Contents
Academic literature on the topic 'Composites à fibres – Fibres végétales – Tuyaux'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Composites à fibres – Fibres végétales – Tuyaux.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Composites à fibres – Fibres végétales – Tuyaux"
Bourmaud, Alain, Antoine Le Duigou, and Christophe Baley. "Recyclage des matériaux composites renforcés par des fibres végétales." Revue des composites et des matériaux avancés 20, no. 3 (December 31, 2010): 353–72. http://dx.doi.org/10.3166/rcma.20.353-372.
Full textNardin, Michel. "Interfaces fibre-matrice dans les matériaux composites. Applications aux fibres végétales." Revue des composites et des matériaux avancés 16, no. 1 (April 23, 2006): 49–62. http://dx.doi.org/10.3166/rcma.16.49-62.
Full textKoadri, Zainate, Azzedine Benyahia, Nadir Deghfel, Kamel Belmokre, Brahim Nouibat, and Ali Redjem. "Étude de l’effet du temps de traitement alcalin de fibres palmier sur le comportement mécanique des matériaux à base d’argile rouge de la région de M’sila." Matériaux & Techniques 107, no. 4 (2019): 404. http://dx.doi.org/10.1051/mattech/2019031.
Full textRoussière, Fabrice, Laurent Vrévin, Dominique Burr, and Christophe Baley. "Etude du comportement mécanique en traction de composites polyester/mats de fibres végétales (lin et chanvre)." Revue des composites et des matériaux avancés 18, no. 2 (August 31, 2008): 209–14. http://dx.doi.org/10.3166/rcma.18.209-214.
Full textSerifou, Mamery Adama, Obre Sery Paul Jolissaint, Bleh Raoul Kouassi, and Emeruwa Edjikémé. "Analyse physico-mécanique d’un composite paille de riz/ciment." Matériaux & Techniques 108, no. 2 (2020): 208. http://dx.doi.org/10.1051/mattech/2020024.
Full textDissertations / Theses on the topic "Composites à fibres – Fibres végétales – Tuyaux"
Maziz, Ammar. "Analyse des endommagements dans les pipes en matériaux composites." Electronic Thesis or Diss., Brest, École nationale supérieure de techniques avancées Bretagne, 2021. http://www.theses.fr/2021ENTA0019.
Full textDamage modelling of hybrid composite materials has played an important role in the design of composite structures. Although numerical models for the progressive damage of filament wound hybrid composite pipes such, matrix cracking, delamination, and fiber failure have been developed in the literature; there is still a need for improvement. This thesis aims to develop damage models suitable for predicting dynamic behaviour and intra-laminar and inter-laminar damage in hybrid composite tubes under internal pressure subjected to dynamic loading such as the impact of an external object. Fracture mechanics and continuum damage mechanics approaches were adopted to build the damage model. A detailed analysis was performed to have an overview of all the damage mechanisms until the final failure. Cohesive elements were inserted into the two-dimensional and three-dimensional models to simulate the initiation and propagation of matrix cracking and delamination in cross-layered laminates. The damage model was implemented in the FE code (Abaqus/Explicit) by a user-defined material subroutine (VUMAT). Subsequently, validations based on test/calculation correlations on real subsystems and/or parts were performed. Damage initiation was predicted based on the stress-strain failure criteria, while the damage evolution law was based on the dissipation of failure energy. The nonlinear behavior of the material in shear was also taken into account and validated against experimental/numerical results. The predictions show excellent agreement with the experimental observations
Coroller, Guillaume. "Contribution à l'étude des matériaux composites renforcés par des fibres végétales : cas des composites extrudés à matrice polypropylène." Lorient, 2013. http://www.theses.fr/2013LORIS302.
Full textNatural fibers can replace mineral or synthetic reinforcements in many industrial applications, for automotive or not. Their complex and multi component structure as well as their natural origin lead to higher difficulties in this kind of reinforcement than the usual ones. The aim of this thesis work is give a better understanding of the key parameters to control to get the reinforcement capacity of natural fibers. In a first step we studied the influence of the components on the mechanical properties of an injected polypropylene. This has highlighted the interest in flax fibers for composite's reinforcement. It has also underlined the influence of fiber content and using coupling agent. The comparison between extrusion molding and injection molding bas showed the effect of molding process on microstructure and mechanical properties, injection molding showing a better efficiency. Then we focused on extrusion molding, and we have brought to light that it is possible to extrude polypropylene reinforced with flax fiber that is complying with automotive specifications, but it showed lack stability during extrusion process. The study of flax / talc hybrid composites extruded showed that adding talc particles to flax fibers help to increase mechanical properties and to troubleshoot extrusion issues. Finally, we highlighted that, for both short and long flax fibers, fiber's individualization and dispersion are one of the key parameters to control
Alia, Adem. "Comportement à la rupture d'un composite à fibres végétales." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI016.
Full textThe objective of this thesis is the characterization of the mechanical behavior and the damage of a woven jute / polyester composite. natural fibers are indeed an interesting ecological alternative to synthetic fibers, in particular glass fibers which are the most used for composite manufacturing. The studied composite is developed in the LMNM laboratory at IOMP, Sétif, Algeria. Two fibre orientations ([0] 8 and [+ 45 / -45] 2S) are considered. The mechanical characterization is carried out in monotonic tensile and compression as well as in cyclic fatigue. Mechanical and microstructural characterizations are carried out in the MATEIS laboratory. The study of the damage is carried out by combining five techniques: the evolution of mechanical parameters via cyclic and fatigue tests, microscopy, acoustic emission (EA), image correlation and micro- RX tomography. The study of the evolution of the mechanical parameters combined with the global analysis of the AE provides first indicators concerning the development of the damage during the tests. Microstructural analyzes allow to finely identify the damage mechanisms that occur during mechanical tests (fiber / matrix decohesions, matrix cracks and fiber breakage). For the segmentation of acoustic emission signals in monotonic tests, an unsupervised classification is used, emphasizing the choice of descriptors and the labeling of the classes obtained. Tensile tests instrumented by image correlation as well as in situ tensile tests under tomography allow to identify the chronology of appearance of the damage. These results are also used to label the obtained classes . The labeled signals are then used to create a library to identify the chronology of evolution of the modes of damage in cyclic fatigue achieved by supervised classification. Finally, all these analyzes made it possible to establish damage scenarios for the different damage modes and for the two orientations. It is thus possible to reconsider the development to optimize the mechanical properties
Cheour, Khouloud. "Analyse du comportement en vibration de matériaux composites à fibres végétales." Thesis, Reims, 2017. http://www.theses.fr/2017REIMS022/document.
Full textThis PhD research work aimed at analysing the free vibration behaviour of non-hybrid and hybrid flax-glass composites. First, a modal analysis approach was developed to study the mechanical and dynamic behaviour of these materials. Their elastic and damping properties were identified from their natural frequencies and a comparison with the traditional composites was carried out. In the second part, a finite element modelling of the damping of non-hybrid and hybrid composites was implemented by considering the classical laminate theory, taking into account the transverse shear effects. Different topics were studied such as the fibres orientation, the stacking sequence, the reinforcement architecture, the choice of the stacking sequence layers for the hybridisation. This analysis resulted in optimising both mechanical and damping performances of non-hybrid composites and hybrid flax-glass composites. In the last part of this work, the effect of water ageing on the dynamical and mechanical properties of non-hybrid and hybrid glass-flax composites was studied. To this end, these composites were subjected to free vibrations at different ageing durations in order to identify the effect of water ageing on their mechanical and damping properties and their evolution with ageing time. Finally, a cycle of ageing until saturation was reached followed by a drying operation, which was carried out to analyse the reversibility of their properties
Bourmaud, Alain Gilles. "Contribution à l'étude multi-échelles de fibres végétales et de biocomposites." Lorient, 2011. http://www.theses.fr/2011LORIS241.
Full textThe depletion of our natural resources as well as the increasing impacts of the society on our environment, involves a necessary modification of composite materials design. Thus, for many industrial products, vegetal fibres could be used to substitute synthetic fibres, as composite materials reinforcement. Due to their hierarchical and multi components structure, the vegetal fibres could be considered, at their scale, as complex composite materials. The purpose of this work is to contribute, at various scales, to the knowledge about the vegetal fibres and the associated composites. First of all, we evidenced the interest of nanoindentation and x-ray diffraction to obtain the mechanical and viscoelastic properties of the cell walls as well as their microfibrillar angles. The second experimental part highlights that the processing of soft water, or dopamine bio mimetic treatments, could significantly improve the division and manualy extraction of under retted flax fibres, or some mechanical properties of elaborated biocomposites. In the last section of this thesis report, we evidenced the influence of various manufacturing processes on the composites and fibres properties as well as those of the recycling on vegetal fibres reinforced composites. We showed a good stabilization of the composites mechanical properties after recycling and an important environmental interest to use a recycled matrix for their elaboration
Liu, Taiqu. "Caractérisation multi-échelle de l'amortissement des matériaux composites à fibres végétales." Thesis, Bourgogne Franche-Comté, 2021. http://indexation.univ-fcomte.fr/nuxeo/site/esupversions/7f465635-2b19-4a9c-8100-84b95d1c4521.
Full textVibration and noise are unavoidable problems in engineering products and daily life. Thus, the knowledge of the damping performances of engineering materials and the factors that affect these properties are highly required. Plant fiber composites (PFCs) have become a new option when considering the compromise between damping and stiffness. Current researches on damping are mainly work at the macroscale and the damping sources and mechanisms in plant fiber composites are complex and not fully revealed. Thus, the main objective of this thesis is to provide a better characterization and understanding of damping in PFCs using various experimental techniques at different scales and on a wide range of frequency. This thesis starts with the review of literature on the damping behavior of PFCs. Then, the influences of many parameters including matrix types, fiber architecture, woven pattern, temperature, frequency and moisture content on the damping properties of PFCs are investigated based on dynamic mechanical analysis (DMA) and modal analysis. Furthermore, a constant amplitude method as well as constant stiffness method are used to map the in situ damping properties at the microscale based on grid dynamic Nanoindentation (DNI). These results are then compared to those obtained from dynamic mechanical analysis and modal test methods. The results from DNI show the contribution of each component (fiber, matrix and interface) on energy dissipation. Finally, the damping properties measured using these three experimental techniques at the three different scales are plotted on a wide frequency and temperature range
Pomel, Catherine. "Contribution à l'étude de matériaux composites renforcés par des fibres de lin." Nantes, 2003. http://www.theses.fr/2003NANT2029.
Full textMerotte, Justin. "Contribution a l'étude des matériaux composites renforcés par des fibres végétales aiguilletées." Thesis, Lorient, 2017. http://www.theses.fr/2017LORIS444.
Full textProposing solutions to produce more efficient and environmentally friendly automotive parts has become a major challenge for tier one suppliers. The work described in this thesis is about understanding and improving composite materials made with commingled plant fibre nonwovens. From the same initial nonwoven, it is possible to obtain very distinct material structures by controlling porosity content. One can then give to the material enhanced acoustic properties with high porosity content (50%) or in the contrary show good mechanical properties by limiting porosities. Material structure will evolve with porosity as well as its mechanical behavior. Thus, as function of porosity, interfacial adhesion of fibre mechanical properties will govern composite mechanical properties. Biocomposite automotive parts are exposed to a large range of climatic environments and their mechanical properties can vary significantly. Indeed, radial stresses are drastically influenced by the reinforcement hygroscopic state. Finally, the idea developing an innovative material structure from compression moulding wastes has helped enhancing material rigidity
Ilczyszyn, Florent. "Caractérisation expérimentale et numérique du comportement mécanique des agro-composites renforcés par des fibres de chanvre." Thesis, Troyes, 2013. http://www.theses.fr/2013TROY0016/document.
Full textIn this thesis, fibres extracted from hemp plant and bio-composites polypropylene reinforced by short hemp fibres was investigated. Experimental studies coupled to numerical modelling have enabled to understand and determined their mechanical behaviour taking into account the geometrical shape, the natural defects and the size of hemp fibres. Microscopic experimental method has enabled to characterize the unitary fibre behaviour independently of fibre bundles. Due to their vegetal origins, hemp unitary fibres and bundles present a complex morphology and structure which have an impact on the mechanical properties of composite. Studies carried out the effect of the growing conditions and hemp variety on the fibre behaviour.For the bio-composite material, optical and macroscopic experimental characterization methods were used in order to determine the behaviour of a polypropylene PP reinforced by hemp fibres. The imaging correlation method is also used to analyse the local behaviour showing the heterogeneity of PP/hemp fibres reinforced material. Moreover, complementary work showed the impact of the fibre distribution and the manufacturing process on the composite properties and the damage initiation and growth
Roussière, Fabrice. "Contribution à l'étude d'un non-tissé de fibres végétales pour le renforcement de matériaux composites." Lorient, 2010. http://www.theses.fr/2010LORIS171.
Full textBooks on the topic "Composites à fibres – Fibres végétales – Tuyaux"
Sapuan, S. M., Muhammed Lamin Sanyang, M. R. Ishak, and J. Sahari. Kenaf Fibers and Composites. Taylor & Francis Group, 2018.
Find full textSapuan, S. M., Muhammed Lamin Sanyang, M. R. Ishak, and J. Sahari. Kenaf Fibers and Composites. Taylor & Francis Group, 2018.
Find full textSapuan, S. M., Muhammed Lamin Sanyang, M. R. Ishak, and J. Sahari. Kenaf Fibers and Composites. Taylor & Francis Group, 2018.
Find full textKenaf Fibers and Composites. Taylor & Francis Group, 2018.
Find full text