecular Biology." Habilitation à diriger des recherches, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00862069.
Full textSelega, Alina. "Computational methods for RNA integrative biology." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/29630.
Full textSimoni, Giulia. "Modeling Startegies for Computational Systems Biology." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/254361.
Full textSimoni, Giulia. "Modeling Startegies for Computational Systems Biology." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/254361.
Full textZagordi, Osvaldo. "Statistical physics methods in computational biology." Doctoral thesis, SISSA, 2007. http://hdl.handle.net/20.500.11767/3971.
Full textPettersson, Fredrik. "A multivariate approach to computational molecular biology." Doctoral thesis, Umeå : Univ, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-609.
Full textZiehm, Matthias Fritz. "Computational biology of longevity in model organisms." Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648888.
Full textSmall, Benjamin Gavin. "The chemical and computational biology of inflammation." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/the-chemical-and-computational-biology-of-inflammation(4de5c19c-e377-4783-acfb-ad168ad35d46).html.
Full textFutamura, Natsuhiko. "Algorithms for large-scale problems in computational biology." Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2002. http://wwwlib.umi.com/cr/syr/main.
Full textDing, Jiarui. "Computational methods for systems biology data of cancer." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/58164.
Full textScience, Faculty of
Computer Science, Department of
Graduate
Uys, Lafras. "Computational systems biology of sucrose accumulation in sugarcane." Thesis, Link to the online version, 2006. http://hdl.handle.net/10019/245.
Full textDinescu, Adriana Cundari Thomas R. "Metals in chemistry and biology computational chemistry studies /." [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-3678.
Full textJones, Neil Christopher. "Computational tools for high-throughput discovery in biology." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3267820.
Full textTitle from first page of PDF file (viewed August 7, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 115-127).
Cong, Yang, and 丛阳. "Optimization models and computational methods for systems biology." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B47752841.
Full textpublished_or_final_version
Mathematics
Doctoral
Doctor of Philosophy
Trybilo, Maciej. "Computational design of orthogonal microRNAs for synthetic biology." Thesis, Brunel University, 2013. http://bura.brunel.ac.uk/handle/2438/8409.
Full textDinescu, Adriana. "Metals in Chemistry and Biology: Computational Chemistry Studies." Thesis, University of North Texas, 2007. https://digital.library.unt.edu/ark:/67531/metadc3678/.
Full textFratkin, Eugene. "Application of non-parametric algorithms to computational biology /." May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textBARDINI, ROBERTA. "A diversity-aware computational framework for systems biology." Doctoral thesis, Politecnico di Torino, 2019. http://hdl.handle.net/11583/2752792.
Full textCodó, Tarraubella Laia. "Computational Infrastructures for biomolecular research." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/668536.
Full textCamacho, Diogo Mayo. "In silico cell biology and biochemistry: a systems biology approach." Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/27960.
Full textPh. D.
Weis, Michael Christian. "Computational Models of the Mammalian Cell Cycle." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1323278159.
Full textHallett, Michael Trevor. "An integrated complexity analysis of problems from computational biology." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1996. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21933.pdf.
Full textRahman, Muhammad Arifur. "Gaussian process in computational biology : covariance functions for transcriptomics." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/19460/.
Full textCastillo, Andrea R. (Andrea Redwing). "Assessing computational methods and science policy in systems biology." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/51655.
Full textIncludes bibliographical references (p. 109-112).
In this thesis, I discuss the development of systems biology and issues in the progression of this science discipline. Traditional molecular biology has been driven by reductionism with the belief that breaking down a biological system into the fundamental biomolecular components will elucidate such phenomena. We have reached limitations with this approach due to the complex and dynamical nature of life and our inability to intuit biological behavior from a modular perspective [37]. Mathematical modeling has been integral to current system biology endeavors since detailed analysis would be invasive if performed on humans experimentally or in clinical trials [17]. The interspecies commonalities in systemic properties and molecular mechanisms suggests that certain behaviors transcend specie differentiation and therefore easily lend to generalizing from simpler organisms to more complex organisms such as humans [7, 17]. Current methodologies in mathematical modeling and analysis have been diverse and numerous, with no standardization to progress the discipline in a collaborative manner. Without collaboration during this formative period, successful development and application of systems biology for societal welfare may be at risk. Furthermore, such collaboration has to be standardized in a fundamental approach to discover generic principles, in the manner of preceding long-standing science disciplines. This study effectively implements and analyzes a mathematical model of a three-protein biochemical network, the Synechococcus elongatus circadian clock.
(cont.) I use mass action theory expressed in kronecker products to exploit the ability to apply numerical methods-including sensitivity analysis via boundary value formulation (BVP) and trapiezoidal integration rule-and experimental techniques-including partial reaction fitting and enzyme-driven activations-when mathematically modeling large-scale biochemical networks. Amidst other applicable methodologies, my approach is grounded in the law of mass action because it is based in experimental data and biomolecular mechanistic properties, yet provides predictive power in the complete delineation of the biological system dynamics for all future time points. The results of my research demonstrate the holistic approach that mass action method-ologies have in determining emergent properties of biological systems. I further stress the necessity to enforce collaboration and standardization in future policymaking, with reconsiderations on current stakeholder incentive to redirect academia and industry focus from new molecular entities to interests in holistic understanding of the complexities and dynamics of life entities. Such redirection away from reductionism could further progress basic and applied scientific research to embetter our circumstances through new treatments and preventive measures for health, and development of new strains and disease control in agriculture and ecology [13].
by Andrea R. Castillo.
S.M.in Technology and Policy
Haider, Syed Abbas. "Computational systems biology-based feature selection for cancer prognosis." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610378.
Full textPicart, Armada Sergio. "Statistical normalisation of network propagation methods for computational biology." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/672381.
Full textLa aparición de tecnologías experimentales de alto rendimiento ha propiciado la creación de un rico entorno de bases de datos que aglomeran todo tipo de anotaciones moleculares. Dada la creciente facilidad para la adquisición de datos en varios niveles moleculares, el reto central de la biología computacional ha virado hacia la interpretación de dicho volumen de datos. La comprensión de los procesos de normalidad y enfermedad involucrados en los cambios observados en los estudios experimentales es el motor que expande la frontera del conocimiento humano. Para ello, es fundamental aprovechar la herencia de conocimiento previo, recogido en las bases de datos en forma de anotaciones y redes biológicas, y minarlo en busca de nuevos patrones e hipótesis. Los algoritmos más extendidos para extraer conocimiento de las redes biológicas son los denominados métodos de propagación y difusión. Su trasfondo es el principio de culpa por asociación, que postula que las entidades biológicas que mantienen relación o interacción son más propensas a compartir funciones y propiedades. Dichos algoritmos aprovechan las interacciones conocidas, en formato de red, para predecir propiedades de nodos (por ejemplo, genes, proteínas o metabolitos) usando las propiedades de sus interactores. Existe evidencia de que la estructura topológica de las redes sesga los algoritmos de propagación, de forma que los nodos mejor descritos gozan de una ventaja sistemática. Los nodos menos conocidos quedan en desventaja, se entorpece el descubrimiento de su implicación en los experimentos, a su vez perpetuando nuestro pobre conocimiento sobre ellos. La literatura ofrece algunos estudios donde se normaliza dicho efecto, pero las propiedades intrínsecas del sesgo y el beneficio real de dicha normalización requiere un estudio más detallado. El objeto de esta tesis tiene dos vertientes. Primero, la caracterización de la estadística del sesgo en los algoritmos de propagación, la concepción de normalizaciones estadísticas y su distribución como software científico. Segundo, la aplicación de dicha normalización en problemas clásicos de biología computacional. Concretamente, en el análisis de vías biológicas para datos de metabolómica y en la predicción de genes como dianas terapéuticas en el desarrollo de fármacos. Ambos problemas son abordables mediante técnicas de propagación y, por lo tanto, potencialmente sensibles al efecto del sesgo topológico. En el primer bloque, se corrobora la existencia del sesgo y su dependencia no sólo de la estructura de la red, sino de los nodos en los que se define la propagación. Se demuestran equivalencias matemáticas entre ciertas variaciones en la definición de la propagación, facilitando así su elección. Se proporcionan expresiones cerradas sobre los momentos estadísticos de la difusión y se halla una conexión con las propiedades espectrales de las redes. Un punto importante es que la normalización no siempre ayuda, y su aplicabilidad dependerá de cada caso particular y de las hipótesis sobre la topología de los nodos que deben ser descubiertos. Para ello, esta tesis deja como resultado diffuStats, un software disponible en un repositorio púlico, que permite calcular y comparar la propagación con ciertas variantes, y con presencia o ausencia de normalización. En el segundo bloque, se escoge el análisis de vías en metabolómica dada la relativa juventud de los estudios metabolómicos y, por ende, su falta de herramientas informáticas dedicadas. El análisis de vías clásico parte de una lista de metabolitos de interés, normalmente procedentes de un estudio, y reporta una lista de vías o procesos metabólicos estadísticamente relacionados con ellos. Algunas variantes usan redes de metabolitos para dar más contexto biológico, pero la interpretación de los datos sigue requiriendo un extenso esfuerzo manual. La aportación de esta tesis es la creación de una red de conocimiento que relaciona los metabolitos con las vías a través de las entidades intermedias anotadas, como reacciones y enzimas. Sobre dicha red se aplican algoritmos de propagación para identificar las entidades más relacionadas con los metabolitos de interés. La normalización estadística es necesaria, dada la estructura y las características de la red. Se demuestra no sólo la coherencia de las vías metabólicas propuestas, sino la de los metabolitos y las reacciones priorizadas. La publicación del software FELLA proporciona la construcción de la red de conocimiento y el algoritmo de difusión a la comunidad científica. FELLA va acompañado de seis casos de aplicación en estudios humanos y animales. Por otro lado, se aborda el problema de predicción de genes para dianas terapéuticas a través de redes biológicas. Además de probar el efecto de la normalización estadística, se pone énfasis en estimar el desempeño real esperado en un escenario de desarrollo de fármacos. Los datos de dianas terapéuticas no se suelen conocer al nivel de proteína sino al de complejo o familia de proteínas. La mayoría de estudios no lo tiene en cuenta, llegando a estimaciones optimistas sobre el desempeño esperado. En esta tesis se propone un estudio exhaustivo que corrige el efecto de los complejos de proteínas, compara algoritmos de propagación con distintas métricas de rendimiento por su informatividad y explora el rol de la red biológica y de la enfermedad en cuestión. Se demuestra que la normalización estadística tiene poco efecto en el desempeño y que, en general, los métodos de propagación siguen siendo útiles en el desarrollo de fármacos después de corregir las estimaciones optimistas de su rendimiento.
McFarlane, Ross. "High-performance computing for computational biology of the heart." Thesis, University of Liverpool, 2010. http://livrepository.liverpool.ac.uk/3173/.
Full textKudahl, Ulrich Johan. "A computational biology approach to studying algae-bacterial interactions." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/276956.
Full textWarne, David James. "Computational inference in mathematical biology: Methodological developments and applications." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/202835/1/David_Warne_Thesis.pdf.
Full textSubramanian, Ayshwarya. "Inferring tumor evolution using computational phylogenetics." Research Showcase @ CMU, 2013. http://repository.cmu.edu/dissertations/275.
Full textBallweg, Richard A. III. "Computational Analysis of Heterogeneous Cellular Responses." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin159216973756476.
Full textKarathia, Hiren Mahendrabhai. "Development and application of computational methdologies for Integrated Molecular Systems Biology." Doctoral thesis, Universitat de Lleida, 2012. http://hdl.handle.net/10803/110518.
Full textEl objetivo del trabajo presentado en esta tesis fue el desarrollo y la aplicación de metodologías computacionales que integran el análisis de la secuencia y de la información funcional y genómica, con el objetivo de reconstruir, anotar y organizar proteomas completos, de tal manera que estos proteomas se puedan comparar entre cualquier número de organismos con genomas completamente secuenciados. Metodológicamente, I centrado en la identificación de organización molecular dentro de un proteoma completo de un organismo de referencia, vinculando cada proteína en que proteoma a las proteínas de otros organismos, de tal manera que cualquiera puede comparar los dos proteomas en espacial, estructural, funcional tejido, celular, el desarrollo o los niveles de la fisiología. La metodología se aplicó para abordar la cuestión de la identificación de organismos modelo adecuados para estudiar diferentes fenómenos biológicos. Esto se hizo comparando conjuntos de proteínas involucradas en diferentes fenómenos biológicos en Saccharomyces cerevisiae y Homo sapiens con los conjuntos correspondientes de otros organismos con genomas completamente secuenciados. La tesis concluye con la presentación de un servidor web, Homol-MetReS, en el que se implementa la metodología. Homol-MetReS proporciona un entorno de código abierto a la comunidad científica en la que se pueden realizar múltiples niveles de comparación y análisis de proteomas.
The aim of the work presented in this thesis was the development and application of computational methodologies that integrate sequence, functional, and genomic information to provide tools for the reconstruction, annotation and organization of complete proteomes in such a way that the results can be compared between any number of organisms with fully sequenced genomes. Methodologically, I focused on identifying molecular organization within a complete proteome of a reference organism and comparing with proteomes of other organisms at spatial, structural, functional, cellular tissue, development or physiology levels. The methodology was applied to address the issue of identifying appropriate model organisms to study different biological phenomena. This was done by comparing the protein sets involved in different biological phenomena in Saccharomyces cerevisiae and Homo sapiens. This thesis concludes by presenting a web server, Homol-MetReS, on which the methodology is implemented. It provides an open source environment to the scientific community on which they can perform multi-level comparison and analysis of proteomes.
Weirather, Jason Lee. "Computational approaches to the study of human trypanosomatid infections." Thesis, The University of Iowa, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3609102.
Full textTrypanosomatids cause human diseases such as leishmaniasis and African trypanosomiasis. Trypanosomatids are protists from the order Trypanosomatida and include species of the genera Trypanosoma and Leishmania, which occupy a similar ecological niche. Both have digenic life-stages, alternating between an insect vector and a range of mammalian hosts. However, the strategies used to subvert the host immune system differ greatly as do the clinical outcome of infections between species. The genomes of both the host and the parasite instruct us about strategies the pathogens use to subvert the human immune system, and adaptations by the human host allowing us to better survive infections. We have applied unsupervised learning algorithms to aid visualization of amino acid sequence similarity and the potential for recombination events within Trypanosoma brucei 's large repertoire of variant surface glycoproteins (VSGs). Methods developed here reveal five groups of VSGs within a single sequenced genome of T. brucei, indicating many likely recombination events occurring between VSGs of the same type, but not between those of different types. These tools and methods can be broadly applied to identify groups of non-coding regulatory sequences within other Trypanosomatid genomes. To aid in the detection, quantification, and species identification of leishmania DNA isolated from environmental or clinical specimens, we developed a set of quantitative-PCR primers and probes targeting a taxonomically and geographically broad spectrum of Leishmania species. This assay has been applied to DNA extracted from both human and canine hosts as well as the sand fly vector, demonstrating its flexibility and utility in a variety of research applications. Within the host genomes, fine mapping SNP analysis was performed to detect polymorphisms in a family study of subjects in a region of Northeast Brazil that is endemic for Leishmania infantum chagasi, the parasite causing visceral leishmaniasis. These studies identified associations between genetic loci and the development of visceral leishmaniasis, with a single polymorphism associated with an asymptomatic outcome after infection. The methods and results presented here have capitalized on the large amount of genomics data becoming available that will improve our understanding of both parasite and host genetics and their role in human disease.
Facchetti, Giuseppe. "Computational approaches to complex biological networks." Doctoral thesis, SISSA, 2013. http://hdl.handle.net/20.500.11767/4822.
Full textJones-Rhoades, Matthew W. (Matthew William). "Computational and experimental analysis of plant microRNAs." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/31191.
Full textIncludes bibliographical references.
MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that mediate gene regulation in plants and animals. We demonstrated that Arabidopsis thaliana miRNAs are highly complementary (0-3 mispairs in an ungapped alignment) to more mRNAs than would be expected by chance. These mRNAs are therefore putative regulatory targets of their complementary miRNAs. Many miRNA complementary sites are conserved to the monocot Oryza sativa (rice), implying evolutionary conservation based on function at the nucleotide level. The majority of predicted miRNA targets encode for transcription factors and other proteins with known or inferred roles in developmental patterning, implying that the miRNAs themselves are high-level regulators of development. Our findings indicated that miRNAs are key components of numerous regulatory circuits in plants and set the stage for numerous additional experiments to investigate in depth the significance of miRNA-mediated regulation for particular target families and genes. We developed a comparative genomics approach to identify miRNAs and miRNA targets conserved between Arabidopsis and Oryza. Seven previously unknown miRNAs families were experimentally verified, bringing the total number of known miRNA genes in Arabidopsis to 92, representing 22 families. We expanded the range of functionalities known to be regulated by miRNAs to include F-box proteins, laccases, superoxide dismutases, and ATP-sulfurylases. The expression of miR395, which targets sulfate metabolizing enzymes, is induced by sulfate- starvation, demonstrating that miRNA expression can be responsive to growth conditions.
(cont.) We investigated the biological role of miR394-mediated regulation of Atlg27340, an F-box gene of previously unknown function. Transgenic plants expressing a miR394-resistant version of Atlg27340 displayed a range of developmental abnormalities, including radialized and fused cotyledons, absent shoot apical meristems, curled and radialized leaves, and abortive flowers. The severity of these abnormalities correlated with the overaccumulation of Atlg27340 mRNA. These findings confirm the biological relevance of the interaction between miR394 and Atlg27340, and represent the first insights into the roles of miRNA-mediated regulation of F-box genes. Our results establish that both MIR394 and Atlg27340 are important regulators of meristem identity, and suggest that Atlg27340 targets an activator of class III HD-ZIP function for ubiquitination and proteolysis.
by Matthew W. Jones-Rhoades.
Ph.D.
Kasap, Server. "High performance reconfigurable architectures for bioinformatics and computational biology applications." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/24757.
Full textMisirli, Goksel. "Data integration strategies for informing computational design in synthetic biology." Thesis, University of Newcastle upon Tyne, 2013. http://hdl.handle.net/10443/1873.
Full textFu, Yan. "Computational Systems Biology Analysis of Cell Reprogramming and Activation Dynamics." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/28414.
Full textPh. D.
Donaldson, Eric F. Baric Ralph S. "Computational and molecular biology approaches to viral replication and pathogenesis." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2008. http://dc.lib.unc.edu/u?/etd,1731.
Full textTitle from electronic title page (viewed Sep. 16, 2008). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Microbiology and Immunology Virology." Discipline: Microbiology and Immunology; Department/School: Medicine.
Yang, Pengyi. "Ensemble methods and hybrid algorithms for computational and systems biology." Thesis, The University of Sydney, 2012. https://hdl.handle.net/2123/28979.
Full textKhan, Maria Mohammad. "Computational Biology in the Analysis of Epigenetic Nuclear Self-Organization." Thesis, The University of Arizona, 2010. http://hdl.handle.net/10150/146042.
Full textGhaffarizadeh, Ahmadreza. "COMPUTATIONAL MODELS OF INTRACELLULAR AND INTERCELLULAR PROCESSES IN DEVELOPMENTAL BIOLOGY." DigitalCommons@USU, 2014. https://digitalcommons.usu.edu/etd/3103.
Full text