Dissertations / Theses on the topic 'Compressors stage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Compressors stage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Baker, Jonathan D. "Analysis of the sensitivity of multi-stage axial compressors to fouling at various stages." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://library.nps.navy.mil/uhtbin/hyperion-image/02Sep%5FBaker.pdf.
Full textGallimore, Simon John. "Spanwise mixing in multi-stage axial compressors." Thesis, University of Cambridge, 1986. https://www.repository.cam.ac.uk/handle/1810/250879.
Full textBarile, Kristina (Kristina Marie). "Impeller loss reduction in multi-stage centrifugal compressors." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97364.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 74-75).
Loss generation features for the first stage impeller in a multistage centrifugal compressor are examined using three-dimensional RANS computations. The calculations were carried out for a baseline configuration and for seven other impeller configurations, with the constraints of constant mass flow and constant work per unit mass flow. The computations showed an 8 percent reduction in loss, compared to the baseline, for a configuration that incorporated 60% of the total casing blade angle change in the front 20% chord. Twodimensional interactive boundary layer computations were carried out to demonstrate links between the loss variation and the changes in boundary layer behavior in the front 20% of the blade passage.
by Kristina Barile.
S.M.
DiPietro, Anthony Louis. "Effects of temperature transients on the stall and stall recovery aerodynamics of a multi-stage axial flow compressor." Diss., This resource online, 1997. http://scholar.lib.vt.edu/theses/available/etd-10052007-143638/.
Full textBloch, Gregory S. "A wide-range axial-flow compressor stage performance model." Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-08182009-040326/.
Full textDavis, William L. "Stall analysis in a transonic compressor stage and rotor." Thesis, Monterey, Calif. : Naval Postgraduate School, 2009. http://handle.dtic.mil/100.2/ADA501343.
Full textThesis Advisor(s): Gannon, Anthony J. "June 2009." Description based on title screen as viewed on July 13, 2009. DTIC Identifiers: TCR (Transonic Compressor Rig). Author(s) subject terms: Compressor, Transonic, Stall, Surge. Includes bibliographical references (p. 73-74). Also available in print.
Aubry, Anne-Raphaëlle. "Return channel loss reduction in multi-stage centrifugal compressors." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76091.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 61-63).
This thesis presents concepts for improving the performance of return channels in multi-stage centrifugal compressors. Geometries have been developed to reduce both separation and viscous losses. A number of different features with potential to reduce separation have also been investigated. The final proposed geometry uses a vaneless diffuser which narrows on the shroud side at the beginning of the 180' bend, an axially extended 1800 bend with increasing radius of curvature, and return channel vane leading edge radial position at an increased radius compared to the baseline. Three-dimensional calculations showed a 9% loss reduction compared to previous work [1], with a cumulative loss reduction of 19% compared to a baseline geometry. The geometry developed was based on specified inlet conditions. To examine the potential for increased performance if this constraint was removed, a return channel geometry was also defined that incorporated the same features but allowed modified inlet conditions, specifically radial inlet flow. The design of the impeller required for this new inlet flow was not considered. An overall loss reduction of 23% compared to baseline was found from the calculations. Modification of the impeller geometry is thus proposed as future work.
by Anne-Raphaëlle Aubry.
S.M.
Davis, Milton W. "A stage-by-stage post-stall compression system modeling technique: methodology, validation, and application." Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/50002.
Full textPh. D.
incomplete_metadata
Davis, Milton W. Jr. "A stage-by-stage post-stall compression system modeling technique: methodology, validation, and application." Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/50002.
Full textPh. D.
incomplete_metadata
Russler, Patrick M. "An investigation of the surge behavior of a high-speed ten-stage axial flow compressor." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-09192009-040554/.
Full textKarpik, A., and Yu Vorobiev. "Nonlinear Analysis of Gas Flow in Compressors Stage Based on CFD-Method." Thesis, NTU "KhPI", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/24955.
Full textNadeem, Tariq. "Computer simulation of the steady-state thermodynamic processes and piston ring wear for a multi-stage intercooled reciprocating air compressor." Thesis, Virginia Tech, 1988. http://hdl.handle.net/10919/43257.
Full textMaster of Science
Escuret, Jean-Francois. "The prediction and active control of surge in multi-stage axial-flow compressors." Thesis, Cranfield University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333133.
Full textFeulner, Matthew Roger 1967. "Modeling and control of rotating stall in high speed multi-stage axial compressors." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/11941.
Full textCahill, Joseph E. "Identification and Evaluation of Loss and Deviation Models for use in Transonic Compressor Stage Performance Prediction." Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/37041.
Full textMaster of Science
Swift, William James. "Modelling of losses in multi-stage axial compressors with subsonic conditions / William James Swift." Thesis, North-West University, 2003. http://hdl.handle.net/10394/431.
Full textThesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2004.
Gill, Andrew. "Four quadrant axial flow compressor performance." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20075.
Full textENGLISH ABSTRACT: The aims of this thesis are to identify all possible modes of operaton for a multi-stage axial flow compressor; then to characterise the performance, attempt to numerically model operation, and determine the main flow field features for each mode. Four quadrant axial flow compressor operation occurs when the direction of flow through the compressor or the sign of the pressure difference across the compressor reverses, or any combination of these. Depending on the direction of rotation of the compressor, six modes of operation are possible in the four quadrants of the performance map. The rotor rotates in the design direction for three modes, and in the opposite direction for the other three. The stationary-rotor pressure characteristic is S-shaped and passes through the second and fourth quadrants. A three-stage axial flow compressor operating in the incompressible flow regime was used for the experimental investigation. Flow through the compressor was reversed or augmented by means of an auxiliary axial flow fan. Compressor performance was measured by means of static pressure tappings, a turbine anemometer calibrated to measure forward and reversed volumetric flow and a load cell for torque measurement. The inter-blade row flow fields were measured with pneumatic probes and 50 μm cylindrical hot film probes. Three dimensional single blade-passage Navier-Stokes simulations were performed using the Numeca FineTurbo package. Steady state simulations used a mixing plane approach. A nonlinear harmonic approximation was used for time-unsteady simulations. Unstalled first quadrant operation was unremarkable, and good agreement was obtained between experimental and numerical data. A single stall cell was detected experimentally during stalled operation, which was not modelled numerically. In the fourth quadrant for positive rotation, (windmilling), the compressor acts as an inefficient turbine. Flow separates from the pressure surface of the blade, rendering the steady-state mixing plane approach unsuitable. The performance characteristic curves for second quadrant for positive rotation, are discontinuous with those of first quadrant operation. The temperature rise in the working fluid is significantly higher than at design point. Periodic flow structures occurring across two blade passages were detected at all flow coefficients investigated, invalidating numerical modelling assumptions. Better agreement was obtained between experimental and numerical data from a case found in literature. If the compressor operates as a compressor in reverse (third quadrant operation), significant separation occurs on the pressure surface of all blades, and flow conditions resemble severe first quadrant stall. Separation becomes less severe at larger flow rates, allowing numerical simulation, though this is sensitive to the initial flow field. In the the part of the second quadrant, where the compressor rotates in reverse, it operates as a turbine. The blade angles and the direction of curvature match the flow angles and turning well, leading to high turbine efficiencies. Numerical simulations yielded good agreement with measured results, but were again sensitive to the initial flow field. Fourth quadrant operation with negative rotation occurs when flow is forced through the compressor in the design direction. Large separation bubbles are attached to the pressure surfaces of rotor and stator blades, so virtually all throughflow occurs near the hub and casing
AFRIKAANSE OPSOMMING: Die doelwitte van hierdie tesis is om al die moontlike werkmodusse vir ’n bestaande multi-stadium aksiaalvloei kompressor uit te ken; om dan die gedrag te gekarakteriseer, ’n poging aan te wend om die werking numeries te modelleer, en die belangrikste vloeiveldkenmerke vir elke modus te bepaal. Vier-kwadrant aksiaalvloei kompressor werking vind plaas as die rigting van die vloei deur die kompressor, of die teken van die drukverskil oor die kompressor omkeer, of enige kombinasie daarvan. Afhangende van die rigting van rotasie van die kompressor is ses operasionele modusse moontlik in die vier kwadrante van die kompressorkaart. Die rotor draai in die ontwerprigting vir drie van die modes, en in die teenoorgestelde rigting vir die ander drie. Die stilstaande-rotor drukkarakteristiek is S-vormig gaan deur die tweede en vierde kwadrante. ’n Drie-stadium onsamedrukbare vloei aksiaalvloei kompressor is vir die eksperimentele ondersoek gebruik. Vloei deur die kompressor is omgekeer of aangehelp deur middel van ’n aksiaalvloei hulpwaaier. Kompressor werking is gemeet deur middel van statiese druk meetpunte in die omhulsel, ’n turbine anemometer wat gekalibreer is om vorentoe en omgekeerde volumetriese vloei te meet, en ’n lassel vir wringmoment meting. Interlemryvloeivelde is opgemeet met pneumatiese sensors en 50-μm silindriese warm film sensors. Drie-dimensionele Navier-Stokes simulasies is uitgevoer vir ’n enkele lem van elke lemry, met behulp van die Numeca FineTurbo sagtewarepakket. ’n Mengvlakbenadering is gebruik vir bestendige toestand simulasies, terwyl ’n nie-linere harmoniese benadering gebruik is vir die tyd-afhanklike simulasies. Ongestaakte eerste kwadrant werking was alledaags, en goeie ooreenkoms is gevind tussen die eksperimentele en numeriese data. ’n Enkele staak-sel is eksperimenteel ontdek tydens gestaakte werking. Gestaakte werking is nie numeries gemodelleer nie. In die vierde kwadrant vir positiewe rotasie, (”windmeulwerking”), werk die kompressor as ’n ondoeltreffende turbine. Vloei-wegbrekinging op die lem drukoppervlaktes maak die bestendige toestand mengvlakbenadering ongeskik. In die kenlyne vir tweede kwadrant positiewe rotasie, is daar ’n diskontinu¨ıteit in die prestasie karakteristiekkrommes vir die eerste en tweede kwadrant werking. Die temperatuurstyging in die werk- vloeistof is beduidend ho¨er as as by die ontwerppunt. Periodiese vloeistrukture wat oor twee lemme plaasvind is gevind by alle vloei ko¨effisi¨ente wat ondersoek is, en dit maak die numeriese modellering aannames ongeldig. Beter ooreenkoms tussen die eksperimentele en numeriese data iss verkry met ’n geval wat uit die literatuur gevind is. Indien die kompressor werk as ’n kompressor in omgekeerde (derde kwadrant weking), vind beduidende wegbreking op die drukoppervlak van al die lemme plaas, wat lyk soos ernstige gestaakte eerste kwadrant werking. Die vloeiskeiding raak minder ernstig by ’n groter vloeitempo, wat numeriese nabootsing toelaat, maar die nabootsings is sensitief vir die aanvanklike vloeiveld. In die tweede kwadrant, by omgekeerde rotasie, werk die kompressor as ’n turbine. Die lemhoeke en die rigting van lemkromming stem ooreen met die vloeihoeke en verwringing, wat lei tot ho¨er turbine doeltreffendheid. Numeriese nabootsings stem goed ooreen met gemete resultate, maar is weereens sensitief vir die keuse van die aanvanklike vloeiveld. Vierde kwadrant werking met negatiewe rotasie vind plaas wanneer die lug gedwing word om deur die kompressor in die ontwerprigting te vloei. Groot skeidingborrels sit vas aan die drukoppervlaktes van alle lemme, sodat meeste deurvloei naby die naaf en die omhulsel plaas vind.
Tello, Oquendo Fernando Mauricio. "Study of scroll compressors with vapor-injection for heat pumps operating in cold climates or in high-temperature water heating applications." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/120473.
Full text[CA] Aquesta tesi doctoral presenta un estudi de compressors scroll amb injecció de vapor (SCVI) per a bombes de calor que operen en climes freds o per a aplicacions d'escalfament d'aigua a alta temperatura. Per a això, es va comparar experimentalment un SCVI amb un compressor de dues etapes de pistons (TSRC) treballant amb R-407C en condicions extremes. La comparació es va realitzar en termes d'eficiències del compressor, capacitat, COP i rendiments estacionals tant per al mode calefacció com per al mode refrigeració. Els resultats proporcionen una idea general sobre el rang d'aplicació dels compressors estudiats i sobre les diferències en els rendiments dels compressors. No obstant això, es van identificar diverses limitacions en la caracterització dels compressors i en l'anàlisi del cicle. Això va motivar a aprofundir en l'estudi del cicle de compressió de dues etapes i els seus components. El següent pas va ser realitzar una anàlisi teòrica dels cicles de compressió de dues etapes per a aplicacions de calefacció, on es va identificar la pressió intermèdia i la relació d'injecció com els paràmetres del sistema més influents sobre el COP. La pressió intermèdia es va optimitzar per a dues configuracions d'injecció (tanc de separació i economitzador) utilitzant diversos refrigerants. Basant-se en els resultats de l'optimització, es va proposar una correlació que permet obtindre la pressió intermèdia òptima del cicle, considerant la influència del subrefredament a l'eixida del condensador. A més, es va analitzar la influència del disseny dels components del sistema sobre el COP del cicle. Posteriorment, l'estudi es va aprofundir a nivell de components. El factor més crític en el sistema és el rendiment del compressor. Per tant, el següent pas va ser avaluar la influència de diversos sistemes de compressió amb injecció de vapor sobre el COP. Es van prendre en compte tres tecnologies de compressors, un SCVI, un TSRC i un compressor scroll de dues etapes (TSSC). Aquestes tecnologies de compressors van ser caracteritzades i modelades per a estudiar el seu rendiment. Per a això, es va proposar una nova metodologia per a caracteritzar compressors scroll amb injecció de vapor. Aquesta metodologia permet avaluar el rendiment del compressor independentment del mecanisme d'injecció que s'utilitza en el cicle. Es va identificar una correlació lineal entre la relació d'injecció de refrigerant i la relació de compressió intermèdia. Aquesta correlació s'utilitza per a determinar el flux màssic d'injecció en funció de la pressió intermèdia. Posteriorment, es va proposar un model semi-empíric de compressors scroll i una metodologia per a estendre aquest model per a compressors scroll amb injecció de vapor. Els models van ser ajustats i validats utilitzant dades experimentals de quatre compressors scroll treballant amb R-290 i un SCVI treballant amb R-407C. Finalment, es va comparar un SCVI amb dos compressors de dues etapes, un TSSC i un TSRC, treballant en condicions extremes. Es va optimitzar la relació de volums dels compressors de dues etapes. Els resultats mostren que, en les condicions nominals de funcionament (Te=-15 °C, Tc=50 °C), la relació de volums òptima del TSSC és 0.58, i del TSRC és 0.57. El TSSC aconsegueix un COP 6% major que el SCVI i un COP 11.7% major que el TSRC. Sota un ampli rang de condicions d'operació, el SCVI presenta una millor eficiència i COP per a relacions de pressió inferiors a 5. Per a relacions de pressió més altes, el TSSC presenta millor rendiment i aconsegueix una temperatura de descàrrega més baixa. Es conclou que el SCVI és una solució fàcil d'implementar, des del punt de vista del mecanitzat, i que permet estendre el mapa de treball dels compressors d'una etapa. No obstant això, els resultats mostren que la compressió en dues etapes aconsegueix millorar en major mesura el COP del cicle i la capacitat, amb una major reducció de la
[EN] This Ph.D. thesis presents a study of scroll compressors with vapor-injection (SCVI) for heat pumps operating in cold climates or in high-temperature water heating applications. To do so, firstly, an SCVI was experimentally compared with a two-stage reciprocating compressor (TSRC) working with R-407C under extreme conditions. The comparison was made in terms of compressor efficiencies, capacity, COP, and seasonal COP, both for heating and cooling modes. The results give a general idea about the application range of the studied compressors and the differences in the compressors' performance. Nevertheless, several restrictions in the compressors' characterization and the cycle analysis were identified. This motivated us to deepen in the study of the two-stage compression cycle and its components. The next step was performing a theoretical analysis of two-stage compression cycles for heating applications, where the intermediate pressure and the injection ratio were identified as the most influential system parameters on the COP. The intermediate pressure was optimized for two vapor-injection configurations (flash tank and economizer) using several refrigerants. Based on the optimization results, a correlation was proposed that allows obtaining the optimal intermediate pressure of the cycle, considering the influence of the subcooling at the condenser outlet. In addition, a theoretical analysis of the influence of the design of the system components on the COP of the cycle was performed. Once the thermodynamic analysis of the two-stage cycle was carried out, the study was deepened at the component level. The most critical factor in the system is the compressor performance. Hence, the next step was evaluating the influence of several compression systems with vapor-injection on the COP. Three compressor technologies were taken into account, an SCVI, a TSRC and a two-stage scroll compressor (TSSC). These compressor technologies were characterized and modeled in order to study their performance. To do so, a new methodology to characterize SCVI was proposed. This methodology allows evaluating the compressor performance independently of the injection mechanism used in the cycle. A linear correlation was identified between the refrigerant injection ratio and the intermediate compression ratio. This correlation is used to determine the injection mass flow as a function of the intermediate pressure. Then, a semi-empirical model of scroll compressors and a methodology to extend the model for scroll compressors with vapor-injection was proposed. The models were adjusted and validated using experimental data from four scroll compressors working with R-290 and an SCVI compressor working with R-407C. Finally, an SCVI was compared with two two-stage compressors, a TSSC, and a TSRC, working in extreme conditions. The displacement ratio of the two-stage compressors was optimized. Results show that, at the nominal operating conditions (Te=-15 °C, Tc=50 °C), the optimal displacement ratio of the TSSC is 0.58, and of the TSRC is 0.57. The TSSC achieves 6% larger COP than the SCVI and 11.7% larger COP than the TSRC. Under a wide range of operating conditions, the SCVI presents a better efficiency and COP for pressure ratios below 5. For higher-pressure ratios, the TSSC presents better performance and achieves lower discharge temperature. It is concluded that the SCVI is an easy solution to implement from the point of view of machining, which allows extending the working map of the single-stage compressors. However, the results show that the two-stage compression technology gets further improve the COP of the cycle and the capacity, with a greater reduction of the discharge temperature operating under extreme conditions.
I thank the financial support provided by the Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT) of Ecuador, through the international scholarship program for postgraduate studies “Convocatoria Abierta 2013 Segunda Fase, Grant No 2015-AR37665”.
Tello Oquendo, FM. (2019). Study of scroll compressors with vapor-injection for heat pumps operating in cold climates or in high-temperature water heating applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/120473
TESIS
Human, Dirk Cornelius. "Predicting stage performance of a multi-stage centrifugal compressor using the overall compressor performance characteristic." Diss., University of Pretoria, 2019. http://hdl.handle.net/2263/79588.
Full textDissertation (MEng)--University of Pretoria, 2019.
Mechanical and Aeronautical Engineering
MEng
Unrestricted
Naylor, Edward. "Unsteadiness In An Embedded Axial Compressor Stage." Thesis, Cranfield University, 2008. http://dspace.lib.cranfield.ac.uk/handle/1826/6278.
Full textMeehan, Anthony. "Steady state response of an axial compression system to a constant heat input." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/15975.
Full textRamakdawala, Rizwan R. "Preliminary design code for an axial stage compressor." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2001. http://handle.dtic.mil/100.2/ADA397395.
Full textThesis advisor, Shreeve, Raymond P. "September 2001." Includes bibliographical references (p. 117-119). Also available in print.
Kotidis, Petros Anestis. "Unsteady radial transport in a transonic compressor stage." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/39020.
Full textIncludes bibliographical references (v.2, leaves 212-219).
by Petros Anestis Kotidis.
Ph.D.
Guidotti, Emanuele <1977>. "Towards Centrifugal Compressor Stages Virtual Testing." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6550/.
Full textVincent, Antoine 1979. "Impact of geometric variability on compressor repeating-stage performance." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/17025.
Full textIncludes bibliographical references (p. 75-76).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
The impact of geometric variability on compressor performance is investigated using a compressor repeating-stage model based on well-known correlations for profile losses, endwall blockage, deviation, and the onset of stall. Previous computations with a quasi-two dimensional cascade analysis code are used to link geometric variability to performance deviations. Performance variability is then introduced probabilistically through random perturbations to tip clearances, profile losses and turning. For the variation input, at design incidence, the mean efficiency is found to decrease by 1%, mostly due to the mean shift in profile losses, and the mean pressure rise is reduced by 2.5%, mostly because of the mean shift in turning. A parametric study for compressor stages of different designs shows a lower degradation of mean performance and a lower performance variability for stages which have higher work coefficient, lower degree of reaction, and higher blade aspect ratio. It was found that the influence of blade profile effects was well represented, but the impact of tip clearance variation was not well captured when compared to three-dimensional computations. It is concluded that to address the effects of tip clearance variability, emphasis should be placed on development of models which both can include the alteration of end-wall displacement thickness within the compressor stage and are appropriate for probabilistic description.
by Antoine Vincent.
S.M.
Lavainne, Jérôme 1978. "Sensitivity of a compressor repeating-stage to geometry variation." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/82797.
Full textDimitriadis, Theofilos. "Jet engine performance simulation with compressor stage stacking models." Thesis, Cranfield University, 2006. http://dspace.lib.cranfield.ac.uk/handle/1826/10730.
Full textLeufvén, Oskar. "Compressor Modeling for Control of Automotive Two Stage Turbochargers." Licentiate thesis, Linköpings universitet, Fordonssystem, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-64342.
Full textKumlu, Armagan. "CFD INVESTIGATION OF IMPELLER DIFFUSER INTERACTION EFFECTS ON RADIAL COMPRESSOR STAGE." Thesis, KTH, Kraft- och värmeteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-157534.
Full textCain, Jason James. "Collision Analysis of the Reversible Crankshaft Mechanism in a Convertible Refrigeration Compressor." Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/33479.
Full textMaster of Science
Gould, Kenneth A. (Kenneth Arthur). "Characterization of unsteady flow processes in a centrifugal compressor stage." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35577.
Full textIncludes bibliographical references (p. 137).
Numerical experiments have been implemented to characterize the unsteady loading on the rotating impeller blades in a modem centrifugal compressor. These consist of unsteady Reynolds-averaged Navier Stokes simulations of three-dimensional and quasi-two dimensional approximate models. The interaction between the rotating impeller and the stationary downstream diffuser has been identified as strong source of unsteady loading on the impeller blades. First of a kind unsteady calculations haven been carried out to elucidate an upstream manifestation of a downstream stimulus experienced in a particular centrifugal compressor stage. Here the upstream manifestation is the considerable unsteady loading in the splitter blade leading edge while the downstream stimulus is the unsteady impeller-diffuser interaction Three key parameters that control the level and extent of the unsteady loading are the impeller-diffuser gap, stage loading, and the impeller passage relative Mach number. Impeller-diffuser gap has been shown to control the peak level of unsteady loading on the blade. Stage loading has been shown to control the upstream attenuation of the loading.
(cont.) A hypothesis has been put forward that increased diffusion associated with increased stage loading increases the impeller sensitivity to the downstream disturbance. The relative Mach number has been shown to set the chordwise distribution of the unsteady load on the blade. Unsteady blade loading has been computed through a quasi two-dimensional model in which an unsteady pressure boundary condition is imposed at the impeller exit to approximate the presence of the downstream diffuser. Results of this approximate model have been shown to yield unsteady loading characteristics that are in accord with the full three-dimensional unsteady model. An implied utility of this result is that a quasi-2D approximation could be used during the design phase to approximate the unsteady loading in a timeframe that is compatible with the design environment. The effect of unsteady flow on mass flow capacity of a fluid device is eliminated as a source for over-predictions in mass flow when a steady-state approximation is used.
by Kenneth A. Gould.
S.M.
Giannissis, G. "Rotating stall and stability of mismatched compressor stages." Thesis, Cranfield University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380474.
Full textMerchant, Ali A. (Ali Abbas). "Design and analysis of axial aspirated compressor stages." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9362.
Full textIncludes bibliographical references (p. 145-150).
The pressure ratio of axial compressor stages can be significantly increased by controlling the development of blade and endwall boundary layers in regions of adverse pressure gradient by means of boundary layer suction. This concept is validated and demonstrated through the design and analysis of two unique aspirated compressor stages: a low-speed stage with a design pressure ratio of 1.6 at a tip speed of 750 ft/s, and a high-speed stage with a design pressure ratio of 3.5 at a tip speed of 1500 ft/s. The aspirated compressor stages were designed using a new procedure which is a synthesis of low speed and high speed blade design techniques combined with a flexible inverse design method which enabled precise independent control over the shape of the blade suction and pressure surfaces. Integration of the boundary layer suction calculation into the overall design process is an essential ingredient of the new procedure. The blade design system consists of two axisymmetric through-flow codes coupled with a quasi three-dimensional viscous cascade plane code with inverse design capability. Validation of the completed designs were carried out with three-dimensional Euler and Navier-Stokes calculations. A single spanwise slot on the blade suction surface is used to bleed the boundary layer. The suction mass flow requirement for the low-speed and high-speed stages are 1 % and 4% of the inlet mass flow, respectively. Additional suction between 1-2% is also required on the compressor end walls near shock impingement locations. The rotor is modeled with a tip shroud to eliminate tip clearance effects and to discharge the suction flow radially from the flowpath. Three-dimensional viscous evaluation of the designs showed good agreement with the quasi three-dimensional design intent, except in the endwall regions. The suction requirements predicted by the quasi three-dimensional calculation were confirmed by the three-dimensional viscous calculations. The three-dimensional viscous analysis predicted a peak pressure ratio of 1.59 at an isentropic efficiency of 89% for the low-speed stage, and a peak pressure ratio of 3.68 at an isentropic efficiency of 94% for the high-speed rotor.
by Ali M. Merchant.
Ph.D.
SHUEY, MICHAEL G. E. "NUMERICAL NEAR-STALL PERFORMANCE PREDICTION FOR A LOW SPEED SINGLE STAGE COMPRESSOR." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1129313270.
Full textErickson, David W. S. M. Massachusetts Institute of Technology. "Characterization of performance-limiting flow mechanisms in a centrifugal compressor stage." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/108928.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 269-270).
This research characterizes the performance of a centrifugal compressor stage with a special focus on the pipe diffuser. Two diffuser configurations are studied, one of which is a truncated version of the other. Experimental data acquired on a research compressor stage is interrogated along with a set of well-designed Reynolds-Averaged Navier Stokes computations, complemented by reduced order flow modeling. The fundamental performance-limiting flow mechanisms in the diffuser are identified and used to physically relate important geometry features and operating conditions to the observed compressor pressure rise, efficiency, and operability characteristics. Despite large differences in their geometry, the two diffuser configurations exhibit similar pressure recovery characteristics due to differences in exit nonuniformity and flow angle which result in similar effective area ratios. Variations in the diffuser pressure recovery coefficient with operating point are found to be most influenced by the diffuser inlet flow angle, and secondly by the inlet Mach number. The diffuser inlet flow angle has the primary effect of setting the diffuser inlet one-dimensional area ratio, increasing diffusion at high flow angles. In addition, the diffuser incidence angle influences the formation of counter-rotating vortex pairs that persist throughout the diffuser passage. Using a two-dimensional integral boundary layer model that is modified to accommodate three-dimensional effects as source terms, these secondary flows are shown to detrimentally impact the diffuser pressure rise capability by accumulating high loss flow along the diffuser wall near the plane of symmetry between the vortices. This contributes to the extent and location of a large diffuser passage separation, especially for the baseline diffuser. The impact of the vortices on the boundary layer growth rate is shown to scale inversely with diffuser aspect ratio. The major performance difference between the two diffuser configurations is that the truncated diffuser configuration experiences enhanced stall margin over the baseline diffuser at the design speed. These differences are traced to reduced secondary flows influence and thus reduced separation extent for the higher aspect ratio truncated diffuser. It is hypothesized that the onset of stall for the baseline diffuser configuration is initiated by the transition of the vortex location and corresponding passage separation between diffuser pressure and suction sides with increasing cusp incidence. Conversely, because the extent of the passage separation in the truncated diffuser is diminished due to the higher aspect ratio, the switch in separation side does not immediately initiate instability. The fact that secondary flows have a large influence on diffuser pressure rise capability and compressor stability is counter to conventional preliminary diffuser design approaches which neglect such 3D effects. The findings of this research may therefore be considered during preliminary design optimization to produce better-performing diffuser designs.
by David W. Erickson.
S.M.
Bert, Jérôme. "Application of a design optimization strategy to multi-stage compressor matching." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/36171.
Full textIncludes bibliographical references (p. 96-97).
A major challenge in the design of multi-stage compressors is the matching of stages to enable stable operation over a large range of mass flows and operating conditions. Particularly in turbofan low-pressure compressors, where a variable geometry cannot be implemented, design strategies for maximum efficiency at high speed can compromise the surge margin at low speed. In this thesis, a design optimization framework has been implemented to an industry-strength compressor-matching problem. The optimization framework combines a mean-line flow solver and a dynamic stability analysis of a six-stage low-pressure compressor of a modern turbofan engine to optimize the blade row geometry for enhanced stability at flight idle conditions. To assess the potential improvements in compressor stability at low speed, a number of optimization strategies are employed using different objective functions and stability metrics. To estimate the performance and stability of the six-stage compressor, a mean-line flow solver is developed and coupled with a previously developed dynamic compressor-stability analysis. A fan-root flow model and an endwall loss correlation are developed using performance data provided by industry.
(cont.) The analysis reveals that the models enable an adequate estimation of the datum compressor performance. This methodology is then used in an optimization effort searching for the optimum compressor design. A compressor blade parametrization based on Bezier splines is developed to explore a range of possible blade geometries. A CFD-based blade-row performance database is established using the blade-to-blade solver MISES. This facilitates an effective means to predict the blade performance for various geometries defined by the optimizer. To find the best solution for the compressor-matching problem, a number of optimization strategies are applied to the datum compressor. The best result is obtained using an optimization strategy based on industry surge margin. An improvement of 14.8% in flight idle surge margin is achieved while maintaining the design pressure ratio and efficiency at climb speed within 1% and 0.3 points of the design values respectively. A compressor design optimization based on a dynamic-stability metric is also employed. Due to time constraints, this strategy could not be fully explored and the preliminary results suggest that further work is required.
(cont.) The best results is a 14.8% improvement in the flight idle surge margin, but the re-matching of the compressor and the associated increase in the rotor loading of the second stage entail high-risk design modifications. This suggests that, given these design limitations, the best matching is achieved by the datum configuration. In summary, the thesis demonstrates that the developed compressor design optimization methodology is applicable to industry-strength design problems, and the framework is shown to have the potential to investigate compressor designs for optimum matching.
by Jérôme Bert.
S.M.
Sakulkaew, Sitanun. "Effects of rotor tip clearance on an embedded compressor stage performance." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/74989.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 111-114).
Compressor efficiency variation with rotor tip gap is assessed using numerical simulations on an embedded stage representative of that in a large industrial gas turbine with Reynolds number being approximately 2 x 106 to 7 x 106. The results reveal three distinct behaviors of efficiency variation with tip gap. For relatively small tip gap (less than 0.8% span), the change in efficiency with tip gap is non-monotonic with an optimum tip gap for maximum efficiency. The optimum tip gap is set by two competing flow processes: decreasing tip leakage mixing loss and increasing viscous shear loss at the casing with decreasing tip gap. An optimum tip gap scaling is established and shown to satisfactorily quantify the optimal gap value. For medium tip gap (0.8% - 3.4% span), the efficiency decreases approximately on a linear basis with increasing tip clearance. However, for tip gap beyond a threshold value (3.4% span for this rotor), the efficiency becomes less sensitive to tip gap as the blade tip becomes more aft-loaded thus reducing tip flow mixing loss in the rotor passage. The threshold value is set by the competing effects between increasing tip leakage flow and decreasing tip flow induced mixing loss with increasing tip gap. Thus, to desensitize compressor performance variation with blade gap, rotor should be tip aft-loaded and hub fore-loaded while stator should be tip fore-loaded and hub aft-loaded as much as feasible. This reduces the opportunity for clearance flow mixing loss and maximizes the benefits of reversible work from unsteady effects in attenuating the clearance flow through the downstream blade-row. The net effect can be an overall compressor performance enhancement in terms of efficiency, pressure rise capability, robustness to end gap variation and potentially useful operable range broadening. Preliminary assessment of a stage redesign with a 4% chord more tip aft-loaded blade design for 1.7 % span tip clearance yields 0.2 point stage efficiency benefit.
by Sitanun Sakulkaew.
S.M.
Haynes, Joel M. "Active control of rotating stall in a three-stage axial compressor." Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12623.
Full textTiralap, Aniwat. "Effects of rotor tip blade loading variation on compressor stage performance." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97857.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 117-119).
Changes in loss generation associated with altering the rotor tip loading of an embedded compressor stage is assessed. Steady and unsteady three-dimensional computations, complemented by control volume analyses, for varying rotor tip loading distributions provided results for determining if aft-loading rotor tip would yield a stage performance benefit in terms of a reduction in loss generation. Aft-loading rotor blade tip yields a relatively less-mixed-out tip leakage flow at the rotor exit and a reduction in overall tip leakage mass flow hence a lower loss generation; however, the attendant changes in tip flow angle distribution are such that there is an overall increase in the flow angle mismatch between tip flow and main flow leading to higher loss generation. The latter outweighs the former so that rotor passage loss from aft-loading rotor tip is marginally higher unless a constraint is imposed on tip flow angle distribution so that associated induced loss is negligible; a potential strategy for achieving this is proposed. In the course of assessing the benefit from unsteady tip leakage flow recovery in the downstream stator, it was determined that tip clearance flow is inherently unsteady with a time-scale distinctly different from the blade passing time. The disparity between the two timescales: (i) defines the periodicity of the unsteady rotor-stator flow, which is an integral multiple of blade passing time; and (ii) causes tip leakage vortex to enter the downstream stator at specific pitchwise locations for different blade passing cycles, which is a tip leakage flow phasing effect. Because of an inadequate grid resolution defining the unsteady interaction of tip flow with downstream stator, the benefit from unsteady tip flow recovery is the lower bound of its actual benefit. A revised design hypothesis is thus as follows: "rotor should be tip-aft-loaded and hub-fore-loaded while stator should be hub-aft-loaded and tip-fore-loaded with tip/hub leakage flow angle distribution such that it results in no additional loss". For the compressor stage being assessed here, an estimated 0.15% enhancement in stage efficiency is possible from aft-loading rotor tip only.
by Aniwat Tiralap.
S.M.
Williams, Richard James. "Large tip clearance flows in high pressure stages of axial compressors." Thesis, Durham University, 2009. http://etheses.dur.ac.uk/6/.
Full textCicciotti, Matteo. "Adaptive monitoring of health-state and performance of industrial centrifugal compressors." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/51468.
Full textO'Brien, Joseph Morton. "Transonic Compressor Test Rig rebuild and initial results with the Sanger stage." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2000. http://handle.dtic.mil/100.2/ADA381019.
Full textChoi, Taek Jin 1974. "Development of an effective computational methodology for multi-stage compressor map generation." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/81573.
Full textBlanvillain, Emmanuel 1979. "Dynamic stability analysis of a multi-stage axial compressor with design implications." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/82255.
Full textFarahat, Waleed A. (Waleed Ahmed) 1975. "Dynamical characterization, state estimations and testing of active compressor blades." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/89267.
Full textKempf, Severin Gabriel. "Numerical Study of the Stability of Embedded Supersonic Compressor Stages." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/34506.
Full textMaster of Science
Clements, W. W. "A theoretical and experimental study of diffusion levels in centrifugal compressor stages." Thesis, Queen's University Belfast, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383780.
Full textHurley, Andrew M. "Experimental investigation of high-pressure steam-induced surge in a transonic compressor stage." Thesis, Monterey, Calif. : Naval Postgraduate School, 2008. http://bosun.nps.edu/uhtbin/hyperion-image.exe/08Jun%5FHurley.pdf.
Full textThesis Advisor(s): Gannon, Anthony J. "June 2008." Description based on title screen as viewed on August 25, 2008. Includes bibliographical references (p. 29-30). Also available in print.
Wang, Xudong. "Performance investigation of two-stage heat pump system with vapor-injected scroll compressor." College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/7863.
Full textThesis research directed by: Dept. of Mechanical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Walton, Edward James. "Forced response of a centrifugal compressor stage due to the impeller-diffuser interaction." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/87485.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 135-136).
The unsteady pressure field experienced by a centrifugal compressor stage can be dominated by of the impeller-diffuser interaction. The energy of the unsteady field, under certain aerodynamic and structural conditions, is capable of forcing the rotating impeller blades to vibrate excessively to the point of failure, better known as a high cycle fatigue (HCF) failure. This thesis seeks to identify the physical mechanisms that set the forced response amplitude of an impeller due to the impeller-diffuser interaction. The centrifugal stage researched is comprised of a stationary discrete passage diffuser and an unshrouded rotating impeller with both main and splitter blades. The forced response of two splitter blade modes are computed for a variety of structural boundary conditions and unsteady loadings to elicit the driving physical mechanisms. The findings indicate that the forced response is enhanced when the excitation frequency matches a component's natural frequency, the characteristic wavelength of the unsteady loading matches that of the structural vibration mode, the resonance occurs at high speed, and when modal displacement exists at the impeller blade's trailing edge. The findings also suggest that modal coupling of blade and disk dominant modes leads to high sensitivity of the forced response to small variations in airfoil and disk backwall thickness. Identification of blade-disk couplings are described using a simplified SAFE (Singh's Advanced Frequency Evaluation) diagram. The forced response of taut strings, Bernoulli-Euler beams, and a two mass-spring system are also utilized to elicit how the physical mechanisms act on the impeller's forced response. The Bernoulli-Euler beam model suggests that a mismatch of the forcing wavelength to the structural wavelength by 50% will reduce the forced response amplitude by at least 75%. Finally, a decision tree is proposed to assess the relative resonant risk of impeller modes to the diffuser excitation by identifying which of the physical mechanisms may be the dominant driver of the forced response.
by Edward James Walton.
S.M.