Journal articles on the topic 'Compositionally graded materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Compositionally graded materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Coco, Lorenzo, Florent Lefevre-Schlick, Olivier Bouaziz, Xiang Wang, J. K. Solberg, and David Embury. "The mechanical response of compositionally graded materials." Materials Science and Engineering: A 483-484 (June 2008): 266–69. http://dx.doi.org/10.1016/j.msea.2006.12.164.
Full textTorrecillas, R. "Compositionally graded zirconia-molybdenum materials without residual stress." Metal Powder Report 57, no. 6 (June 2002): 54. http://dx.doi.org/10.1016/s0026-0657(02)80261-2.
Full textZhong, S., S. P. Alpay, Z. G. Ban, and J. V. Mantese. "Effective pyroelectric response of compositionally graded ferroelectric materials." Applied Physics Letters 86, no. 9 (February 28, 2005): 092903. http://dx.doi.org/10.1063/1.1866505.
Full textChéhab, Béchir, Hatem Zurob, David Embury, Olivier Bouaziz, and Yves Brechet. "Compositionally Graded Steels: A Strategy for Materials Development." Advanced Engineering Materials 11, no. 12 (December 2009): 992–99. http://dx.doi.org/10.1002/adem.200900180.
Full textPopa, Monica, José-Maria Calderón Moreno, Pavol Hvizdoš, Raúl Bermejo, and Guy Anné. "Residual Stress Profile Determined by Piezo-Spectroscopy in Alumina/Alumina-Zirconia Layers Separated by a Compositionally Graded Intermediate Layer." Key Engineering Materials 290 (July 2005): 328–31. http://dx.doi.org/10.4028/www.scientific.net/kem.290.328.
Full textWu, Jiagang, John Wang, Dingquan Xiao, and Jianguo Zhu. "Compositionally graded bismuth ferrite thin films." Journal of Alloys and Compounds 509, no. 35 (September 2011): L319—L323. http://dx.doi.org/10.1016/j.jallcom.2011.05.076.
Full textSuresh, S., A. E. Giannakopoulos, and J. Alcalá. "Spherical indentation of compositionally graded materials: Theory and experiments." Acta Materialia 45, no. 4 (April 1997): 1307–21. http://dx.doi.org/10.1016/s1359-6454(96)00291-1.
Full textPeka, H. P., D. A. Pulemyotov, and M. P. Verkhovodov. "Compositionally graded semiconductors with intervalley crossover." Semiconductor Science and Technology 8, no. 8 (August 1, 1993): 1517–22. http://dx.doi.org/10.1088/0268-1242/8/8/006.
Full textKim, Yeon-Wook, Tae-Hyun Nam, and Seong-Min Lee. "Martensitic Transformation Behaviors of Compositionally Graded Ti–Ni-Based Shape Memory Alloys." Science of Advanced Materials 12, no. 10 (October 1, 2020): 1586–90. http://dx.doi.org/10.1166/sam.2020.3802.
Full textKlic, A., and M. Marvan. "Pseudo-spin model of compositionally graded ferroelectrics." Phase Transitions 79, no. 6-7 (June 2006): 493–503. http://dx.doi.org/10.1080/01411590600892377.
Full textShut, V. N., S. R. Syrtsov, and V. L. Trublovsky. "Ferroelectric properties of compositionally graded BST ceramics." Phase Transitions 83, no. 5 (May 2010): 368–77. http://dx.doi.org/10.1080/01411594.2010.484900.
Full textBan, Z. G., S. P. Alpay, and J. V. Mantese. "Hysteresis Offset and Dielectric Response of Compositionally Graded Ferroelectric Materials." Integrated Ferroelectrics 58, no. 1 (August 2003): 1281–91. http://dx.doi.org/10.1080/10584580390259470.
Full textRousseau, C. E., and H. V. Tippur. "Compositionally graded materials with cracks normal to the elastic gradient." Acta Materialia 48, no. 16 (October 2000): 4021–33. http://dx.doi.org/10.1016/s1359-6454(00)00202-0.
Full textGam, J. S., K. S. Han, S. S. Park, and H. C. Park. "Joining of TiB2-AL2O3Using Compositionally Graded Interlayers." Materials and Manufacturing Processes 14, no. 4 (January 1999): 537–46. http://dx.doi.org/10.1080/10426919908914848.
Full textZeng, Minxiang, Yipu Du, Qiang Jiang, Nicholas Kempf, Chen Wei, Miles V. Bimrose, A. N. M. Tanvir, et al. "High-throughput printing of combinatorial materials from aerosols." Nature 617, no. 7960 (May 10, 2023): 292–98. http://dx.doi.org/10.1038/s41586-023-05898-9.
Full textLee, Kenneth E., and Eugene A. Fitzgerald. "High-quality metamorphic compositionally graded InGaAs buffers." Journal of Crystal Growth 312, no. 2 (January 2010): 250–57. http://dx.doi.org/10.1016/j.jcrysgro.2009.10.041.
Full textGao, Lei. "Optical nonlinearity enhancement of compositionally graded films." European Physical Journal B 44, no. 4 (April 2005): 481–86. http://dx.doi.org/10.1140/epjb/e2005-00147-x.
Full textZhang, Tong-Yi. "A dislocation in a compositionally graded epilayer." Physica Status Solidi (a) 148, no. 1 (March 16, 1995): 175–89. http://dx.doi.org/10.1002/pssa.2211480115.
Full textNakano, Junichi, Kimio Fujii, and Reiji Yamada. "Mechanical Properties of Oxidation-Resistant SiC/C Compositionally Graded Graphite Materials." Journal of the American Ceramic Society 80, no. 11 (November 1997): 2897–902. http://dx.doi.org/10.1111/j.1151-2916.1997.tb03209.x.
Full textRoumina, R., J. D. Embury, O. Bouaziz, and H. S. Zurob. "Mechanical behavior of a compositionally graded 300M steel." Materials Science and Engineering: A 578 (August 2013): 140–49. http://dx.doi.org/10.1016/j.msea.2013.04.006.
Full textKulkarni, Tushar, H. Z. Wang, S. N. Basu, and V. K. Sarin. "Compositionally graded mullite-based chemical vapor deposited coatings." Journal of Materials Research 24, no. 2 (February 2009): 470–74. http://dx.doi.org/10.1557/jmr.2009.0062.
Full textVallone, Marco, Michele Goano, Francesco Bertazzi, Giovanni Ghione, Stefan Hanna, Detlef Eich, and Heinrich Figgemeier. "FDTD simulation of compositionally graded HgCdTe photodetectors." Infrared Physics & Technology 97 (March 2019): 203–9. http://dx.doi.org/10.1016/j.infrared.2018.12.041.
Full textOkatan, M. B., A. L. Roytburd, V. Nagarajan, and S. P. Alpay. "Electrical domain morphologies in compositionally graded ferroelectric films." Journal of Physics: Condensed Matter 24, no. 2 (December 15, 2011): 024215. http://dx.doi.org/10.1088/0953-8984/24/2/024215.
Full textPal, R., A. Malik, V. Srivastav, B. L. Sharma, V. Dhar, B. Sreedhar, and H. P. Vyas. "Compositionally graded interface for passivation of HgCdTe photodiodes." Journal of Electronic Materials 35, no. 10 (October 2006): 1793–800. http://dx.doi.org/10.1007/s11664-006-0159-0.
Full textCai, Minglei, Tedi Kujofsa, Xinkang Chen, Md Tanvirul Islam, and John E. Ayers. "Interaction Length for Dislocations in Compositionally-Graded Heterostructures." International Journal of High Speed Electronics and Systems 27, no. 03n04 (September 2018): 1840022. http://dx.doi.org/10.1142/s0129156418400220.
Full textWeiss, C. V., M. B. Okatan, S. P. Alpay, M. W. Cole, E. Ngo, and R. C. Toonen. "Compositionally graded ferroelectric multilayers for frequency agile tunable devices." Journal of Materials Science 44, no. 19 (October 2009): 5364–74. http://dx.doi.org/10.1007/s10853-009-3514-8.
Full textWang, C. L., X. S. Wang, Y. Xin, Z. Wang, X. H. Xu, W. L. Zhong, and P. L. Zhang. "Phase transition properties of compositionally graded ferroelectric structure." Ferroelectrics 252, no. 1 (February 2001): 89–96. http://dx.doi.org/10.1080/00150190108016244.
Full textShut, V. N., S. R. Syrtsov, V. L. Trublovsky, A. D. Poleyko, S. V. Kostomarov, and L. P. Mastyko. "Compositionally Graded BST Ceramics Prepared by Tape Casting." Ferroelectrics 386, no. 1 (August 12, 2009): 125–32. http://dx.doi.org/10.1080/00150190902961876.
Full textChapa-cabrera, J., and I. E. Reimanis. "Crack deflection in compositionally graded Cu-W composites." Philosophical Magazine A 82, no. 17-18 (November 2002): 3393–403. http://dx.doi.org/10.1080/01418610208240450.
Full textChapa-Cabrera, J., and I. E. Reimanis. "Crack deflection in compositionally graded Cu–W composites." Philosophical Magazine A 82, no. 17 (November 20, 2002): 3393–403. http://dx.doi.org/10.1080/0141861021000017819.
Full textMarvan, M., and J. Fousek. "Pyroelectricity and thermodynamic theory of compositionally graded ferroelectric films." Phase Transitions 79, no. 1-2 (January 2006): 153–62. http://dx.doi.org/10.1080/01411590600555834.
Full textCho, Kyung Mok, Il Dong Choi, and Ik Min Park. "Thermal Properties and Fracture Behavior of Compositionally Graded Al-SiCp Composites." Materials Science Forum 449-452 (March 2004): 621–24. http://dx.doi.org/10.4028/www.scientific.net/msf.449-452.621.
Full textKim, Eun Seong, Jeong Min Park, Gangaraju Manogna Karthik, Kyung Tae Kim, Ji-Hun Yu, Byeong-Joo Lee, and Hyoung Seop Kim. "Local composition detouring for defect-free compositionally graded materials in additive manufacturing." Materials Research Letters 11, no. 7 (April 5, 2023): 586–94. http://dx.doi.org/10.1080/21663831.2023.2192244.
Full textMerino, Rosa I., J. I. Peña, and V. M. Orera. "Compositionally graded YSZ–NiO composites by surface laser melting." Journal of the European Ceramic Society 30, no. 2 (January 2010): 147–52. http://dx.doi.org/10.1016/j.jeurceramsoc.2009.04.031.
Full textOu, Canlin, Lu Zhang, Qingshen Jing, Vijay Narayan, and Sohini Kar‐Narayan. "Compositionally Graded Organic–Inorganic Nanocomposites for Enhanced Thermoelectric Performance." Advanced Electronic Materials 6, no. 1 (October 14, 2019): 1900720. http://dx.doi.org/10.1002/aelm.201900720.
Full textSingh, Rajiv, and James Fitz-Gerald. "Surface composites: A new class of engineered materials." Journal of Materials Research 12, no. 3 (March 1997): 769–73. http://dx.doi.org/10.1557/jmr.1997.0112.
Full textBen-Artzy, A., A. Reichardt, J. P. Borgonia, R. P. Dillon, B. McEnerney, A. A. Shapiro, and P. Hosemann. "Compositionally graded SS316 to C300 Maraging steel using additive manufacturing." Materials & Design 201 (March 2021): 109500. http://dx.doi.org/10.1016/j.matdes.2021.109500.
Full textYahyaoui, N., S. Aloulou, R. Chtourou, A. Sfaxi, and M. Oueslati. "Optical properties of compositionally graded InxAl1–xAs/GaAs heterostructures." Thin Solid Films 516, no. 7 (February 2008): 1604–7. http://dx.doi.org/10.1016/j.tsf.2007.03.083.
Full textAdikary, Sudarman Upali, Balakrishnan Sundaravel, Helen Lai-Wa Chan, Ian Howard Wilson, and Chung-Loong Choy. "Rutherford backscattering analysis of compositionally graded BaxSr1-xTiO3thin films." Ferroelectrics 262, no. 1 (January 2001): 287–92. http://dx.doi.org/10.1080/00150190108225164.
Full textChen, Chang, Zi Liu, Gui Wang, and Xiao Feng. "Fabrication and characterization of compositionally graded Bi1−x GdxFeO3 thin films." Materials Science-Poland 32, no. 3 (September 1, 2014): 498–502. http://dx.doi.org/10.2478/s13536-014-0213-1.
Full textZHONG, S., S. ALPAY, Z. G. BAN, and J. V. MANTESE. "DIELECTRIC PERMITTIVITY AND PYROELECTRIC RESPONSE OF COMPOSITIONALLY GRADED FERROELECTRICS." Integrated Ferroelectrics 71, no. 1 (July 2005): 1–9. http://dx.doi.org/10.1080/10584580590965005.
Full textSbrockey, N. M., M. W. Cole, T. S. Kalkur, M. Luong, J. E. Spanier, and G. S. Tompa. "MOCVD Growth of Compositionally Graded BaxSr1-xTiO3 Thin Films." Integrated Ferroelectrics 126, no. 1 (January 2011): 21–27. http://dx.doi.org/10.1080/10584587.2011.574975.
Full textMatsumoto, Yuji, Shingo Maruyama, and Kenichi Kaminaga. "Compositionally graded crystals as a revived approach for new crystal engineering for the exploration of novel functionalities." CrystEngComm 24, no. 13 (2022): 2359–69. http://dx.doi.org/10.1039/d2ce00041e.
Full textJia, Mingyong, Fei Chen, Yueqi Wu, Like Xu, Qiang Shen, Nan Jiang, and Jian Sun. "Microstructure and shear fracture behavior of Mo/AlN/Mo symmetrical compositionally graded materials." Materials Science and Engineering: A 834 (February 2022): 142591. http://dx.doi.org/10.1016/j.msea.2021.142591.
Full textJandl, Adam, Mayank T. Bulsara, and Eugene A. Fitzgerald. "Materials properties and dislocation dynamics in InAsP compositionally graded buffers on InP substrates." Journal of Applied Physics 115, no. 15 (April 21, 2014): 153503. http://dx.doi.org/10.1063/1.4871289.
Full textAdikary, S. U., and H. L. W. Chan. "Compositionally graded BaxSr1−xTiO3 thin films for tunable microwave applications." Materials Chemistry and Physics 79, no. 2-3 (April 2003): 157–60. http://dx.doi.org/10.1016/s0254-0584(02)00255-9.
Full textSakai, Joe, José Manuel Caicedo Roque, Pablo Vales-Castro, Jessica Padilla-Pantoja, Guillaume Sauthier, Gustau Catalan, and José Santiso. "Control of Lateral Composition Distribution in Graded Films of Soluble Solid Systems A1−xBx by Partitioned Dual-Beam Pulsed Laser Deposition." Coatings 10, no. 6 (June 1, 2020): 540. http://dx.doi.org/10.3390/coatings10060540.
Full textLi, Xuefei, Jianming Xu, Tieshi Wei, Wenxian Yang, Shan Jin, Yuanyuan Wu, and Shulong Lu. "Enhanced Properties of Extended Wavelength InGaAs on Compositionally Undulating Step-Graded InAsP Buffers Grown by Molecular Beam Epitaxy." Crystals 11, no. 12 (December 20, 2021): 1590. http://dx.doi.org/10.3390/cryst11121590.
Full textAyers, J. E., Tedi Kujofsa, Johanna Raphael, and Md Tanvirul Islam. "Recent Advances in the Modeling of Strain Relaxation and Dislocation Dynamics in InGaAs/GaAs (001) Heterostructures." International Journal of High Speed Electronics and Systems 29, no. 01n04 (March 2020): 2040005. http://dx.doi.org/10.1142/s0129156420400054.
Full textYoon, Jong-Gul. "A New Approach to the Fabrication of Memristive Neuromorphic Devices: Compositionally Graded Films." Materials 13, no. 17 (August 20, 2020): 3680. http://dx.doi.org/10.3390/ma13173680.
Full text