Academic literature on the topic 'COMPRESSION-ABSORPTION SYSTEM'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'COMPRESSION-ABSORPTION SYSTEM.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "COMPRESSION-ABSORPTION SYSTEM"
Fernández-Seara, José, Jaime Sieres, and Manuel Vázquez. "Compression–absorption cascade refrigeration system." Applied Thermal Engineering 26, no. 5-6 (April 2006): 502–12. http://dx.doi.org/10.1016/j.applthermaleng.2005.07.015.
Full textJain, Vaibhav. "A Review of Vapor Compression-Absorption Integrated Refrigeration Systems." International Journal of Advance Research and Innovation 6, no. 2 (2018): 35–43. http://dx.doi.org/10.51976/ijari.621807.
Full textChen, Li-Ping, Liang Cai, Xiao Zhang, Xiao Xu, and Jing-Yi Qiao. "Hybrid electric vehicle absorption-compression refrigeration system." IOP Conference Series: Earth and Environmental Science 199 (December 19, 2018): 032072. http://dx.doi.org/10.1088/1755-1315/199/3/032072.
Full textRamesh kumar, A., and . "Thermodynamic Analysis of Hybrid Absorption Compression System." International Journal of Engineering & Technology 7, no. 3.34 (September 1, 2018): 445. http://dx.doi.org/10.14419/ijet.v7i3.34.19356.
Full textAgarwal, Shyam, B. B. Arora, and Akhilesh Arora. "Thermodynamic Analysis Of vapour-Absorption (H2O- LiBr)-Compression Combined Refrigeration System Energized Bya Microgas-Turbine." International Journal of Advance Research and Innovation 6, no. 4 (2018): 130–36. http://dx.doi.org/10.51976/ijari.641815.
Full textRamanathan, Anand, and Prabhakaran Gunasekaran. "Simulation of absorption refrigeration system for automobile application." Thermal Science 12, no. 3 (2008): 5–13. http://dx.doi.org/10.2298/tsci0803005r.
Full textPutra, Nandy, H. Ardiyansya, Ridho Irwansyah, Wayan Nata Septiadi, A. Adiwinata, A. Renaldi, and K. Benediktus. "Thermoelectric Heat Pipe-Based Refrigerator: System Development and Comparison with Thermoelectric, Absorption and Vapor Compression Refrigerators." Advanced Materials Research 651 (January 2013): 736–44. http://dx.doi.org/10.4028/www.scientific.net/amr.651.736.
Full textWang, Lin, Shuang Ping Duan, and Xiao Long Cui. "Performance Analysis of Solar-Assisted Refrigeration Cycle." Applied Mechanics and Materials 170-173 (May 2012): 2504–7. http://dx.doi.org/10.4028/www.scientific.net/amm.170-173.2504.
Full textXu, Yingjie, FuSheng Chen, Qin Wang, Xiaohong Han, Dahong Li, and Guangming Chen. "A novel low-temperature absorption–compression cascade refrigeration system." Applied Thermal Engineering 75 (January 2015): 504–12. http://dx.doi.org/10.1016/j.applthermaleng.2014.10.043.
Full textYe, Bicui, Shufei Sun, and Zheng Wang. "Potential for Energy Utilization of Air Compression Section Using an Open Absorption Refrigeration System." Applied Sciences 12, no. 13 (June 23, 2022): 6373. http://dx.doi.org/10.3390/app12136373.
Full textDissertations / Theses on the topic "COMPRESSION-ABSORPTION SYSTEM"
VILAFRANCA, MANGUÁN ANA. "Convesion of industrial compression cooling to absorption cooling in an integrated district heating and cooling system." Thesis, University of Gävle, University of Gävle, Department of Technology and Built Environment, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-4145.
Full textAstra Zeneca plant in Gärtuna has many compression cooling machines for comfort that consume about 11.7 GWh of electricity per year. Many of the cooling machines are old; due to the increase of production of the plant, cooling capacity was limited and new machines have been built. Now, the cooling capacity is over-sized. Söderenergi is the district heating plant that supplies heating to Astra Zeneca plant. Due to the strict environmental policy in the energy plant, last year, a bio-fuelled CHP plant was built. It is awarded with the electricity certificate system.
The study investigates the possibility for converting some of the compression cooling to absorption cooling and then analyzes the effects of the district heating system through MODEST optimizations. The effects of the analysis are studied in a system composed by the district heating system in Södertälje and cooling system in Astra Zeneca. In the current system the district heating production is from boiler and compression system supplies cooling to Astra Zeneca. The future system includes a CHP plant for the heating production, and compression system is converted to absorption system in Astra Zeneca. Four effects are analyzed in the system: optimal distribution of the district heating production with the plants available, saving fuel, environmental impact and total cost. The environmental impact has been analyzed considering the marginal electricity from coal condensing plants. The total cost is divided in two parts: production cost, in which district heating cost, purchase of electricity and Emissions Trading cost are included, and investment costs. The progressive changes are introduced in the system as four different scenarios.
The introduction of the absorption machines in the system with the current district heating production increases the total cost due to the low electricity price in Sweden. The introduction of the CHP plant in the district heating production supposes a profit of the production cost with compression system due to the high income of the electricity produced that is sold to the grid; it profit increases when compression is replaced by absorption system. The fuel used in the production of the future system decreases and also the emissions. Then, the future system becomes an opportunity from an environmental and economical point of view. At higher purchase electricity prices predicted in the open electricity market for an immediately future, the future system will become more economically advantageous.
Wong, Choong Wah. "An absorption recompression system." Thesis, University of Nottingham, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320018.
Full textIbrahim, G. A. "An investigation into liquid film absorbers for refrigeration systems." Thesis, King's College London (University of London), 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245436.
Full textAra, Paulo José Schiavon. "Desempenho de sistemas de condicionamento de ar com utilização de energia solar em edifícios de escritórios." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/3/3146/tde-01032011-135653/.
Full textEnergy concern has driven human kind to seek sustainable energy alternatives. In this context, office buildings have an important role, especially due to the high energy consumption of air conditioning systems. For these systems, the possibility of using solar energy is technically feasible and interesting to be considered, mainly because generally when the building thermal load is higher, the solar radiation is also higher. Among solar airconditioning systems, the thermal system - which combines solar collectors with absorption chiller - is the most widespread, nowadays. However, depending on the case, other technologies may take advantage. One option, for example, in the case of office buildings, is the electrical system - which combines photovoltaic panels with conventional vapor compression chiller. In this work, an office building of 20 floors with 1,000 m2 floor area, in Sao Paulo, Brazil, two technologies of solar air conditioning had their performance analyzed: the thermal system - presenting solar thermal collectors only on the roof and the electrical system with PV panels only on the opaque surfaces of the facades. For this, the software EnergyPlus of the United States Department of Energy obtained the building thermal load and the with the solar air conditioning energy consumption calculating method proposed by SOLAIR project of the European Union and adapted to this work, energy performance of systems was obtained. The results showed that for this building, the electrical system had the best energy performance, saving 28% and 71% of electricity that would consume a conventional air conditioning system in a summer day and a winter day, respectively. The thermal system, in contrast, showed a poor energy performance, consuming, for example, on a summer day, about four times more electricity than a conventional air conditioning system. It was found that this occurred because the collectors area limited to the roof of the building was insufficient to meet the absorption chiller demand, causing low solar fractions in the operation, of around 50% and 20% peak, in a winter day and in a summer day, respectively. Thus, in order of provide a satisfactory energy performance, the thermal system requires that the building not to be so tall. In fact, the results showed that only if the building had up to two floors, the system would perform better than a conventional system. In case of be installed in a building with the ground floor only, and floor area of 1000m2, for example, this system would save about 65% of the electricity comparing to a conventional system. Finally, it was found that this energy performance would be elevated as well with the optimization of solar collectors area and technology, with auxiliary heating system improvement and with the reduction of thermal load of the building by means of passive air conditioning techniques.
Saulich, Sven. "Generic design and investigation of solar cooling systems." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/13627.
Full textPrathiiikar, Anil Kumar. "Simulation and optimization compression-absorption refrigeration system." Thesis, 2006. http://localhost:8080/iit/handle/2074/5183.
Full textKUMAR, CHANDAN. "THERMODYNAMIC ANALYSIS OF TWO-STAGE VAPOUR COMPRESSION REFRIGERATION SYSTEM INTEGRATED WITH AN ABSORPTION SYSTEM (LiBr-H2O)." Thesis, 2014. http://dspace.dtu.ac.in:8080/jspui/handle/repository/15450.
Full textBooks on the topic "COMPRESSION-ABSORPTION SYSTEM"
Åhlby, Lena. Compression/absorption cycles for large heat pump: System simulations. Stockholm: Swedish Council for Building Research, 1989.
Find full textChinnappa, J. C. V. A solar-assisted absorption-compression cascaded hybrid air-conditioning system: Tests in Townsville and predicted performance in Darwin : report submitted to Department of Mines and Energy, Northern Territory Government. Townsville, Qld: Dept. of Civil and Systems Engineering, James Cook University, 1989.
Find full textVoorhees, Gardner Tufts. Refrigerating Machines : Compression, Absorption: Comparison of Capacities and Economies of Compression and Absorption Systems, and of Combined Compression and Absorption Systems. Being the Complete Text, Figures, and Diagrams of the Paper Entitled Compar. Creative Media Partners, LLC, 2018.
Find full textVoorhees, Gardner Tufts. Refrigerating Machines : Compression, Absorption: Comparison of Capacities and Economies of Compression and Absorption Systems, and of Combined ... and Diagrams of the Paper Entitled Compar. Franklin Classics Trade Press, 2018.
Find full textBook chapters on the topic "COMPRESSION-ABSORPTION SYSTEM"
Khaliq, Abdul, and Ibrahim Dincer. "Thermodynamic Assessment of Waste Heat Operated Combined Compression–Absorption Refrigeration System." In Progress in Exergy, Energy, and the Environment, 193–205. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04681-5_17.
Full textSafaei, Samaneh, Farshid Keynia, Sam Haghdady, Azim Heydari, and Mario Lamagna. "Design of CCHP System with the Help of Combined Chiller System, Solar Energy, and Gas Microturbine." In The Urban Book Series, 79–91. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29515-7_9.
Full textÅhlby, L., and D. Hodgett. "The Compression-Absorption Cycle: A High-Temperature Application." In Applications and Efficiency of Heat Pump Systems, 59–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-30179-1_6.
Full textZiegler, F., and G. Hämmer. "Experimental Results of a Double-Lift Compression-Absorption Heat Pump." In Applications and Efficiency of Heat Pump Systems, 49–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-30179-1_5.
Full textAlefeld, Georg, and Reinhard Radermacher. "Rules for the Design of Multistage, Absorption Heat Pumps, Heat Transformers, Vapor-Compression Heat Pumps, Heat Engines, and Cascades." In Heat Conversion Systems, 123–32. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003418306-5.
Full textHassan, Ibrahim Galal, Athanasios I. Papadopoulos, Panos Seferlis, Mohammad Azizur Rahman, Sambhaji T. Kadam, and Alexios Kyriakides. "Current Progress in District Cooling Infrastructures and Their Evolution to Integrated Vapor Absorption-Compression Refrigeration Systems." In Proceedings of the 5th International Conference on Building Energy and Environment, 2577–85. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9822-5_276.
Full textN., Kapilan, and Vidhya P. "Applications of Nano Materials in Cold Storage." In Applications of Nanomaterials in Agriculture, Food Science, and Medicine, 252–69. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-5563-7.ch014.
Full textKubade, Pravin R., Amol N. Patil, and Hrushikesh B. Kulkarni. "Structure Properties Relationship Studies of Vinyl Ester Hybrid Syntactic Foam." In Handbook of Research on Advancements in Manufacturing, Materials, and Mechanical Engineering, 368–94. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-4939-1.ch018.
Full textBoyaghchi, Fateme A., and Motahare Mahmoodnezhad. "Comparative Study of Two Solar Cascade Absorption-Compression Refrigeration Systems Based on Energy and Exergy Methods." In Exergetic, Energetic and Environmental Dimensions, 457–74. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-813734-5.00026-3.
Full textConference papers on the topic "COMPRESSION-ABSORPTION SYSTEM"
Atallah, Fady, Srikanth Madala, Suresh B. Sadineni, and Robert F. Boehm. "Optimization of a Coupled Vapor Compression and Absorption Cooling System Driven by Gas Fueled IC Engine." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54292.
Full textChiriac, Victor, and Florea Chiriac. "Miniaturized Refrigeration System With Absorption: Application to Microelectronics Cooling." In ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33726.
Full textKumar, Anil, and Anish Modi. "Thermodynamic analysis of an air source ejector assisted compression-absorption-resorption refrigeration system." In 3RD INTERNATIONAL CONFERENCE ON ENERGY AND POWER, ICEP2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0115193.
Full textCruz, Ricardo Wilson, and Silvia Azucena Nebra. "Thermoeconomic Analysis of a Cogeneration System of Compression Ignition Engine and Absorption Refrigeration Machine." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33182.
Full textQiu, Zezheng, Yulie Gong, Huashan Li, and Weibin Ma. "Studies on an Ammonia-Water Compression-Absorption Cooling System (CACS) Drived by Solar Energy." In 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM). IEEE, 2011. http://dx.doi.org/10.1109/cdciem.2011.23.
Full textQiu, Zezheng, Wenjun Leng, Jun Wang, and Liping Pang. "Performance of a Compression-absorption Heat pump System Driven by Low-temperature Geothermal Water." In 2015 International Conference on Mechatronics, Electronic, Industrial and Control Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/meic-15.2015.253.
Full textKadam, Sambhaji, Muhammad Saad Khan, Alexios-Spyridon Kyriakides, Athanasios I. Papadopoulos, Ibrahim Hassan, Mohammad Azizur Rahman, and Panos Seferlis. "Thermodynamic, Environmental and Cost Evaluation of Compression-Absorption Parallel and Cascade Refrigeration Chiller." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-70886.
Full textKung, Yi-Shu, Ming Qu, and Steve Peng. "Model Based Analysis of an Integrated System of Vapor-Compression Chiller and Absorption Heat Pump." In ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/es2013-18410.
Full textPatil, Samved, K. Max Zhang, Aditya Sahasrabuddhe, and Shrewans Padhye. "Design and Analysis of a Continuous Operating Solar Absorption Cooling System." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90298.
Full textSouza, Gleidson, José V. C. Vargas, Wellington Balmant, Marcos C. Campos, Leonardo C. Martinez, Juan C. Ordóñez, and André B. Mariano. "A Hybrid Absorption System With Generator Level Optical Control and Variable Flow Rate." In ASME 2019 Heat Transfer Summer Conference collocated with the ASME 2019 13th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ht2019-3708.
Full text