Academic literature on the topic 'Compound action potential'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Compound action potential.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Compound action potential"
Molin, Carl Johan, and Anna R. Punga. "Compound Motor Action Potential." Journal of Clinical Neurophysiology 33, no. 4 (August 2016): 340–45. http://dx.doi.org/10.1097/wnp.0000000000000252.
Full textCarvalho, Mamede de. "Compound Muscle Action Potential: Pro." Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders 3, sup1 (September 2002): S103—S104. http://dx.doi.org/10.1080/146608202320374453.
Full textSonoo, Masahiro. "Far‐field potentials in the compound muscle action potential." Muscle & Nerve 61, no. 3 (November 20, 2019): 271–79. http://dx.doi.org/10.1002/mus.26743.
Full textDengler, Reinhard. "Quantitative Compound Muscle Action Potential: Con." Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders 3, sup1 (September 2002): S105—S107. http://dx.doi.org/10.1080/146608202320374462.
Full textPetajan, Jack H. "Quantitative Compound Muscle Action Potential: Summary." Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders 3, sup1 (September 2002): S109—S110. http://dx.doi.org/10.1080/146608202320374471.
Full textGlassman, E. Katelyn, and Michelle L. Hughes. "Determining Electrically Evoked Compound Action Potential Thresholds." Ear and Hearing 34, no. 1 (2013): 96–109. http://dx.doi.org/10.1097/aud.0b013e3182650abd.
Full textBriaire, Jeroen J., and Johan H. M. Frijns. "Unraveling the electrically evoked compound action potential." Hearing Research 205, no. 1-2 (July 2005): 143–56. http://dx.doi.org/10.1016/j.heares.2005.03.020.
Full textChatterjee, Monita, and Robert L. Smith. "Physiological overshoot and the compound action potential." Hearing Research 69, no. 1-2 (September 1993): 45–54. http://dx.doi.org/10.1016/0378-5955(93)90092-f.
Full textMalessy, Martijn J. A., Willem Pondaag, and J. Gert van Dijk. "ELECTROMYOGRAPHY, NERVE ACTION POTENTIAL, AND COMPOUND MOTOR ACTION POTENTIALS IN OBSTETRIC BRACHIAL PLEXUS LESIONS." Neurosurgery 65, suppl_4 (October 1, 2009): A153—A159. http://dx.doi.org/10.1227/01.neu.0000338429.66249.7d.
Full textPollak, V. A., and Q. X. Wan. "The Z-transform of the compound action potential." IEEE Engineering in Medicine and Biology Magazine 16, no. 3 (May 1997): 80–86. http://dx.doi.org/10.1109/51.585522.
Full textDissertations / Theses on the topic "Compound action potential"
Murnane, Owen D., Beth A. Prieve, and Evan M. Relkin. "Recovery of the Human Compound Action Potential Following Prior Stimulation." Digital Commons @ East Tennessee State University, 1998. https://dc.etsu.edu/etsu-works/1793.
Full textJiang, Dan. "Cochlear compound action potential and pathology following kanamycin ototoxity in the guinea pig." Thesis, Keele University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359039.
Full textNovak, Kevin Richard. "EFFECTS OF SEPSIS ON NERVE EVOKED RESPONSES." Wright State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=wright1216123137.
Full textSchweinzger, Ivy A. "Examining the Physiologic Phenotype of Cochlear Synaptopathy Using Narrowband Chirp-Evoked Compound Action Potentials." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1573811742950316.
Full textLinke, Theresa [Verfasser], Uwe [Gutachter] Baumann, and Andreas [Gutachter] Bahmer. "On the relation of electrophysiological compound action potential (ECAP) measurements and perceptive skills in cochlear implant (CI) listeners / Theresa Linke ; Gutachter: Uwe Baumann, Andreas Bahmer." Frankfurt am Main : Universitätsbibliothek Johann Christian Senckenberg, 2017. http://d-nb.info/1139358650/34.
Full textChiou, Li-Kuei. "The effect that design of the Nucleus Intracochlear Electrode Array and age of onset of hearing loss have on electrically evoked compound action potential growth and spread of excitation functions." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/3060.
Full textScheperle, Rachel Anna. "Relationships among peripheral and central electrophysiological measures of spatial / spectral resolution and speech perception in cochlear implant users." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/5055.
Full textBrown, Daniel. "Origins and use of the stochastic and sound-evoked extracellular activity of the auditory nerve." University of Western Australia. Dept. of Physiology, 2007. http://theses.library.uwa.edu.au/adt-WU2008.0082.
Full textLa, Rocca Viviana. "Atividade antinociceptiva do geraniol: estudos comportamentaise eletrofisiológicos." Universidade Federal da Paraíba, 2016. http://tede.biblioteca.ufpb.br:8080/handle/tede/9944.
Full textMade available in DSpace on 2018-07-17T18:53:07Z (GMT). No. of bitstreams: 1 Arquivototal.pdf: 3232624 bytes, checksum: 559aa25bbe9205467b3fdd737354219e (MD5) Previous issue date: 2016-02-29
The high incidence of pain in the general population has encouraged research about this theme. Products derived from plant species have been widely used in the pharmacological treatment of pain relief. Recent studies have reported the important role of monoterpenes, active compounds found in the essential oils of aromatic plants, having relevant analgesic and anti-inflammatory potential. The geraniol (GER) is a monoterpenic alcohol, found in >160 essential oil of plant species, especially Cymbopogon gender. In the literature consulted, several biochemical and pharmacological properties are shown of GER: antitumor, antimicrobial, antiinflammatory, antioxidant, gastric and intestinal protector, neuroprotective and antiarrhythmic. In this study was evaluated the antinociceptive activity of GER, not yet reported, by animal behavioral and electrophysiological in vitro models. Male and female adult Swiss mice were used. Initially the acute toxicity of GER was investigated by calculating the lethal dose 50 (LD50) by intraperitoneal (i.p.) (= 199.9 mg/kg) and oral (p.o.) (> 1 g/kg). In psychopharmacological screening, after the administration of single doses of GER (i.p. and p.o.), behavioral changes were observed indicating a depressant profile on the central nervous system (CNS) and/or peripheral nervous system (SNP), and relevant antinociceptive effect of geraniol. Therefore, more specific antinociceptive property evaluation tests were performed. The GER (12.5, 25 or 50 mg/kg i.p. and 50 or 200 mg/kg p.o.) decreased (p<0.001) the number of abdominal contractions induced by i.p. injection of acetic acid, when compared with the control. The opioid antagonist naloxone (5 mg/kg) administered subcutaneously (s.c.) in mice, subsequently treated with GER (25 mg/kg i.p.), did not reverse its antinociceptive activity. The GER (12.5, 25 and 50 mg/kg i.p.) reduced (p<0.001) paw licking time in the second phase (15-30 min, inflammatory phase) of the formalin test. Also, in the glutamate test was reduced (p<0.01) paw licking time when GER 50 mg/kg i.p. administered. In a subsequent step, it was investigated the effect of GER on the excitability of peripheral nerve fibers through extracellular recording in the sciatic nerve in mice. The GER presented depressant effect of the compound action potential (CAP), which was reversed after washing and recovery period. The GER blocked components of the CAP concentration-dependent manner and exposure time to the drug: 1 mM after 120 min for the first component (Aγ and Aβ fibers) and 0.6 mM after 90 min for the second (Aγ and Aδ fibers). The concentration, which induces 50% inhibition of the peak-to-peak amplitude of the PAC (IC50) for the GER was calculated, being equal to 0.48±0.04 mM. The conduction velocity was also reduced by exposure to GER from the 0.3 mM concentration, for the 1st component [46.18±2.60 m/s to 36.04±1.60 m/s; p<0.05 (n=7)] and the 2nd component [18.37±1.31 m/s to 12.71±0.56 m/s; p<0.001 (n=7)]. In conclusion, the results obtained show that GER has antinociceptive activity, mainly in pain related to inflammation. Participation of the opioid pathway in its mechanism of action is unlikely, but the modulation of glutamatergic neurotransmission in a dose-dependent manner is a possible mechanism. Its antinociceptive activity is also related to the reduction in peripheral neuronal excitability, firstly in thinner fibers Aδ, which are directly connected to the conduction pain.
A elevada incidência da dor na população em geral tem incentivado as pesquisas entorno desse tema. Produtos oriundos de espécies vegetais têm sido amplamente utilizados no tratamento farmacológico de alívio da dor. Estudos recentes têm relatado o importante papel dos monoterpenos, princípios ativos encontrados nos óleos essenciais de plantas aromáticas, tendo relevante potencial analgésico e anti-inflamatório. O geraniol (GER) é um álcool monoterpênico, encontrado no óleo essencial de >160 espécies vegetais, especialmente do gênero Cymbopogon. Na literatura consultada, pesquisas apontam várias propriedades bioquímicas e farmacológicas para o GER: antitumoral, antimicrobiana, anti-inflamatória, antioxidante, de proteção gástrica e intestinal, neuroprotetora e antiarrítmica. Neste estudo foi avaliada a atividade antinociceptiva do GER, ainda não relatada, mediante modelos animais comportamentais e eletrofisiológicos in vitro. Foram utilizados camundongos machos e fêmeas Swiss adultos. Inicialmente, foi investigada a toxicidade aguda do GER mediante cálculo da dose letal 50 (DL50) pela via intraperitoneal (i.p.) (=199,9 mg/kg) e oral (v.o.) (>1 g/kg). Na triagem psicofarmacológica, após a subministração de doses únicas de GER (i.p. e v.o.) foram observadas alterações comportamentais que indicaram perfil depressor do sistema nervoso central (SNC) e/ou periférico (SNP), e relevante efeito antinociceptivo do geraniol. Portanto, foram realizados testes comportamentais de avaliação de propriedade antinociceptiva mais específicos. O GER (12,5; 25 e 50 mg/kg i.p. e 50 ou 200 mg/kg v.o.) reduziu (p<0,001) o número de contorções abdominais induzidas por injeção i.p. de ácido acético, quando comparado com o controle. O antagonista opióide naloxona (5 mg/kg) administrado pela via subcutânea (s.c.) em camundongos, subsequentemente tratados com GER (25 mg/kg i.p.), não reverteu sua atividade antinociceptiva. O GER (12,5; 25 e 50 mg/kg i.p.) reduziu (p<0,001) o tempo de lambida da pata na segunda fase (15-30 min, fase inflamatória) do teste da formalina. Também, no teste do glutamato houve redução (p<0,01) do tempo de lambida da pata quando administrado GER 50 mg/kg i.p. Em uma etapa subsequente, investigou-se o efeito do GER sobre a excitabilidade de fibras nervosas periféricas, mediante registro extracelular em nervo ciático de camundongo. O GER apresentou efeito depressor do potencial de ação composto (PAC), o qual foi parcialmente revertido após lavagem durante o período de recuperação. O GER bloqueou as componentes do PAC, de maneira dependente da concentração e do tempo de exposição à droga: 1 mM aos 120 min para a primeira componente (fibras Aγ e Aβ) e 0,6 mM aos 90 min para a segunda (fibras Aγ e Aδ). Foi calculada para o GER, a concentração que induz 50% de inibição da amplitude pico-a-pico do PAC (CI50), sendo igual a 0,48±0,04 mM. A velocidade de condução também, foi reduzida pela exposição ao GER, a partir da concentração de 0,3 mM para a 1ª componente [46,18±2,60 m/s para 36,04±1,60 m/s; p<0,05 (n=7)] e para a 2ª componente [18,37±1,31 m/s para 12,71±0,56 m/s; p<0,001 (n=7)]. Em conclusão, os resultados obtidos mostram que o GER tem atividade antinociceptiva, principalmente na dor relacionada à inflamação. A participação da via opióide no seu mecanismo de ação é pouco provável, mas a modulação da neurotransmissão glutamatérgica de maneira dependente da dose é um mecanismo possível. Sua atividade antinociceptiva tambèm, está relacionada à redução da excitabilidade neuronal periférica, primeiramente de fibras mais finas como Aδ, ligadas diretamente à condução da dor.
Dhuldhoya, Aayesha Narayan. "Characterization of Temporal Interactions in the Auditory Nerve of Adult and Pediatric Cochlear Implant Users." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/4838.
Full textBooks on the topic "Compound action potential"
Stanton, Susan Gay. Cochlear nerve compound action potential changes during surgery. Ottawa: National Library of Canada, 1990.
Find full textRedford, Allan Gordon. The response of the averaged compound auditory action potential to high frequency sound in Locusta migratoria. Ottawa: National Library of Canada, 1990.
Find full textOkolelova, Tamara, and Syergyey YEngashyev. Scientific basis of feeding and keeping poultry. ru: Publishing Center RIOR, 2021. http://dx.doi.org/10.29039/02037-1.
Full textUnited States. Congress. Senate. Committee on Environment and Public Works. Subcommittee on Transportation Safety, Infrastructure Security, and Water Quality. Pharmaceuticals in the nation's drinking water: Assessing potential risks and actions to address the issue : hearing before the Subcommittee on Transportation Safety, Infrustructure Security, and Water Quality of the Committee on Environment and Public Works, United States Senate, One Hundred Tenth Congress, second session, April 15, 2008. Washington: U.S. Government Printing Office, 2014.
Find full textKennett, Robin P., and Sidra Aurangzeb. Primary muscle diseases. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199688395.003.0024.
Full textPatisaul, Heather B., and Scott M. Belcher. Landmark Endocrine-Disrupting Compounds of the Past and Present. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199935734.003.0003.
Full textPitt, Matthew. Nerve physiology. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198754596.003.0003.
Full textKatirji, Bashar. Case 18. Edited by Bashar Katirji. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190603434.003.0022.
Full textPitt, Matthew. Pathophysiological associations in paediatric neuromuscular junction disorders. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198754596.003.0010.
Full textPitt, Matthew. Needle EMG findings in different pathologies. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198754596.003.0007.
Full textBook chapters on the topic "Compound action potential"
Ahmadian, Amir, Angela E. Downes, and A. Samy Youssef. "Compound Muscle Action Potential (CMAP)." In Encyclopedia of Otolaryngology, Head and Neck Surgery, 509. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-23499-6_200117.
Full textDoguet, Pascal, Thomas Costecalde, Hervé Méve, Jorge Marin Millan, and Jean Delbeke. "Integration of Recording channel for the Evoked Compound Action Potential in an Implantable Neurostimulator." In IFMBE Proceedings, 2417–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89208-3_580.
Full textNgo, Shyuan T., and Mark C. Bellingham. "Neurophysiological Recording of the Compound Muscle Action Potential for Motor Unit Number Estimation in Mice." In Stimulation and Inhibition of Neurons, 225–35. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-233-9_13.
Full textKramberger, Matej, and Aleš Holobar. "Multi-run Differential Evolution Improves the Decomposition of Compound Muscle Action Potential in High-Density Surface Electromyograms." In 8th European Medical and Biological Engineering Conference, 848–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64610-3_95.
Full textLeondes, Cornelius T. "The Compound Action Potential of the Stronger Myelinated Fibers in Peripheral Nerve Trunks and its Diagnostic Interpretation." In Computational Methods in Biophysics, Biomaterials, Biotechnology and Medical Systems, 1015–29. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/0-306-48329-7_31.
Full textHughes, M. L., P. J. Abbas, C. J. Brown, and B. J. Gantz. "Using Electrically Evoked Compound Action Potential Thresholds to Facilitate Creating MAPs for Children with the Nucleus CI24M." In Advances in Oto-Rhino-Laryngology, 260–65. Basel: KARGER, 2000. http://dx.doi.org/10.1159/000059125.
Full textRutten, W. L. C., and V. F. Prijs. "Compound Action Potential (AP) Tuning in Man and Guinea Pig: Effect of Probe Tone Level and Hearing Loss." In Auditory Frequency Selectivity, 161–70. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2247-4_19.
Full textGleich, Otto, Marjorie Leek, and Robert Dooling. "Influence of Neural Synchrony on the Compound Action Potential, Masking, and the Discrimination of Harmonic Complexes in Several Avian and Mammalian Species." In Hearing – From Sensory Processing to Perception, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73009-5_1.
Full textToda, Y., T. Tamaki, B. Taylor, and R. Ogawa. "The effect of anaesthetic agents on descending spinal cord evoked potential and the compound muscle action potentials elicited by stimulation at the motor cortex and the spinal cord." In Handbook of Spinal Cord Monitoring, 433–37. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1416-5_62.
Full textMahesh, Sreekantan Krishna, Jaseela Fathima, and Vijayan Girija Veena. "Cosmetic Potential of Natural Products: Industrial Applications." In Natural Bio-active Compounds, 215–50. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7205-6_10.
Full textConference papers on the topic "Compound action potential"
Martinez, Doncarli, and Guiheneuc. "Compound Nerve Action Potential Modelization And Synthesis." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.589504.
Full textMartinez, Claude, Christian Doncarli, and Pierre Guiheneuc. "Compound Nerve Action Potential modelization and synthesis." In 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.5761873.
Full textTroiani, Francesca, Konstantin Nikolic, and Timothy G. Constandinou. "Optical coherence tomography for compound action potential detection: a computational study." In Optical Coherence Imaging Techniques and Imaging in Scattering Media II, edited by Stephen A. Boppart, Maciej Wojtkowski, and Wang-Yuhl Oh. SPIE, 2017. http://dx.doi.org/10.1117/12.2284697.
Full textLee, Chungkeun, Yongho Kim, Hangsik Shin, Yongjun Kim, and Myoungho Lee. "The Measurement of Compound Neural Action Potential in Sciatic nerve Using Microelectrode Array." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.260636.
Full textLee, Chungkeun, Yongho Kim, Hangsik Shin, Yongjun Kim, and v. Lee. "The measurement of compound neural action potential in sciatic nerve using microelectrode array." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.260936.
Full textLee, Chungkeun, Yongho Kim, Hangsik Shin, Yongjun Kim, and Myoungho Lee. "The Measurement of Compound Neural Action Potential in Sciatic nerve Using Microelectrode Array." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.4398078.
Full textSiam, Zakaria Shams, Rubyat Tasnuva Hasan, Mohammad Abu Sayem Karal, M. A. Masud, and Zaid Bin Mahbub. "Analysis of Continuous Motor Nerve Conduction Velocity Distribution from Compound Muscle Action Potential." In 2020 11th International Conference on Electrical and Computer Engineering (ICECE). IEEE, 2020. http://dx.doi.org/10.1109/icece51571.2020.9393039.
Full textZhu, Ziyan, Qing Tang, Fan-Gang Zeng, Tian Guan, and Datian Ye. "Characterization of Electrically Evoked Compound Action Potential Amplitude Growth Function in Cochlear Implant Users." In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5515523.
Full textGärtner, L., T. Lenarz, and A. Büchner. "Cochlear implant fitting based on automated measurements of the electrically evoked compound action potential." In Abstract- und Posterband – 90. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Digitalisierung in der HNO-Heilkunde. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1686375.
Full textTroiani, Francesca, Konstantin Nikolic, and Timothy G. Constandinou. "Optical coherence tomography for detection of compound action potential in Xenopus Laevis sciatic nerve." In SPIE BiOS, edited by Steen J. Madsen, Victor X. D. Yang, E. Duco Jansen, Qingming Luo, Samarendra K. Mohanty, and Nitish V. Thakor. SPIE, 2016. http://dx.doi.org/10.1117/12.2209335.
Full textReports on the topic "Compound action potential"
Kaffenberger, Michelle. Modeling the Long-Run Learning Impact of the COVID-19 Learning Shock: Actions to (More Than) Mitigate Loss. Research on Improving Systems of Education (RISE), June 2020. http://dx.doi.org/10.35489/bsgrise-ri_2020/017.
Full text