Academic literature on the topic 'COMPRESSION-ABSORPTION SYSTEM'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'COMPRESSION-ABSORPTION SYSTEM.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "COMPRESSION-ABSORPTION SYSTEM"

1

Fernández-Seara, José, Jaime Sieres, and Manuel Vázquez. "Compression–absorption cascade refrigeration system." Applied Thermal Engineering 26, no. 5-6 (2006): 502–12. http://dx.doi.org/10.1016/j.applthermaleng.2005.07.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jain, Vaibhav. "A Review of Vapor Compression-Absorption Integrated Refrigeration Systems." International Journal of Advance Research and Innovation 6, no. 2 (2018): 35–43. http://dx.doi.org/10.51976/ijari.621807.

Full text
Abstract:
This paper provides a literature review on vapor compression-absorption integrated refrigeration systems. A number of research options are suggested by researchers to integrate vapor compression refrigeration system (VCRS) with vapor absorption refrigeration system (VARS). Each way has its own pros and cons. Present work provides a detailed review on working, parametric study, advantages and disadvantages of various configurations of vapor compression-absorption integrated refrigeration systems.
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Li-Ping, Liang Cai, Xiao Zhang, Xiao Xu, and Jing-Yi Qiao. "Hybrid electric vehicle absorption-compression refrigeration system." IOP Conference Series: Earth and Environmental Science 199 (December 19, 2018): 032072. http://dx.doi.org/10.1088/1755-1315/199/3/032072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ramesh kumar, A., and . "Thermodynamic Analysis of Hybrid Absorption Compression System." International Journal of Engineering & Technology 7, no. 3.34 (2018): 445. http://dx.doi.org/10.14419/ijet.v7i3.34.19356.

Full text
Abstract:
The Virtual Reality realistic image content is a technology to enable building imaginary space by This paper presents thermodynamic studies conducted on a GAX hybrid absorption-compression (HYBRID) cycle using ammonia-water as working fluid for air-conditioning applications. The effect of generator, condenser and absorber temperatures on exergy destruction has been investigated. The effect of absorber pressure on the exergy destruction of the cycle has also been studied. It is found that generator and absorber are the major contributors in the total exergy destruction of the hybrid cycle. Comparison of hybrid cycle with conventional GAX cycle shows hybrid cycle has lower value of exergy destruction than the conventional GAX cycle. It is also found that at same thermal conditions assumed in this work the hybrid cycle gives 18 percent increases in average exergetic efficiency when compared to the conventional GAX cycle.
APA, Harvard, Vancouver, ISO, and other styles
5

Agarwal, Shyam, B. B. Arora, and Akhilesh Arora. "Thermodynamic Analysis Of vapour-Absorption (H2O- LiBr)-Compression Combined Refrigeration System Energized Bya Microgas-Turbine." International Journal of Advance Research and Innovation 6, no. 4 (2018): 130–36. http://dx.doi.org/10.51976/ijari.641815.

Full text
Abstract:
The current analysis comprises the configuration of combined refrigeration system which is integration of a vapour compression and vapour absorption system. The integrated system is energized by a microgas turbine to generate cooling at the low temperatures. The waste heat from the exhaust of microgas turbine is used to drive the vapour absorption system while the vapour compression system is directly powered by the small gas turbine. The compression system is at the low temperature stage while the absorption system is at high temperature stage boost the performance of compression system. A computational thermodynamic analysis of the combined system is carried out using mass energy governing equations. It has been concluded on the basis of result obtained that the performance of combined refrigeration systems is higher and less energy consuming.
APA, Harvard, Vancouver, ISO, and other styles
6

Ramanathan, Anand, and Prabhakaran Gunasekaran. "Simulation of absorption refrigeration system for automobile application." Thermal Science 12, no. 3 (2008): 5–13. http://dx.doi.org/10.2298/tsci0803005r.

Full text
Abstract:
An automotive air-conditioning system based on absorption refrigeration cycle has been simulated. This waste heat driven vapor absorption refrigeration system is one alternate to the currently used vapour compression refrigeration system for automotive air-conditioning. Performance analysis of vapor absorption refrigeration system has been done by developing a steady-state simulation model to find the limitation of the proposed system. The water-lithium bromide pair is used as a working mixture for its favorable thermodynamic and transport properties compared to the conventional refrigerants utilized in vapor compression refrigeration applications. The pump power required for the proposed vapor absorption refrigeration system was found lesser than the power required to operate the compressor used in the conventional vapor compression refrigeration system. A possible arrangement of the absorption system for automobile application is proposed.
APA, Harvard, Vancouver, ISO, and other styles
7

Putra, Nandy, H. Ardiyansya, Ridho Irwansyah, et al. "Thermoelectric Heat Pipe-Based Refrigerator: System Development and Comparison with Thermoelectric, Absorption and Vapor Compression Refrigerators." Advanced Materials Research 651 (January 2013): 736–44. http://dx.doi.org/10.4028/www.scientific.net/amr.651.736.

Full text
Abstract:
Thermoelectric coolers have been widely applied to provide cooling for refrigerators in addition to conventional absorption and vapor compression systems. To increase heat dissipation in the thermoelectric cooler’s modules, a heat pipe can be installed in the system. The aim of this study is to develop a thermoelectric heat pipe-based (THP) refrigerator, which consists of thermoelectric coolers that are connected by heat pipe modules to enhance heat transfer. A comparative analysis of the THP prototype and conventional refrigerator with vapor compression, absorption and thermoelectric systems is also presented. The prototype system has a faster cooling down time and a higher coefficient of performance than the absorption system but still lower than vapor compression system
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Lin, Shuang Ping Duan, and Xiao Long Cui. "Performance Analysis of Solar-Assisted Refrigeration Cycle." Applied Mechanics and Materials 170-173 (May 2012): 2504–7. http://dx.doi.org/10.4028/www.scientific.net/amm.170-173.2504.

Full text
Abstract:
Energy-conservation and environmental protection are keys to sustainable development of domestic economy. The solar-assisted cascade refrigeration cycle system is developed. The system consists of electricity-driven vapor compression refrigeration system and solar-driven vapor absorption refrigeration system. The vapor compression refrigeration system is connected in series with vapor absorption refrigeration system. Refrigerant and solution reservoirs are designed to store potential to keep the system operating continuously without sunlight. The results indicate that the system obtains pretty higher COP as compared with the conventional vapor compression refrigeration system. COP of the new-type vapor compression refrigeration system increases as sunlight becomes intense.
APA, Harvard, Vancouver, ISO, and other styles
9

Xu, Yingjie, FuSheng Chen, Qin Wang, Xiaohong Han, Dahong Li, and Guangming Chen. "A novel low-temperature absorption–compression cascade refrigeration system." Applied Thermal Engineering 75 (January 2015): 504–12. http://dx.doi.org/10.1016/j.applthermaleng.2014.10.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ye, Bicui, Shufei Sun, and Zheng Wang. "Potential for Energy Utilization of Air Compression Section Using an Open Absorption Refrigeration System." Applied Sciences 12, no. 13 (2022): 6373. http://dx.doi.org/10.3390/app12136373.

Full text
Abstract:
In this paper, an open absorption refrigeration system is proposed to recover part of the waste compression heat while producing cooling capacity to further cool the compressed air itself. The self-utilization of the compression waste heat can significantly reduce the energy consumption of air compression, and hence increase the energy efficiency of the cryogenic air separation unit. To illuminate the energy distribution and energy conversion principle of the open absorption refrigerator-assisted air compression section, a thermodynamic model is built and the simulation work conducted based on a practical triple-stage air compression section of a middle-scale cryogenic air separation unit. Our results indicate that the energy saving ratio is mainly constrained by the distribution of the cooling load of compressed air, which corresponds to the heat load of the generator and cooling capacity of the evaporator in the open absorption refrigerator. The energy saving ratio ranges from 0.52–8.05%, corresponding to the temperature range of 5–30 °C and humidity range of 0.002–0.010 kg/kg. It is also estimated, based on the economic analysis, that the payback period of the open absorption refrigeration system is less than one year, and the net project revenue during its life cycle reaches USD 5.7 M, thus showing an attractive economic potential.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography