Academic literature on the topic 'Compressed earth blocs'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Compressed earth blocs.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Compressed earth blocs"
Egenti, Clement, and Jamal Khatib. "Affordable and Sustainable Housing in Rwanda." Sustainability 13, no. 8 (April 9, 2021): 4188. http://dx.doi.org/10.3390/su13084188.
Full textYang, Xinlei, and Hailiang Wang. "Strength of Hollow Compressed Stabilized Earth-Block Masonry Prisms." Advances in Civil Engineering 2019 (February 5, 2019): 1–8. http://dx.doi.org/10.1155/2019/7854721.
Full textMa, Hongwang, Qi Ma, and Prakash Gaire. "Development and mechanical evaluation of a new interlocking earth masonry block." Advances in Structural Engineering 23, no. 2 (August 8, 2019): 234–47. http://dx.doi.org/10.1177/1369433219868931.
Full textRussell, Stanley R., and Jana Buchter. "Waste Clay as a Green Building Material." Advanced Materials Research 261-263 (May 2011): 501–5. http://dx.doi.org/10.4028/www.scientific.net/amr.261-263.501.
Full textB.O .Ugwuishiwu, B. O. Ugwuishiwu, B. O. Mama B.O. Mama, and N. M. Okoye N. M Okoye. "Effects of Natural Fiber Reinforcement on Water Absorption of Compressed Stabilized Earth Blocks." International Journal of Scientific Research 2, no. 11 (June 1, 2012): 165–67. http://dx.doi.org/10.15373/22778179/nov2013/54.
Full textPelicaen, E., R. Novais Passarelli, and E. Knapen. "Reclaiming earth blocks using various techniques." IOP Conference Series: Earth and Environmental Science 1363, no. 1 (June 1, 2024): 012100. http://dx.doi.org/10.1088/1755-1315/1363/1/012100.
Full textBouhiyadi, Samir, Laidi Souinida, and Youssef El hassouani. "Failure analysis of compressed earth block using numerical plastic damage model." Frattura ed Integrità Strutturale 16, no. 62 (September 22, 2022): 634–59. http://dx.doi.org/10.3221/igf-esis.62.44.
Full textAnicet S. Yamonche, Jules, Leandre Mathias Vissoh, Chakirou A. Toukourou, Alain C. N. Adomou, Crepin Zevounou, and Zepherine F. Assogba. "COMPARATIVE STUDY OF THE MECHANICAL CHARACTERISTICS OF STABILIZED COMPRESSED EARTH BLOCKS: CASE OF STABILIZATION WITH LIME AND CEMENT." International Journal of Advanced Research 12, no. 08 (August 31, 2024): 690–94. http://dx.doi.org/10.21474/ijar01/19302.
Full textNamango, Saul Sitati, Diana Starovoytova Madara, Augustine B. Makokha, and Edwin Ataro. "Model for Testing Compressive and Flexural Strength of Sisal Fibre Reinforced Compressed Earth Blocks in the Absence of Laboratory Facilities." International Journal for Innovation Education and Research 3, no. 3 (March 31, 2015): 132–45. http://dx.doi.org/10.31686/ijier.vol3.iss3.333.
Full textE.O.E., Nnadi, and Boniface Nancy A. "A Comparison of Conventional Blocks and Stabilized Earth Blocks as Building Materials in Uganda." INOSR APPLIED SCIENCES 12, no. 2 (July 12, 2024): 95–103. http://dx.doi.org/10.59298/inosras/2024/12.2.9510300.
Full textDissertations / Theses on the topic "Compressed earth blocs"
Kennedy, Nicholas Edwards. "Seismic Design Manual for Interlocking Compressed Earth Blocks." DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/1049.
Full textPringle, Sean Anthony. "Diagonal Tension Testing of Interlocking Compressed Earth Block Panels." DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1588.
Full textRabie, Omar. "Revealing the potential of Compressed Earth Blocks : a visual narration." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/43006.
Full textIncludes bibliographical references (leaves 63-64).
Compressed Earth Blocks (CEB) is a developed earth technology, in which unbaked brick is produced by compressing raw soil using manual, hydraulic, or mechanical compressing machines. Revealing the potential of an affordable sustainable material like CEB may help tackle today's fundamental challenges, social equity and environmental sustainability. For one year in India, I learned and practiced the basics of this technology in Auroville Earth Institute, and then conducted a group of design and construction experimentations for a natural resort project. Through these experimentations, I tried to reveal CEBs' capabilities through design innovation. The thesis captures my new understandings of the design competence of the material in relation to the design process, through narrating the story of this experience using images and a dialogue between the designer, mason, sponsor and the blocks themselves.
by Omar Rabie.
S.M.
Bland, David William. "In-Plane Cyclic Shear Performance of Interlocking Compressed Earth Block Walls." DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/495.
Full textZarzour, Noura. "Modélisation, identification structurelle et estimation du facteur de comportement pour les bâtiments en maçonnerie géo-sourcée dans les zones sismiques." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5056.
Full textThe use of new low-carbon construction materials in seismic areas requires the assessment of the structure ductility in order to properly design the building. The lack of accurate structural performance estimation limits the use of green construction materials.A reliable methodology is established for the seismic design of buildings constructed using geo-sourced materials. In particular, a pilot project of compressed earth block (CEB) masonry building in a medium-high seismic hazard zone in Southern France is developed. Starting from the experimental characterization of material mechanical parameters, the seismic design approach focuses on the modal characteristics of the structure, the expected building ductility, and seismic performance assessment in terms of both displacement and force.The equivalent frame model adopted for structural design of load-bearing masonry is validated for two case studies: a rubble stone masonry building and a CEB masonry building. The model validation process consists of the comparison of natural frequencies and mode shapes obtained by both numerical and operational modal analysis. In this context, a measurement campaign provides the structural response to ambient vibrations and then, the modal parameters and structural damping are obtained by structural identification tools. The modal analysis highlights the impact of timber slab stiffness on the dynamic response of masonry buildings. It is shown that a stiffer timber slab with a reinforced topping improves the structural behavior of the masonry structure under seismic loading, yielding to global mode shapes.The stability verification of the building structure at the near collapse limit state is performed in terms of target to capacity displacement ratio, but it is suggested to verify also in terms of force, since it can be more restrictive in some instances and less dependent on the convergence of numerical procedures.The behavior factor in seismic codes for building design is defined for typical construction materials based on damage observation and numerical models. A specific assessment is needed when new construction materials are adopted because building codes provide only boundary values. This thesis proposes a procedure for estimating the behavior factor that is applied to geo-sourced masonry buildings, but it could be adopted for any construction material. The methodology proposed to estimate the force reduction factor, and then the behavior factor, integrates both the seismic demand and building capacity. For this reason, this methodology can be considered as a capacity-demand-based approach. A nonlinear quasi-static analysis is coupled with dynamic analyses and the behavior factor is obtained on a statistical basis. The results are compared with the estimations obtained using demand-based, capacity-based and N2-based approaches. The impact of adopting a three-dimensional building model or an equivalent single-degree-of-freedom system with these methodologies is analyzed.The proposed capacity-demand-based-method provides, with a reduced computation time, a reliable estimation of the force reduction factor, close to the values obtained using the capacity-based-approach applied to a three-dimensional building model that is considered as a reference. Consequently, considering their reliability and efficiency, the proposed methodology for the behavior factor estimation is suitable for professional practice
Ambers, Steven Ellis. "In-Plane Shear Wall Performance as Affected by Compressed Earth Block Shape." DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1705.
Full textHerskedal, Nicholas Anthony. "Investigation of Out-of-Plane Properties of Interlocking Compressed Earth Block Walls." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/916.
Full textBowdey, Thomas S. "Lap Splice Development Length of Rebar in Stabilized Hollow Interlocking Compressed Earth Blocks." DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1720.
Full textZHEMCHUZHNIKOV, ALEXANDER. "INFLUENCE OF CLAY CONTENT AND SUCTION ON THE STRENGTH OF COMPRESSED EARTH BLOCKS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=27018@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
PROGRAMA DE EXCELENCIA ACADEMICA
Solo é um material de construção sustentável que tem sido utilizado por milhares de anos. As normas técnicas e recomendações existentes referente à construção de terra são baseadas em número limitado de estudos e dependem de materiais, condições climáticas e tradições locais. A compreensão dos parâmetros que influenciam o comportamento do solo compactado quando o mesmo utilizado em paredes e colunaas é essencial para a interpretação dos dados experimentais. Diversos estudos recentes analizaram taipa de pilão do ponto de vista da mecanica de solos nçao saturados, observando o decrescimo da resistência com a diminuição da sucção, causada por exemplo pelo aumento da humidade do ar. Porém, não hã uma pesquisa semelhante pertinente aos blocos de solo compactado. O objetivo do presente trabalho foi verificar a influência do teor de argila, dencidade e sucção na resistência dos blocos de solo compactado. Foram utiliazdas quatro dosagens de solo artificial que consistiu de areia, pó de quartzo e argila caulitinitca. Para cada dosagem, amostras estaticamente compactadas na umidade ótima e no ramo seco foram ensaiadas variando-se a sucção. Ao contrário dos resultados encontrados comunmente na literatura, a resistência das amostras diminuiu com o aumento da sucção, enquanto a influência das condições climáticas como umidade e temperatura foram mínimas. As conclusões feitas no presente trabalho podem ser utilizadas nos projetos de construção sustentável com emprego de blocos de solo compactado.
Soil is a sustainable construction material that has been used traditionally for thousands of years. In general, earth construction specifications are based on common knowledge. Existing recommendations tend to be supported by a limited number of studies and depend on local materials, climatic conditions and historical background. The lack of understanding of compacted soil behavior, in particularly its strength, may have prevented a wider application of earthen construction materials in housing. Understanding of the soil properties and parameters that influence its performance when used in walls and columns is essential for interpretation of experimental data. Recently a number of studies have analyzed rammed earth considering unsaturated soil mechanics, which suggest loss of strength following decrease in suction values, for example provoked by the increase in relative humidity. However, there is a lack of such research pertaining to compressed earth blocks (CEBs). The objective of this study was to verify the influence of clay content, density and suction on the strength of CEBs. Four soil mixes consisting of sand, quartz powder and kaolinitic clay were used. For each soil mix statically compacted samples with densities corresponding to optimum and dry of optimum moisture contents were tested for a range of suctions. Unlike reported in the literature, the results showed loss of strength following increase in suction values, while only small variations were registered for suctions corresponding to a wide range of RH and temperature conditions. The findings can be of use for specifications relating to construction of sustainable housing using CEBs.
Stirling, Bradley James. "Flexural Behavior of Interlocking Compressed Earth Block Shear Walls Subjected to In-Plane Loading." DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/593.
Full textBooks on the topic "Compressed earth blocs"
Centre for the Development of Industry., ed. Compressed earth blocks: Production equipment. Brussels: Centre for the Development of Industry, 1994.
Find full textReddy, B. V. Venkatarama. Compressed Earth Block & Rammed Earth Structures. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7877-6.
Full textRigassi, Vincent. Compressed earth blocks: Manual of production / Vincent Rigassi. [Ill.: Nicolas Schweizer ...]. Braunschweig: Vieweg, 1995.
Find full textCompressed Earth Block and Rammed Earth Structures. Springer, 2023.
Find full textReddy, B. V. Venkatarama. Compressed Earth Block and Rammed Earth Structures. Springer Singapore Pte. Limited, 2022.
Find full textCompressed earth blocks: Selection of production equipment. Brussels: Centre for the Development of Industry, 1989.
Find full textBook chapters on the topic "Compressed earth blocs"
Reddy, B. V. Venkatarama. "Stabilised Compressed Earth Block Masonry." In Compressed Earth Block & Rammed Earth Structures, 229–65. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7877-6_7.
Full textReddy, B. V. Venkatarama. "Stabilised Compressed Earth Block Production." In Compressed Earth Block & Rammed Earth Structures, 97–130. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7877-6_4.
Full textReddy, B. V. Venkatarama. "Introduction to Rammed Earth." In Compressed Earth Block & Rammed Earth Structures, 331–46. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7877-6_11.
Full textReddy, B. V. Venkatarama. "Characteristics of Stabilised Compressed Earth Blocks." In Compressed Earth Block & Rammed Earth Structures, 131–209. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7877-6_5.
Full textReddy, B. V. Venkatarama. "Status of Clay Minerals in the Stabilised Earth Materials." In Compressed Earth Block & Rammed Earth Structures, 429–40. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7877-6_16.
Full textReddy, B. V. Venkatarama. "Earthen Materials and Earthen Structures." In Compressed Earth Block & Rammed Earth Structures, 3–55. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7877-6_1.
Full textReddy, B. V. Venkatarama. "Structural Design of Rammed Earth Walls." In Compressed Earth Block & Rammed Earth Structures, 401–25. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7877-6_15.
Full textReddy, B. V. Venkatarama. "Soil Stabilisation." In Compressed Earth Block & Rammed Earth Structures, 73–94. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7877-6_3.
Full textReddy, B. V. Venkatarama. "Compressed Earth Blocks Using Non-organic Solid Wastes." In Compressed Earth Block & Rammed Earth Structures, 311–27. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7877-6_10.
Full textReddy, B. V. Venkatarama. "Stress–Strain Characteristics of Cement Stabilised Rammed Earth." In Compressed Earth Block & Rammed Earth Structures, 369–76. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7877-6_13.
Full textConference papers on the topic "Compressed earth blocs"
Zhang, Yu, Liz Tatarintseva, Tom Clewlow, Ed Clark, Gianni Botsford, and Kristina Shea. "Mortarless Compressed Earth Block Dwellings." In ACADIA 2021: Realignments: Toward Critical Computation. ACADIA, 2021. http://dx.doi.org/10.52842/conf.acadia.2021.340.
Full textShadravan, Shideh, Matthew D. Reyes, Daniel J. Butko, Lisa M. Holliday, Kenneth R. Hines, and Juvenal Huizar. "Sustainability of Compressed Earth Block Construction: Comparative Analysis of Compressed Stabilized Earth Blocks and Traditional Wood Framed Single Family Residences." In AEI 2017. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480502.030.
Full textLawson, William D., Chaitanya Kancharla, and Priyantha W. Jayawickrama. "Engineering Properties of Unstabilized Compressed Earth Blocks." In Geo-Frontiers Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41165(397)274.
Full textFerraresi, Carlo, Walter Franco, and Giuseppe Quaglia. "Concept and Design of Float-Ram: A New Human Powered Press for Compressed Earth Blocks." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70384.
Full textRajapaksha, T. D. C. M., I. E. Ariyaratne, and C. Jayasinghe. "Investigating residual properties of masonry units at elevated temperatures." In Civil Engineering Research Symposium 2024, 69–70. Department of Civil Engineering, University of Moratuwa, 2024. http://dx.doi.org/10.31705/cers.2024.35.
Full textRuiz, G., X. Zhang, L. Garijo, I. Cañas, and W. Fouad. "Advanced study of the mechanical properties of compressed earth block." In Sostierra 2017, 3rd Restapia, 3rd Versus. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315267739-138.
Full textNitiffi, Riccardo, Maura Imbimbo, and Ernesto Grande. "Numerical Seismic Assessment of Masonry Made of Compressed Earth Blocks." In IABSE Symposium, Nantes 2018: Tomorrow’s Megastructures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/nantes.2018.s23-157.
Full textAyyappan, A., Sekhar Milan, Kailas T. Sreejith, and P. Kanakasabapathy. "Design of Hybrid Powered Automated Compressed Stabilized Earth Block (CSEB) Machine." In 2018 3rd International Conference for Convergence in Technology (I2CT). IEEE, 2018. http://dx.doi.org/10.1109/i2ct.2018.8529408.
Full textBenidir, A., M. Mahdad, and A. Brara. "Earth Construction Durability: In-Service Deterioration of Compressed and Stabilized Earth Block (CSEB) Housing in Algeria." In XV International Conference on Durability of Building Materials and Components. CIMNE, 2020. http://dx.doi.org/10.23967/dbmc.2020.049.
Full textFerraresi, C., W. Franco, and G. Quaglia. "Human Powered Press for Raw Earth Blocks." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62691.
Full text