Dissertations / Theses on the topic 'Comprehensive powertrain and vehicle model'

To see the other types of publications on this topic, follow the link: Comprehensive powertrain and vehicle model.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 23 dissertations / theses for your research on the topic 'Comprehensive powertrain and vehicle model.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

ZANELLI, ALESSANDRO. "Development of a Comprehensive 0-1D Powertrain and Vehicle Model for the Analysis of an Innovative 48 V Mild-Hybrid Diesel Passenger Car." Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2842511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gambhira, Ullekh Raghunatha. "Powertrain Optimization of an Autonomous Electric Vehicle." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1532039436244217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zeng, Xiangrui. "Optimally-Personalized Hybrid Electric Vehicle Powertrain Control." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1471342105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tamaro, Courtney Alex. "Vehicle powertrain model to predict energy consumption for ecorouting purposes." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71635.

Full text
Abstract:
The automotive industry is facing some of the most difficult design challenges in industry history. Developing innovative methods to reduce fossil fuel dependence is imperative for maintaining compliance with government regulations and consumer demand. In addition to powertrain design, route selection contributes to vehicle environmental impact. The objective of this thesis is to develop a methodology for evaluating the energy consumption of each route option for a specific vehicle. A 'backwards' energy tracking method determines tractive demand at the wheels from route requirements and vehicle characteristics. Next, this method tracks energy quantities at each powertrain component. Each component model is scalable such that different vehicle powertrains may be approximated. Using an 'ecorouting' process, the most ideal route is selected by weighting relative total energy consumption and travel time. Only limited powertrain characteristics are publicly available. As the future goal of this project is to apply the model to many vehicle powertrain types, the powertrain model must be reasonably accurate with minimal vehicle powertrain characteristics. Future work expands this model to constantly re-evaluate energy consumption with real-time traffic and terrain information. While ecorouting has been applied to conventional vehicles in many publications, electrified vehicles are less studied. Hybrid vehicles are particularly complicated to model due to additional components, systems, and operation modes. This methodology has been validated to represent conventional, battery electric, and parallel hybrid electric vehicles. A sensitivity study demonstrates that the model is capable of differentiating powertrains with different parameters and routes with different characteristics.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
5

Zetterlund, Olof. "Optimization of Vehicle Powertrain Model Complexity for Different Driving Tasks." Thesis, Linköpings universitet, Fordonssystem, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122682.

Full text
Abstract:
This master thesis has examined how the understanding of different driving tasks can be used to develop a suitable powertrain model to be used in the Sim III simulator at VTI. Studies performed in the simulator have been statistically analyzed using parameters commonly used to describe driving patterns in drive cycles. It has been shown that the studies can be divided into three driving tasks: "High constant velocity", "High velocity with evasive maneuver", and "Mixed driving". Furthermore, a powertrain model from a former master thesis has been further developed. The new model utilizes a 3D torque map that takes engine speed, accelerator pedal position and gear as input. Using measurements, from the chassis dynamometers laboratory at LiU, that resembles the derived driving tasks, it has been shown that the performance of the new model has significantly increased for high velocity driving and during maximum acceleration. However, when using the clutch at low speeds and gears the model still performs poorly and needs further development.
APA, Harvard, Vancouver, ISO, and other styles
6

Borkovec, Tomáš. "Design of Generalized Powertrain Model." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-220391.

Full text
Abstract:
In this work is proposed the generalized powertrain of the parallel hybrid car. The powertrain is composed from the sub-models of the power sources. Each sub-model is described by the quasi-static modeling. For given routes is computed the power demand. Based on the derived power demand, three energy management systems are tested. First system is based on heuristic rules. The second one use more sophisticated control algorithms - the optimization method. Main idea is based on minimum principle, when the control algorithm tries to minimize the cost function (fuel use, emission). The last one is based on the equivalent consumption minimization strategy.
APA, Harvard, Vancouver, ISO, and other styles
7

Bin, Raja Ahsan Shah Raja Mazuir. "Development of a 4WD vehicle powertrain system model for driveability investigation." Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/57723/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gim, Gwanghun. "Vehicle dynamic simulation with a comprehensive model for pneumatic tires." Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184478.

Full text
Abstract:
This study presents an analytical approach for the mechanics of the pneumatic tires and the vehicle dynamic simulation. Most of tire dynamic parameters in this study are derived by using the tire geometry rather than experimental data. For the tire dynamic properties, explicit formulations are derived analytically as functions of slip ratio, slip angle, camber angle, and other tire dynamic parameters. These formulations can be efficiently used for the general vehicle simulations of braking/traction and steering maneuvers with a varying camber angle at irregular terrains. For on-highway vehicle simulations, a conceptual sports car is modeled as a twenty-six degrees of freedom multi-body system, while the military 1/4 ton truck M151-A2 is modeled as a fourteen degrees of freedom multi-body system for off-highway vehicle simulations. To study vehicle ride comfort, stability, and maneuverability, numerous vehicle simulations are performed using the comprehensive tire model, steering, braking, traction, nonlinear suspension, and realistic irregular terrains. For these simulations, a general-purpose multi-body dynamic analysis code (named MBOSS) has been developed.
APA, Harvard, Vancouver, ISO, and other styles
9

Kazemi, Omid. "Comprehensive Tire Model For Multibody Simulations." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/338760.

Full text
Abstract:
Tires serve as important components of wheeled vehicles and their analytical modeling has drawn the attention of many researches in the past decades. A high-resolution finite element (FE) tire model contains detailed structural and material characteristics of a tire that exhibit degrees-of-freedom (DoF) in the order of 10⁵ or greater. However, such high-resolution models in their full detail are not practically applicable in multibody dynamic analysis of vehicles and a reduction in their order becomes necessary. In this research different formulations to construct condensed FE tire models suitable for multibody simulations are developed and their characteristics are discussed. In addition, two new and novel forms of substructuring are presented that aim at isolating the contact region of a tire without the need for keeping the boundary DoF which otherwise remain in the reduced system in the standard substructuring procedures. The new substructuring methods provide a great tool in constructing condensed FE tire models with much less total number of DoF compared to cases where a standard substructuring is used. In order to increase the computational efficiency of the condensed FE tire models even further, the possibility of model condensation in the contact region is studied. This research also addresses the applicability of available friction models into the condensed FE tire models. Different formulations of a condensed tire model presented in this research are used to construct several computational models. These models are utilized to simulate certain scenarios and the results are discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, Ji. "Active Control of Vehicle Powertrain Noise using Adaptive Notch Filter with Inverse Model LMS Algorithm." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1447689357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Held, Manne. "Optimal Speed and Powertrain Control of a Heavy-Duty Vehicle in Urban Driving." Licentiate thesis, KTH, Reglerteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215116.

Full text
Abstract:
A major challenge in the transportation industry is how to reduce the emissions of greenhouse gases. One way of achieving this in vehicles is to drive more fuel-efficiently. One recently developed technique that has been successful in reducing the fuel consumption is the look-ahead cruise controller, which utilizes future conditions such as road topography. In this this thesis, similar methods are used in order to reduce the fuel consumption of heavy-duty vehicles driving in environments where the required and desired velocity vary. The main focus is on vehicles in urban driving, which must alter their velocity due to, for instance, changing legal speed restrictions and the presence of intersections. The driving missions of such vehicles are here formulated as optimal control problems. In order to restrict the vehicle to drive in a way that does not deviate too much from a normal way of driving, constraints on the velocity are imposed based on statistics from real truck operation. In a first approach, the vehicle model is based on forces and the cost function involves the consumed energy. This problem is solved both offline using Pontryagin's maximum principle and online using a model predictive controller with a quadratic program formulation. Simulations show that 7 % energy can be saved without increasing the trip time nor deviating from a normal way of driving. In a second approach, the vehicle model is extended to include an engine and a gearbox with the objective of minimizing the fuel consumption. A fuel map for the engine and a polynomial function for the gearbox losses are extracted from experimental data and used in the model. This problem is solved using dynamic programming taking into consideration gear changes, coasting with gear and coasting in neutral. Simulations show that by allowing the use of coasting in neutral gear, 13 % fuel can be saved without increasing the trip time or deviating from a normal way of driving. Finally, an implementation of a rule-based controller into an advanced vehicle model in highway driving is performed. The controller identifies sections of downhills where fuel can be saved by coasting in neutral gear.
En stor utmaning för transportsektorn är hur utsläppen av växthusgaser ska minskas. Detta kan åstadkommas i fordon genom att köra bränslesnålare. En nyligen utvecklad teknik som har varit framgångsrik i att minska bränsleförbrukningen är framförhållningsreglering, som använder framtida förhållanden så som vägtopografi. I denna avhandling används liknande metoder för att minska bränsleförbrukningen i tunga fordon som kör i miljöer där önskad och tvingad hastighet varierar. Fokus ligger framförallt på fordon i stadskörning, där hastigheten måste varieras beroende på bland annat hastighetsbegränsningar och korsningar. Denna typ av körning formuleras här som optimala reglerproblem. För att hindra fordonet från att avvika för mycket från ett normalt körbeteende sätts begränsningar på tillåten hastighet baserat på statistik från verklig körning. Problemet angrips först genom att använda en fordonsmodell baserad på krafter och en kriteriefunktion innehållande energiförbrukning. Problemet löses både offline med Pontryagin's maximum princip och online med modellprediktiv reglering baserad på kvadratisk programmering. Simuleringar visar att 7 % energi kan sparas utan att öka körtiden eller avvika från ett normalt körbeteende. Problemet angrips sedan genom att utöka fordonsmodellen till att också innehålla motor och växellåda med målet att minimera bränsleförbrukningen. Specifik bränsleförbrukning och en polynomisk approximation av förlusterna i växellådan är extraherade från experiment och används i simuleringarna. Problemet löses genom dynamisk programmering som tar hänsyn till växling, släpning och frirullning. Simuleringar visar att 13 % bränsle kan sparas utan att öka körtid eller avvika från normalt körbeteende genom att tillåta frirullning. Slutligen görs en implementering av en regelbaserad regulator på en avancerad fordonsmodell för ett fordon i motorvägskörning. Regulatorn identifierar sektioner med nedförsbackar där bränsle kan sparas genom frirulllning.

QC 20171011

APA, Harvard, Vancouver, ISO, and other styles
12

Chen, Xiao. "Fuel optimal powertrain control of heavy-duty vehicle based on model predictive control and quadratic programming." Thesis, KTH, Reglerteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217527.

Full text
Abstract:
The freight transport has a fundamental role in the world’s economic development.Due to the flexibility of heavy-duty vehicles, a large part of freighttransport is carried out inland. Although the use of heavy-duty vehicles contributesto the economic growth, the increased fuel consumption and globalgreenhouse gas emission that come with it constantly challenge the transportationsector to adapt and develop more fuel-efficient methods to reduce suchside effects while fulfilling the transportation requirements.This thesis considers fuel-optimal highway driving for heavy-duty vehicles.A model predictive control algorithm for minimizing fuel consumptionwhile satisfying constraints on desired speed is developed and evaluated. Thecontroller uses the available topography information of the road ahead of thevehicle in order to achieve an efficient vehicle control while satisfying a certaintrip time requirement. Under the assumption of fixed gear during the drivemission, the actual nonlinear problem is re-formulated as a real-time optimalcontrol problem based on MPC theory with a quadratic cost function and linearconstraints at each receding horizon of the drive mission. The QP problem isthen solved online and the resulting first control action is applied to the vehiclefor forward movement.The feasibility to implement such an algorithm on a control unit with limitedcomputational power is investigated and shown to be possible. Both therequirement of low computational complexity and low memory occupation arefulfilled by the tailored quadratic programming algorithm developed in thisthesis. The algorithm is fast enough to provide a solution within each samplinginterval.The overall control algorithm is implemented on a G5 control unit andtested in real life with a Scania truck during highway driving test. The resultsfrom both the real implementation and extensive simulations indicate that themethod provides a fuel-efficient vehicle behavior and is competitive with a rulebasedcontroller.
Transport av gods har en grundläggande roll i världens ekonomiska utveckling.På grund av flexibiliteten hos tunga fordon, utförs en stor del av allgodstransport med hjälp av dem. Trots att användning av tunga fordon bidrartill ekonomisk tillväxt, utgör bränsleförbrukning tillsammans med den ökadeutsläpp av växthusgas en utmaning för transportföretag att anpassa och utvecklamer bränslesnål och miljövänligare transportteknologi för tunga fordon.I detta examensarbete fokuserar man på körningen av lastbil på motorvägar.En bränsle optimal förutsägande styralgoritm är utvecklad och utvärderad.Algoritmen utnyttjar framför allt topografi information om vägen framför fordonetså att den kan planera körningen på ett bränslesparande sätt samtidigtsom den uppfyller ett visst tidskrav. Med antagande om konstant växel underkörningen, formuleras ett optimal styrningsproblem baserat på ett MPC ramverkmed kvadratisk målfunktion och linjära bivillkor. Den slutliga kvadratiskoptimeringsproblemet för varje styrhorisont är löst med hjälp av en för ändamåletframtagen QP-algoritm.Möjligheten att implementera en sådan algoritm på en inbyggd styrenhetär undersökt och veriferad. Både krav på låg beräkningskomplexitet och lågminnes användning är uppfylls av den MPC-anpassade QP-lösare som utvecklatsi detta examensarbete.Den slutliga styralgoritmen testades i verkligheten med en Scania lastbilpå motorväg. Resultat från både provkörning och simulering visar att metodenger en bränsleeffektiv körstrategi, som kan spara bränsle jämfört med en regelbaseradprediktiv farthållaren.
APA, Harvard, Vancouver, ISO, and other styles
13

Girard, Alex Thomas. "Model-Based Design of an Electric Powertrain Vehicle; Focus on Physical Modeling of Lithium-ion Batteries." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/72279.

Full text
Abstract:
Formula SAE (FSAE) vehicle systems are very complex. Understanding how subsystems effect the overall vehicle is essential for making design trade-offs. FSAE is a competitive environment. Teams need to have reliable and high performing vehicles to do well in competition. The Virginia Tech (VT) FSAE team has produced a prototype electric powertrain (EPT) vehicle, VTM16e, and will take their first EPT vehicle, VTM17e, to competition in 2017. The use of model-based design (MBD) for an EPT FSAE vehicle is investigated through this thesis. The goal of the research is to build the framework of a full vehicle simulation to take knowledge gained from the VTM16e prototype vehicle, and apply it to the VTM17e competition vehicle. A top-down, bottom-up approach is taken to build a full vehicle model of an EPT FSAE vehicle. A full vehicle simulation is built with subsystems to establish an overall structure and subsystem interactions. Individual subsystems are then focused on for testing and validation. Breaking the vehicle down into subsystems allows the overall model to be incrementally improved. The battery subsystem is focused on in this thesis. Extensive testing is performed on the batteries to characterize their performance. Computer models are generated from empirical data through parameter estimation techniques. Validation of the battery models is performed and the resulting model is incorporated into the overall vehicle model. Performance limits of the vehicle are determined through model exploration, and design modifications to increase the reliability and performance for the VTM17e vehicle are proposed.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
14

Cox, Jonathan Douglas. "Model-based design and specification of a hybrid electric Chevrolet Camaro for the EcoCAR 3 competition." Thesis, Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/55042.

Full text
Abstract:
Georgia Tech has the privilege of competing in EcoCAR 3, a four-year competition in which 16 universities are given a stock 2016 Chevrolet Camaro and work to transform it into a hybrid electric sports car. In this thesis, an overview of the first two years of the author’s work on the team as the Engineering Manager, the graduate student overseeing all vehicle engineering work, will be detailed. The competition will be introduced and described before a discussion on vehicle electrification and the various ways it has been achieved by manufacturers and competition teams. Next, the design of the Georgia Tech vehicle will be presented with a focus on powertrain and supporting component selection. The vehicle model underlying many of these decisions will then be discussed in detail, showing how the team used Simulink and Engineering Equation Solver to effectively predict vehicle performance, emissions, energy consumption, and cooling needs. Building on this, the controls design process known as model/software/hardware in the loop will be discussed in the context of the Georgia Tech team’s use of this process. Finally, a progress update will be given, including photos of the team vehicle in current build state weeks before the Year 2 Competition.
APA, Harvard, Vancouver, ISO, and other styles
15

Doucette, Reed. "The Oxford Vehicle Model : a tool for modeling and simulating the powertrains of electric and hybrid electric vehicles." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:cfff8f27-f4a4-4c77-953e-09253aba3aa0.

Full text
Abstract:
This dissertation addresses the challenges of scoping and sizing components and modeling the tank to wheel energy flows in new and rapidly evolving classes of automotive vehicles. It introduces a system of computer models, known as the Oxford Vehicle Model (OVEM), which provide for the novel simulation of the powertrains of electric (EV) and hybrid electric vehicles (HEV). OVEM has a three-level structure that makes a unique contribution to the field of vehicle analysis by enabling a user to proceed from performing scoping and sizing exercises through to accurately simulating the energy flows in powertrains of EVs and HEVs utilizing existing and emerging technologies based on real world data. Level 1 uses simplified models to support initial component scoping and sizing exercises in an analysis environment where uncertainty regarding component specifications is high. Level 2 builds on Level 1 by obtaining more refined component scoping and sizing estimates via the use of component models based on well-understood scientific principles that are product-independent – a crucial feature for obtaining unbiased scoping and sizing estimates. Level 3 employs a high degree of fidelity in that its models impose actual physical limits and are based on data from real technologies. This dissertation concludes with two chapters based on studies published as journal articles that used OVEM to address key issues facing the development of EVs and HEVs. The first study used OVEM to make the novel comparison between high-speed flywheels, batteries, and ultracapacitors on the bases of cost and fuel consumption while functioning as the energy storage systems in an HEV. The second study applied OVEM towards a novel examination of the CO2 emissions from plug-in HEVs (PHEVs) and compares their CO2 emissions to those from similar EVs and ICE-based vehicles.
APA, Harvard, Vancouver, ISO, and other styles
16

Salomonsson, David, and Erik Eng. "A Component-based Model of a Fuel Cell Vehicle System." Thesis, Linköpings universitet, Fordonssystem, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176698.

Full text
Abstract:
Improving the efficiency and performance of vehicle propulsion systems has always been desirable, and with increasing environmental awareness this has become increasingly topical. A particularly strong focus today is at fossil-free alternatives, and there is a strong trend for electrification. Hybrid powertrains of different types can bring benefits in certain aspects, and there is a lot of research and development involved in the making of a new powertrain. In this thesis, a complete powertrain for a fuel cell hybrid electric vehicle is modeled, with the intention of contributing to this trend. The model can be used to investigate design choices and their impact on energy consumption. A component-based library is developed, with the purpose of being easy to implement for different configurations. The results show that it is possible to assemble and simulate a complete hybrid drivetrain, using the modeled components, while not being very computationally heavy. The developed models correspond well with reality while being modular and easy to implement.
APA, Harvard, Vancouver, ISO, and other styles
17

Song, Guanqiao. "Analysis of the energy consumption of the powertrain and the auxiliary systems for battery-electric trucks." Thesis, KTH, Fordonsdynamik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286349.

Full text
Abstract:
The electrification of the truck is crucial to meet the strategic vision of the European Union (EU) to contribute to net-zero greenhouse gas emissions for all sectors of the economy and society. The battery-electric truck is very efficient to reduce the emissions and has also a lower Total Cost of Ownership (TCO) compared to diesel trucks. Thus, the energy consumption of the battery-electric truck needs to be analysed in detail, and the differences in the conventional powertrain, recuperation by regenerative braking during driving and charging during standing, need to be considered. This master thesis aims to analyse the energy consumption of the battery-electric truck during driving and standing charging. For driving cycle simulation the Vehicle Energy Consumption calculation TOol (VECTO) and MATLAB are used. Different variations, such as payload, rolling resistance, air drag, and Power Take Off (PTO), are considered in the driving cycle simulation. The driving cycle simulation is verified by calculating the energy balance and compared with the on-road test results. For the standing charging simulation, MATLAB is used to analyse the charging loss with different battery packs and charging speeds. The results are shown with the Sankey diagram and other illustrative tools. Seen from the simulation results, the usable energy of the battery pack is enough for the truck to complete the designed driving cycle. The main loss in the powertrain is the Power Electronic Converter (PEC) and the electric machine. To increase the range and reduce energy loss, using a higher efficiency PEC and electric machine is an efficient method. For the charging simulation, the current Combined Charging System (CCS) standard charging station can charge the battery-electric truck with adequate voltage and reasonable charging time. The main loss during the charging comes from the charging station.
Elektrificering av lastbilen är avgörande för att uppfylla Europeiska Unionens (EUs) strategiska vision att bidra till nettonollutsläpp av växthusgaser för alla sektorer i samhället. Den batterielektriska lastbilen är väldigt effektiv för att reducera utsläppen och är också mer ekonomisk med en lägre Total Cost of Ownership (TCO) jämfört med diesel lastbilar. Således behöver energiförbrukningen för den batterielektriska lastbilen analyseras i detalj, och skillnaderna i den konventionella drivlinan, återhämtning genom regenerativ bromsning under körning och laddning, måste övervägas. Detta examensarbete syftar till att analysera energiförbrukningen för den batterielektriska lastbilen under körning och laddning. För körcykelsimuleringar används the Vehicle Energy Consumption calculation TOol (VECTO) och MATLAB. Olika variationer, såsom nyttolast, rullmotstånd, luftmotstånd och Power Take Off (PTO), beaktas i körcykelsimuleringen. Körcykelsimuleringen verifieras genom att beräkna energibalansen som jämförs med experimentella testresultat utförda på väg. För laddningssimuleringen används MATLAB för att analysera laddningsförlusten med olika batteripaket och laddningshastigheter. Resultaten visas med Sankey diagram och andra illustrativa verktyg. Simuleringsresultaten visar att batteripaketets användbara energi är tillräckligt för att lastbilen ska kunna slutföra den planerade körcykeln. Den största förlusten i drivlinan är kopplat till the Power Electronic Converter (PEC) och den elektriska maskinen. För att öka räckvidden och minska energiförlusten är det ett effektivt sätt att en använda PEC och en elektrisk maskin med högre effektivitet. För laddningssimuleringen kan den nuvarande stationen med Combined Charging System (CCS) standard ladda batteriladdaren med tillräcklig spänning och med rimlig laddningstid. Huvudförlusten under laddningen kommer från laddstationen.
APA, Harvard, Vancouver, ISO, and other styles
18

Špičák, Milan. "Pokročilé algoritmy řízení pohonných jednotek." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-408015.

Full text
Abstract:
This thesis describes computational control of vehicle powertrains using common variable, engine torque. The thesis is divided into three main parts. The first one shows design of methods for torque estimation using known or measured variables on the vehicle. The second part contains design of powertrain control algorithm utilizing the engine torque as a common variable among individual modules. The third part describes experimental optimization of the longitudinal acceleration of a vehicle using torque control.
APA, Harvard, Vancouver, ISO, and other styles
19

Nordström, Erik. "Advanced Modelling and Energy Efficiency Prediction for Road Vehicles." Thesis, Umeå universitet, Institutionen för fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-175358.

Full text
Abstract:
This thesis presents a first real world case-study of road transport operations that use the COVER format, in which the driver and the vehicle are regarded as separate entities. This format enables a complex representation of the transport operation that potentially better describe reality compared to the conventional representation used in today’s certification tools. The representation of operations treated in this thesis is called Operating Cycles and has been used to fully describe three representative transport missions from a case-study truck. Stochastically generated operating cycles have been used to create a large data set and thus prevent overfitting of specific cycles. The Operating Cycle-representation allowed for fair comparison between vehicle designs and ultimately manifested a vehicle composition that reduced the fuel consumption by nearly 10% for the same kind of transport operations.
APA, Harvard, Vancouver, ISO, and other styles
20

Manning, Peter Christopher. "Development of a Series Parallel Energy Management Strategy for Charge Sustaining PHEV Operation." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/49436.

Full text
Abstract:
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2012-2014 EcoCAR 2: Plugging in to the Future Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM) and the U.S. Department of Energy (DOE). The goals of the competition are to reduce well-to-wheel (WTW) petroleum energy consumption (PEU), WTW greenhouse gas (GHG) and criteria emissions while maintaining vehicle performance, consumer acceptability and safety. Following the EcoCAR 2 Vehicle Development Process (VDP) of designing, building, and refining an advanced technology vehicle over the course of the three year competition using a 2013 Chevrolet Malibu donated by GM as a base vehicle, the selected powertrain is a Series-Parallel Plug-In Hybrid Electric Vehicle (PHEV) with P2 (between engine and transmission) and P4 (rear axle) motors, a lithium-ion battery pack, an internal combustion engine, and an automatic transmission. Development of a charge sustaining control strategy for this vehicle involves coordination of controls for each of the main powertrain components through a distributed control strategy. This distributed control strategy includes component controllers for each individual component and a single supervisory controller responsible for interpreting driver demand and determining component commands to meet the driver demand safely and efficiently. For example, the algorithm accounts for a variety of system operating points and will penalize or reward certain operating points for other conditions. These conditions include but are not limited to rewards for discharging the battery when the state of charge (SOC) is above the target value or penalties for operating points with excessive emissions. Development of diagnostics and remedial actions is an important part of controlling the powertrain safely. In order to validate the control strategy prior to in-vehicle operation, simulations are run against a plant model of the vehicle systems. This plant model can be run in both controller Software- and controller Hardware-In-the-Loop (SIL and HIL) simulations. This paper details the development of the controls for diagnostics, major selection algorithms, and execution of commands and its integration into the Series-Parallel PHEV through the supervisory controller. This paper also covers the plant model development and testing of the control algorithms using controller SIL and HIL methods. This paper details reasons for any changes to the control system, and describes improvements or tradeoffs that had to be made to the control system architecture for the vehicle to run reliably and meet its target specifications. Test results illustrate how changes to the plant model and control code properly affect operation of the control system in the actual vehicle. The VT Malibu is operational and projected to perform well at the final competition.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
21

Kaloun, Adham. "Conception de chaînes de traction hybrides et électriques par optimisation sur cycles routiers." Thesis, Ecole centrale de Lille, 2020. http://www.theses.fr/2020ECLI0019.

Full text
Abstract:
La conception des chaînes de traction hybrides est une tâche complexe, qui fait appel à des experts de différents domaines s'appuyant sur des compétences et des outils distincts. En plus de cela, la recherche d'une solution optimale nécessite un retour système. Cela peut être, selon la granularité des modèles de composants, très coûteux en temps de calcul. Ceci est d'autant plus vrai lorsque la performance du système est déterminée par sa commande, comme c'est le cas du véhicule hybride. En fait, différentes possibilités peuvent être sélectionnées pour fournir le couple requis aux roues pendant le cycle de conduite. Ainsi, le principal obstacle est d'atteindre l'optimalité tout en conservant une méthodologie rapide et robuste. Dans ces travaux de thèse, de nouvelles approches visant à exploiter le potentiel complet de l'hybridation sont proposées et comparées. La première stratégie est une approche bi-niveaux composée de deux blocs d'optimisation imbriqués: un processus d'optimisation des paramètres de design externe qui calcule la meilleure valeur de consommation de carburant à chaque itération en se basant sur une version améliorée de la programmation dynamique pour l'optimisation de la commande. Deux stratégies de conception systémique différentes basées sur le schéma itératif sont également proposées. La première approche est basée sur la réduction de modèle tandis que la seconde se repose sur des techniques précises de réduction de cycle. Cette dernière permet l'utilisation de modèles de haute précision sans pénaliser le temps de calcul. Une approche simultanée est ensuite mise en œuvre, qui optimise à la fois les variables de conception et les paramètres d'une nouvelle stratégie efficace à base de règles. Cette dernière permettra une optimisation plus rapide par rapport à l'optimisation directe de toutes les variables de décision. Enfin, une technique basée sur l'utilisation des méta-modèles est explorée
Designing hybrid powertrains is a complex task, which calls for experts from various fields. In addition to this, finding the optimal solution requires a system overview. This can be, depending on the granularity of the models at the component level, highly time-consuming. This is even more true when the system’s performance is determined by its control, as it is the case of the hybrid powertrain. In fact, various possibilities can be selected to deliver the required torque to the wheels during the driving cycle. Hence, the main obstacle is to achieve optimality while keeping the methodology fast and robust. In this work, novel approaches to exploit the full potential of hybridization are proposed and compared. The first strategy is a bi-level approach consisting of two nested optimization blocks: an external design optimization process that calculates the best fuel consumption value at each iteration, found through control optimization using an improved version of dynamic programming. Two different systemic design strategies based on the iterative scheme are proposed as well. The first approach is based on model reduction while the second approach relies on precise cycle reduction techniques. The latter enables the use of high precision models without penalizing the calculation time. A co-optimization approach is implemented afterwards which adjusts both the design variables and parameters of a new efficient rule-based strategy. This allows for faster optimization as opposed to an all-at-once approach. Finally, a meta-model based technique is explored
APA, Harvard, Vancouver, ISO, and other styles
22

Kaloun, Adham. "Conception de chaînes de traction hybrides et électriques par optimisation sur cycles routiers." Thesis, Centrale Lille Institut, 2020. http://www.theses.fr/2020CLIL0019.

Full text
Abstract:
La conception des chaînes de traction hybrides est une tâche complexe, qui fait appel à des experts de différents domaines s'appuyant sur des compétences et des outils distincts. En plus de cela, la recherche d'une solution optimale nécessite un retour système. Cela peut être, selon la granularité des modèles de composants, très coûteux en temps de calcul. Ceci est d'autant plus vrai lorsque la performance du système est déterminée par sa commande, comme c'est le cas du véhicule hybride. En fait, différentes possibilités peuvent être sélectionnées pour fournir le couple requis aux roues pendant le cycle de conduite. Ainsi, le principal obstacle est d'atteindre l'optimalité tout en conservant une méthodologie rapide et robuste. Dans ces travaux de thèse, de nouvelles approches visant à exploiter le potentiel complet de l'hybridation sont proposées et comparées. La première stratégie est une approche bi-niveaux composée de deux blocs d'optimisation imbriqués: un processus d'optimisation des paramètres de design externe qui calcule la meilleure valeur de consommation de carburant à chaque itération en se basant sur une version améliorée de la programmation dynamique pour l'optimisation de la commande. Deux stratégies de conception systémique différentes basées sur le schéma itératif sont également proposées. La première approche est basée sur la réduction de modèle tandis que la seconde se repose sur des techniques précises de réduction de cycle. Cette dernière permet l'utilisation de modèles de haute précision sans pénaliser le temps de calcul. Une approche simultanée est ensuite mise en œuvre, qui optimise à la fois les variables de conception et les paramètres d'une nouvelle stratégie efficace à base de règles. Cette dernière permettra une optimisation plus rapide par rapport à l'optimisation directe de toutes les variables de décision. Enfin, une technique basée sur l'utilisation des méta-modèles est explorée
Designing hybrid powertrains is a complex task, which calls for experts from various fields. In addition to this, finding the optimal solution requires a system overview. This can be, depending on the granularity of the models at the component level, highly time-consuming. This is even more true when the system’s performance is determined by its control, as it is the case of the hybrid powertrain. In fact, various possibilities can be selected to deliver the required torque to the wheels during the driving cycle. Hence, the main obstacle is to achieve optimality while keeping the methodology fast and robust. In this work, novel approaches to exploit the full potential of hybridization are proposed and compared. The first strategy is a bi-level approach consisting of two nested optimization blocks: an external design optimization process that calculates the best fuel consumption value at each iteration, found through control optimization using an improved version of dynamic programming. Two different systemic design strategies based on the iterative scheme are proposed as well. The first approach is based on model reduction while the second approach relies on precise cycle reduction techniques. The latter enables the use of high precision models without penalizing the calculation time. A co-optimization approach is implemented afterwards which adjusts both the design variables and parameters of a new efficient rule-based strategy. This allows for faster optimization as opposed to an all-at-once approach. Finally, a meta-model based technique is explored
APA, Harvard, Vancouver, ISO, and other styles
23

Stevens, Matthew. "Hybrid Fuel Cell Vehicle Powertrain Development Considering Power Source Degradation." Thesis, 2009. http://hdl.handle.net/10012/4244.

Full text
Abstract:
Vehicle design and control is an attractive area of research in that it embodies a convergence of societal need, technical limitation, and emerging capability. Environmental, political, and monetary concerns are driving the automotive industry towards sustainable transportation, manifested as increasing powertrain electrification in a gradual transition to fossil-free energy vectors. From an electrochemical degradation and control systems perspective, this transition introduces significant technical uncertainty. Initial indications are that the initial battery designs will have twice the required capacity due to degradation concerns. As the battery is a major contributor to the cost of these vehicles the over-sizing represents a significant threat to the ability of OEMs to produce cost-competitive vehicles. This potential barrier is further amplified when the combustion engine is removed and battery-electric or fuel-cell hybrid vehicles are considered. This thesis researches the application of model-based design for optimal design of fuel cell hybrid powertrains considering power source degradation. The intent is to develop and evaluate tools that can determine the optimal sizing and control of the powertrain; reducing the amount of over-sizing by numerically optimization rather than a sub-optimal heuristic design. A baseline hybrid fuel cell vehicle model is developed and validated to a hybrid fuel cell SUV designed and built at the University of Waterloo. Lithium-ion battery degradation models are developed and validated to data captured off a hybrid powertrain test stand built as part of this research. A fuel cell degradation model is developed and integrated into the vehicle model. Lifetime performance is modeled for four hybrid control strategies, demonstrating a significant impact of the hybrid control strategy on powertrain degradation. A plug-in variation of the architecture is developed. The capacity degradation of the battery is found to be more significant than the power degradation. Blended and All-electric charge-depleting hybrid control strategies are integrated and lifetime performance is simulated. The blended charge-depleting control strategy demonstrated significantly less degradation than the all-electric strategy. An oversized battery is integrated into the vehicle model and the benefit of oversizing on reducing the battery degradation rate is demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography