Academic literature on the topic 'Compton Inverse'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Compton Inverse.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Compton Inverse"
Suortti, Pekka. "Inverse Compton for Compton." Physica Scripta 91, no. 4 (March 7, 2016): 043002. http://dx.doi.org/10.1088/0031-8949/91/4/043002.
Full textGhisellini, G., I. M. George, A. C. Fabian, and C. Done. "Anisotropic inverse Compton emission." Monthly Notices of the Royal Astronomical Society 248, no. 1 (January 1991): 14–19. http://dx.doi.org/10.1093/mnras/248.1.14.
Full textPadmanabhan, T. "Inverse Compton scattering – revisited." Journal of Astrophysics and Astronomy 18, no. 1 (June 1997): 87–90. http://dx.doi.org/10.1007/bf02714856.
Full textCuratolo, C., L. Lanz, and V. Petrillo. "Inverse Compton Cross Section Revisited." Physics Procedia 52 (2014): 46–51. http://dx.doi.org/10.1016/j.phpro.2014.06.008.
Full textGraves, W. S., W. Brown, F. X. Kaertner, and D. E. Moncton. "MIT inverse Compton source concept." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 608, no. 1 (September 2009): S103—S105. http://dx.doi.org/10.1016/j.nima.2009.05.042.
Full textBornikov, K. A., I. P. Volobuev, and Yu V. Popov. "Notes on inverse Compton scattering." Seriya 3: Fizika, Astronomiya, no. 4_2023 (September 20, 2023): 2340201–1. http://dx.doi.org/10.55959/msu0579-9392.78.2340201.
Full textBornikov, K. A., I. P. Volobuev, and Yu V. Popov. "Notes on Inverse Compton Scattering." Moscow University Physics Bulletin 78, no. 4 (August 2023): 453–59. http://dx.doi.org/10.3103/s0027134923040045.
Full textChen, Xin, Xinze Li, Shangqi Zha, and Lingyin Zhang. "Applications of Non-linear Inverse Compton Scattering based on the Laser Plasma Accelerators." Highlights in Science, Engineering and Technology 38 (March 16, 2023): 437–43. http://dx.doi.org/10.54097/hset.v38i.5856.
Full textWei Jianmeng, 魏见萌, 夏长权 Xia Changquan, 冯珂 Feng Ke, 张虹 Zhang Hong, 姜海 Jiang Hai, 葛彦杰 Ge Yanjie, 王文涛 Wang Wentao, 冷雨欣 Leng Yuxin, and 李儒新 Li Ruxin. "全光逆康普顿散射源." Acta Optica Sinica 44, no. 4 (2024): 0400004. http://dx.doi.org/10.3788/aos231602.
Full textBulyak, Eugene, and Junji Urakawa. "Spectral properties of Compton inverse radiation: Application of Compton beams." Journal of Physics: Conference Series 517 (May 30, 2014): 012001. http://dx.doi.org/10.1088/1742-6596/517/1/012001.
Full textDissertations / Theses on the topic "Compton Inverse"
Cullen, Jason. "Inverse compton scattering in high energy astrophysics." Connect to full text, 2001. http://hdl.handle.net/2123/849.
Full textTitle from title screen (viewed Apr. 23, 2008). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the Research Centre for Theoretical Astrophysics & Theoretical Physics Group, School of Physics. Degree awarded 2002; thesis submitted 2001. Includes bibliography. Also available in print form.
Cullen, Jason Graham. "Inverse compton scattering in high energy astrophysics." Thesis, The University of Sydney, 2001. http://hdl.handle.net/2123/849.
Full textCullen, Jason Graham. "Inverse compton scattering in high energy astrophysics." University of Sydney. Physics, 2001. http://hdl.handle.net/2123/849.
Full textResta, Giacomo Rosario. "Three-dimensional simulation of coherent inverse Compton scattering." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92692.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (page 49).
Novel compact X-ray sources using coherent ICS have the potential to positively impact a wide range of sectors by making hard x-ray techniques more accessible. However, the analysis of such novel sources requires improvements to existing simulation routines to incorporate Coulomb forces among particles and effects related to the phase of emitted radiation. This thesis develops a numerical routine for calculating the radiation scattered by electrons counter-propagating with a linearly-polarized, Gaussian laser pulse. The routine takes into account electron-electron repulsion and the constructive and destructive interference between the radiation emitted by each electron, making it suitable for characterizing the properties of inverse Compton scattering (ICS) sources where the electron density varies on the order of the laser wavelength. Finally, an analysis of the emission characteristics for an example ICS source with coherent emission at 10 nm wavelength is included. The source uses a 2 MeV electron bunch and a 1 /pm wavelength laser. The coherent emission demonstrates a significantly narrowed linewidth and greatly increased output power when compared to traditional ICS.
by Giacomo Rosario Resta.
S.B.
CARDARELLI, Paolo. "Devices and techniques for the characterization of inverse Compton sources." Doctoral thesis, Università degli studi di Ferrara, 2013. http://hdl.handle.net/11392/2388872.
Full textCiccarelli, Cristiano. "Processi di scattering in astrofisica." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/19940/.
Full textFornasiero, Ilaria. "Processi di scattering in astrofisica." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24834/.
Full textJochmann, Axel. "Development and Characterization of a tunable ultrafast X-ray source via Inverse Compton Scattering." Forschungszentrum Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-154801.
Full textJochmann, Axel. "Development and Characterization of a tunable ultrafast X-ray source via Inverse Compton Scattering." Forschungszentrum Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-162231.
Full textUltrakurze, quasi-monochromatische harte Röntgenpulse erweitern das Verständnis für die dynamischen Prozesse und funktionalen Zusammenhänge in Materie, beispielsweise die Dynamik in atomaren Strukturen bei ultraschnellen Phasenübergängen, Gitterbewegungen und (bio)chemischen Reaktionen. Compton-Rückstreuung erlaubt die Erzeugung der für ein pump-probe-Experiment benötigten intensiven Röntgenpulse und ermöglicht gleichzeitig einen Einblick in die komplexen kinematischen Prozesse während der Wechselwirkung von Elektronen und Photonen. Ziel dieser Arbeit ist, ein quantitatives Verständnis der verschiedenen experimentellen Einflüsse auf die emittierte Röntgenstrahlung bei der Streuung von Laserphotonen an relativistischen Elektronen zu entwickeln. Die Experimente wurden am ELBE - Zentrum für Hochleistungs-Strahlenquellen des Helmholtz-Zentrums Dresden - Rossendorf durchgeführt. Der verwendete supraleitende Linearbschleuniger ELBE und der auf Titan-Saphir basierende Hochleistungslaser DRACO garantieren ein Höchstmaß an Kontrolle und Stabilität der experimentellen Bedingungen. Zur Messung der emittierten Röntgenstrahlung wurde ein Siliziumdetektor mit 1024x256 Pixeln (Pixelgröße 26μm × 26μm) verwendet, welcher für eine bisher nicht erreichte spektrale und räumliche Auflösung sorgt. Die so erfolgte vollständige Charakterisierung der Energie-Winkel-Beziehung erlaubt Rückschlüsse auf Parametereinflüsse und Korrelationen von Elektronen- und Laserstrahl. Eine umfassende statistische Analyse, bei der ab-initio 3D Simulationen mit den experimentellen Daten verglichen und ausgewertet wurden, ermöglichte u.a. die Bestimmung der Elektronenstrahldivergenz mit einer Genauigkeit von 1.5% und erlaubt Vorhersagen zur zu erwartenden Strahlung der zukünftigen brillianten Röntgenquelle PHOENIX (Photon electron collider for Narrow bandwidth Intense X-rays) und potentiellen lasergetriebenen Gammastrahlungsquellen. Die Ergebnisse dienen als Fixpunkt für die Skalierung des erwarteten Photonenflusses der Röntgenquelle für die verfügbaren Ausgangsgrößen am Helmholtz-Zentrum Dresden - Rossendorf. Das Wissen um die räumliche und spektrale Verteilung der Röntgenstrahlung ist entscheidend für die Planung zukünftiger Experimente sowie zur Anpassung der Quelle an experimentelle Bedürfnisse
Pires, Abel. "Optimisation de la source X impulsionnelle par diffusion Compton inverse d'un accélérateur linéaire d'électrons." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP156.
Full textMy thesis focuses on optimizing an X-ray source through inverse Compton scattering, which consists in the interaction between an electron bunch from an accelerator and a laser beam.I worked on optimizing the transport through the magnetic compressor, which reduces the duration of electron bunches. I analyzed this component using three simulation codes, as well as experimentally, to identify the physical effects that influence the bunch quality (emittance) as a function of the number of electrons in the bunch.For the laser, my work enables us to achieve higher laser energies at the interaction point. I implemented a Chirped Pulse Amplification (CPA) system, which stretches the laser pulse duration before amplification to prevent damage. I also worked on a device, SMILE 2 that enables the superposition of 8 laser pulses at the interaction point. The new version allows for automated alignment
Books on the topic "Compton Inverse"
Günther, Benedikt Sebastian. Storage Ring-Based Inverse Compton X-ray Sources. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17742-2.
Full textUnited States. National Aeronautics and Space Administration., ed. X-ray inverse Compton emission from the radio halo of M87: A thesis in astronomy. [University Park, Pa.]: Pennsylvania State University, The Graduate School, Dept. of Astronomy, 1985.
Find full textUnited States. National Aeronautics and Space Administration., ed. X-ray inverse Compton emission from the radio halo of M87: Final technical report : November 1, 1983 - October 30, 1984. University Park, PA: Pennsylvania State University, 1985.
Find full textUnited States. National Aeronautics and Space Administration., ed. X-ray inverse Compton emission from the radio halo of M87: Final technical report : November 1, 1983 - October 30, 1984. University Park, PA: Pennsylvania State University, 1985.
Find full textUnited States. National Aeronautics and Space Administration., ed. Search for inverse Compton X-rays from the Lobes of Fornax A X-rays from radio galaxies straddling the Fanaroff-Riley transitions: Final technical report for NASA grant NAG 5-1959. [Washington, DC: National Aeronautics and Space Administration, 1994.
Find full textUnited States. National Aeronautics and Space Administration., ed. Search for inverse Compton X-rays from the Lobes of Fornax A X-rays from radio galaxies straddling the Fanaroff-Riley transitions: Final technical report for NASA grant NAG 5-1959. [Washington, DC: National Aeronautics and Space Administration, 1994.
Find full textX-ray inverse Compton emission from the radio halo of M87: A thesis in astronomy. [University Park, Pa.]: Pennsylvania State University, The Graduate School, Dept. of Astronomy, 1985.
Find full textGünther, Benedikt Sebastian. Storage Ring-Based Inverse Compton X-Ray Sources: Cavity Design, Beamline Development and X-Ray Applications. Springer International Publishing AG, 2022.
Find full textStorage Ring-Based Inverse Compton X-Ray Sources: Cavity Design, Beamline Development and X-Ray Applications. Springer International Publishing AG, 2024.
Find full textGanarin, Manuel. L'interpretazione autentica nelle attuali dinamiche evolutive del diritto canonico. Bononia University Press, 2021. http://dx.doi.org/10.30682/sg290.
Full textBook chapters on the topic "Compton Inverse"
Harding, Alice K. "Inverse-Compton Gamma Rays From Plerions." In TeV Gamma-Ray Astrophysics, 257–68. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0171-1_19.
Full textGünther, Benedikt Sebastian. "Overview on Inverse Compton X-ray Sources." In Springer Theses, 117–47. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17742-2_6.
Full textTsakiris, D., J. P. Leahy, R. G. Strom, and C. R. Barber. "Inverse Compton X-Rays from Giant Radio Galaxies." In Extragalactic Radio Sources, 256–58. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0295-4_93.
Full textHoward, W. M., and E. P. Liang. "Inverse Compton Model of Gamma Ray Burst Spectra." In The Origin and Evolution of Neutron Stars, 547. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3913-4_104.
Full textJager, Ocker C. "Synchrotron and Inverse Compton Radiation in Supernova Remnants." In Currents in High-Energy Astrophysics, 225–34. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0253-7_18.
Full textQiao, G. J., R. X. Xu, J. F. Liu, J. L. Han, and B. Zhang. "On the Inverse Compton Scattering Model of Radio Pulsars." In Stellar Astrophysics, 379–84. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-0878-5_44.
Full textXia, X. Y., Z. G. Deng, G. J. Qiao, X. J. Wu, and H. Chen. "The Effects of Inverse Compton Scattering on the Pulsars’ Radiation." In The Origin and Evolution of Neutron Stars, 59. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3913-4_17.
Full textGünther, Benedikt Sebastian. "Inverse Compton X-ray Sources—A Revolution or a Complement?" In Springer Theses, 1–5. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17742-2_1.
Full textQiao, G. J. "Inverse Compton Scattering (ICS) Plays an Important Role in Pulsar Emission." In High Energy Astrophysics, 88–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73560-8_7.
Full textQiao, G. J., X. J. Wu, H. Chen, and X. Y. Xia. "An Inverse Compton Scattering Model for the Spectra of X-Ray Pulsars." In The Origin and Evolution of Neutron Stars, 248. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3913-4_56.
Full textConference papers on the topic "Compton Inverse"
Tilton, Sean E., Elena L. Ros, Kevin E. Schmidt, Sudeep Banerjee, Arvinder Sandhu, Arya Fallahi, Robert A. Kaindl, Mark R. Holl, William S. Graves, and Samuel W. Teitelbaum. "Laser-Based Undulator Design for Soft X-ray Free Electron Laser." In CLEO: Fundamental Science, FW3C.1. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fw3c.1.
Full textBalanov, Amnon, Ron Ruimy, and Ido Kaminer. "Toward high-gain laser-driven electron undulation." In CLEO: Fundamental Science, FW3C.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fw3c.2.
Full textSun, J., H. Ding, Z. Chi, and C. Tang. "Investigation of the resolution requirement for propagation-based phase contrast imaging using inverse Compton scattering sources." In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10656699.
Full textSakai, Yusuke, Oliver Williams, Atsushi Fukasawa, James Rosenzweig, Mikhail Polyanskiy, Marcus Babzien, Karl Kusche, Mikhail Fedurin, Igor Pogorelsky, and Mark Palmer. "Status of Nonlinear Inverse Compton Scattering Studies at the BNL ATF: Properties of 3rd-Order Harmonics by Circularly Polarized CO2laser." In 2022 IEEE Advanced Accelerator Concepts Workshop (AAC), 1–3. IEEE, 2022. https://doi.org/10.1109/aac55212.2022.10822926.
Full textRosa, A., A. Richelli, and L. Colalongo. "EMI Immunity of the Nauta Inverter-Based Amplifier." In 2024 14th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo), 15–18. IEEE, 2024. http://dx.doi.org/10.1109/emccompo61192.2024.10742042.
Full textLiu, Chen, Frede Blaabjerg, and Pooya Davari. "DM EMI Noise Prediction for BCM based Single-Phase Grid-Connected Inverter." In 2024 14th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/emccompo61192.2024.10742037.
Full textSchulz, Matthias, and Michael Kopf. "Passive DC-input and DC-input/AC-output EMI filter for DC-AC inverter." In 2024 14th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/emccompo61192.2024.10742067.
Full textYan, Wenchao, Grigory Golovin, Daniel Haden, Colton Fruhling, Ping Zhang, Jun Zhang, Baozhen Zhao, et al. "Highly Nonlinear Inverse Compton Scattering." In High Intensity Lasers and High Field Phenomena. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/hilas.2016.hm3b.3.
Full textCrider, A., E. P. Liang, I. A. Smith, D. Lin, and M. Kusunose. "A thermal-nonthermal inverse Compton model for Cyg X-1." In The fourth compton symposium. AIP, 1997. http://dx.doi.org/10.1063/1.54154.
Full textCastilla, A., M. Napsuciale, J. M. López Romero, Alejandro Ayala, Guillermo Contreras, Ildefonso Leon, and Pedro Podesta. "Hard photon production by inverse Compton scattering." In XII MEXICAN WORKSHOP ON PARTICLES AND FIELDS. AIP, 2011. http://dx.doi.org/10.1063/1.3622731.
Full textReports on the topic "Compton Inverse"
Weitz, R. L. Inverse Compton conversion. Final report. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/10183321.
Full textDeitrick, Kirsten Elizabeth. Inverse compton light source: a compact design proposal. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1409020.
Full textBlum, E. B. A storage ring based inverse Compton scattering angiography source? Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10105574.
Full textNg, K. Y,. The equivalence of inverse Compton scattering and the undulator concept. Office of Scientific and Technical Information (OSTI), August 2009. http://dx.doi.org/10.2172/966795.
Full textMoskalenko, Igor V., Troy A. Porter, and Seth W. Digel. Inverse Compton Scattering on Solar Photons, Heliospheric Modulation, and Neutrino Astrophysics. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/888780.
Full textPorter, Troy A., Igor V. Moskalenko, and Andrew W. Strong. Inverse Compton Emission from Galactic Supernova Remnants: Effect of the Interstellar Radiation Field. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/888781.
Full textBaltz, E. Diffuse Inverse Compton and Synchrotron Emission from Dark Matter Annihilations in Galactic Satellites. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/826862.
Full textHollmann, Eric. A laser inverse compton scattering diagnostic to study runaway electron dynamics during tokamak disruptions. Office of Scientific and Technical Information (OSTI), November 2021. http://dx.doi.org/10.2172/1829731.
Full textEvans, Todd. A LASER INVERSE COMPTON SCATTERING DIAGNOSTIC TO STUDY RUNAWAY ELECTRON DYNAMICS DURING TOKAMAK DISRUPTIONS. Office of Scientific and Technical Information (OSTI), December 2021. http://dx.doi.org/10.2172/1837231.
Full textMalyzhenkov, Alexander. PHASE-SPACE MANIPULATIONS OF ELECTRON BEAMS FOR X-RAY FREE-ELECTRON LASERS AND INVERSE COMPTON SCATTERING SOURCES. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1489921.
Full text