To see the other types of publications on this topic, follow the link: Composite.

Journal articles on the topic 'Composite'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Composite.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sari, Nasmi Herlina, Suteja Suteja, and Yusuf Akhyar Sutaryono. "The Mechanical Properties of a Water Hyacinth/Rice Husk Powders Composite for Tissue Engineering Applications." Journal of Fibers and Polymer Composites 2, no. 2 (October 30, 2023): 145–56. http://dx.doi.org/10.55043/jfpc.v2i2.123.

Full text
Abstract:
In this study, composites made from water hyacinth powder (WPH) and rice husk powder (RH) were created using the hot press method, and the composites were characterized to determine their suitability for biomedical applications such as tissue engineering. The mixing ratio of WPH/RH was investigated. Fourier transmission infrared spectroscopy (FTIR) revealed the presence of chemical bonds in the composites under investigation. Tensile tests were used to investigate the mechanical properties of the composite, which revealed that adding water WPH to the rice husk composite reduced the composite's strength. A composite with a 5% WPH content had the highest tensile strength of 32.72 MPa. Meanwhile, the mechanical strength of the other composites studied ranged from 25,537 MPa to 29.43 MPa. However, the elastic modulus of the composite increased with the addition of WPH. The SEM image shows that the powder distribution is less even, the interface between WPH-RH and polyester is quite tight, and the composite contains a number of voids. Characterization of the developed composite demonstrates that the WPH/RH addition ratio can be adjusted to achieve the desired composite properties for tissue engineering and cartilage regeneration applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Kala, Shiva Kumar, and Chennakesava Reddy Alavala. "Enhancement of Mechanical and Wear Behavior of ABS/Teflon Composites." Trends in Sciences 19, no. 9 (April 8, 2022): 3670. http://dx.doi.org/10.48048/tis.2022.3670.

Full text
Abstract:
In the present investigations, Most of the engineering applications of metallic materials are replaced by polymeric based composite materials. Because of the low cost and accessible handling of polymer composite materials such as Acrylonitrile butadiene styrene (ABS) matrix materials are used to make the composites with additions of filler enhance the properties of the matrix materials. In the present study, ABS matrix material is used to make the composite materials by adding the Teflon materials. Investigations are carried out to find the enhancement of the composites' mechanical properties. Optimizing the process parameters is done to identify the composite's most optimum used to get composite with better mechanical properties. SEM analysis and wear Debris are investigated to study the microscopic surface nature and behavior of the composites.
APA, Harvard, Vancouver, ISO, and other styles
3

Kobayashi, Junya, Masahiro Kaneko, Chamaiporn Supachettapun, Kenji Takada, Tatsuo Kaneko, Joon Yang Kim, Minori Ishida, Mika Kawai, and Tetsu Mitsumata. "Mechanical Properties and Reinforcement of Paper Sheets Composited with Carboxymethyl Cellulose." Polymers 16, no. 1 (December 26, 2023): 80. http://dx.doi.org/10.3390/polym16010080.

Full text
Abstract:
The mechanical properties for paper sheets composited with glucose (Glc), methyl cellulose (MC), and carboxymethyl cellulose (CMC) were investigated. The paper composites were prepared by immersing paper sheets in aqueous solutions of these materials and drying at 100 °C for 30 min. The stress–strain curves for these paper composites were measured by a uniaxial tensile apparatus with a stretching speed of 2 mm/min. The breaking stress and strain for untreated paper were 24 MPa and 0.016, respectively. The paper composites demonstrated stress–strain curves similar to the untreated paper; however, the breaking point largely differed for these composites. The breaking strain and breaking stress for the Glc composite slightly decreased and those for the MC composite gradually increased with the concentration of materials composited. Significant increases in the mechanical properties were observed for the CMC composite. The breaking stress, breaking strain, and breaking energy for the 3 wt.% CMC composite were 2.0-, 3.9-, and 8.0-fold higher than those for untreated paper, respectively. SEM photographs indicated that the CMC penetrated into the inner part of the paper. These results strongly suggest that the mechanical improvement for CMC composites can be understood as an enhancement of the bond strength between the paper fibrils by CMC, which acts as a bonding agent. It was also revealed that the breaking strain, breaking stress, and breaking energy for the CMC composites were at maximum at the first cycle and decreased gradually as the immersion cycles increased.
APA, Harvard, Vancouver, ISO, and other styles
4

Liang, Yun Xing, Li Chen, Hai Wen Liu, and Hua Wu Liu. "The Development of a High Elastic 3D Prefabricated Composite." Advanced Materials Research 332-334 (September 2011): 1773–76. http://dx.doi.org/10.4028/www.scientific.net/amr.332-334.1773.

Full text
Abstract:
With the development of modern technology, fiberglass composite materials are widely applied. The advantages of fiberglass reinforced composite materials are high strength and light weight. In order to produce a prefabricated fiberglass composite, a machine chart was drafted for weaving the 3D fiberglass fabric with five layers. The obtained five-layer 3D fabrics were composited with polyurethane matrix. Afterwards, the performance of the prefabricated composites was tested and the optimal ratio of fiberglass to matrix was determined by statistical analysis.
APA, Harvard, Vancouver, ISO, and other styles
5

a, Busoni, Moch Jonny Putra, Salim Ashar Hanafi, Riza Ummami, Bambang Piluharto, and Achmad Sjaifullah. "DOPANT, IMMERSION TIME EFFECT, AND HYDROLYSIS ONTO POLYANILINE/BACTERIAL- COMPOSITES: CONDUCTIVITY STUDIES." International Journal of Advanced Research 10, no. 09 (September 30, 2022): 853–62. http://dx.doi.org/10.21474/ijar01/15431.

Full text
Abstract:
The composite of conductive polyaniline was synthesized using the in situ chemical polymerization methods on cellulose to form PANI-cellulose composites. Polyaniline can be composited with a cellulose matrix (nata de coco) due to its abundance, low price, and environmental friendliness. Ammoniumperoxodisulfate (APS) was used as an initiator forthe oxidative polymerization of aniline. Characterization of PANI-Cellulose Bacterial composite was drawn using FT-IR and SEM, while the conductivity and electric quantities both using LCR-meter, FT-IR spectra, and SEM The PANI-cellulose bacterial composite with the various concentration dopant of H2SO4 methods has the highest conductivity than PANI-cellulose bacterial composite with the dopant of HCl methods.
APA, Harvard, Vancouver, ISO, and other styles
6

Kustiningsih, Indar, Fajariswaan Nurrahman, Hasby Ashyra Rinaldi, Ipah Ema Jumiati, Denni Kartika Sari, and Jayanudin Jayanudin. "Synthesize Fe<sub>3</sub>O<sub>4</sub>-TiO<sub>2 </sub>Composite for Methyl Orange Photocatalytic Degradation." Materials Science Forum 1057 (March 31, 2022): 129–35. http://dx.doi.org/10.4028/p-9q4ts9.

Full text
Abstract:
The effect of Fe3O4 percentage on Fe3O4-TiO2 composite for methyl orange photocatalytic degradation has been investigated. Hydrothermal was carried out on TiO2 before being combined with Fe3O4 by precipitation method. The composites were characterized by means of Scanning Electron Microscope (SEM), X-ray diffraction (XRD) and UV-Vis diffuse and reflectance spectroscopy (UV-Vis DRS). The photocatalytic activity of Fe3O4-TiO2 composites were evaluated for methyl orange degradation. The addition of Fe3O4 to TiO2 could reduce the bandgap energy. The lowest bandgap energy was obtained at 20% Fe3O4-TiO2 composite. By using this composited, the degradation of methyl orange was 90%.
APA, Harvard, Vancouver, ISO, and other styles
7

Arun, M., K. Ragupathy, T. Anand, and S. Vishvanathperumal. "Fabrication and Characterization of a Stir Casting-Based Aluminium Hybrid MMC Reinforced with SiC, TiC, and MoS2." MATEC Web of Conferences 393 (2024): 01007. http://dx.doi.org/10.1051/matecconf/202439301007.

Full text
Abstract:
The need for strong, lightweight materials has prompted the creation of innovative metal matrix composites based on aluminum. The properties of metal matrix composites that are uniformly dispersed with nanoparticles are much superior to those of monolithic alloy and microparticle-reinforced composites. The objective of this work was to create and evaluate a metal matrix composite reinforced with MoS2, SiC, and TiC that is a hybrid aluminum alloy, Al6061. It was also investigated how the weight percentages (3, 6, 9, and 12%) of MoS2, SiC, and TiC reinforcement affected the mechanical, morphological, tribological, and physical characteristics of the metal matrix composite. The addition of SiC and MoS2 increased the density of the reinforced Al6061 composite when compared to as-cast non-reinforced Al6061. It was found that the hybrid composite Al6061/12% SiC/4% MoS2 had the maximum density. The hybrid metal matrix composite's toughness increased as the proportion of TiC weight increased. The composite made of Al6061, 12% TiC, and 4% MoS2 had the maximum hardness, measuring 114.03 HV. The composite Al6061/12% TiC/4% MoS2 has the most ultimate tensile strength. The tribology analysis revealed that when applied stress increased from 10 to 50 N, mass loss increased dramatically. Because of the solid MoS2 lubricant and the development of the TiC layer at the contact zone, Double- and triple-reinforced specimens had less wear loss than non-reinforced specimens, as shown by the wear performance of hybrid composites. The main wear mechanisms of the composites were delamination wear and wear debris.
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Shih-Ming, Wen-Cheng Chen, Chia-Ling Ko, Hsu-Ting Chang, Ya-Shun Chen, Ssu-Meng Haung, Kai-Chi Chang, and Jian-Chih Chen. "In Vitro Evaluation of Calcium Phosphate Bone Cement Composite Hydrogel Beads of Cross-Linked Gelatin-Alginate with Gentamicin-Impregnated Porous Scaffold." Pharmaceuticals 14, no. 10 (September 29, 2021): 1000. http://dx.doi.org/10.3390/ph14101000.

Full text
Abstract:
Calcium phosphate bone cement (CPC) is in the form of a paste, and its special advantage is that it can repair small and complex bone defects. In the case of open wounds, tissue debridement is necessary before tissue repair and the subsequent control of wound infection; therefore, CPC composite hydrogel beads containing antibiotics provide an excellent option to fill bone defects and deliver antibiotics locally for a long period. In this study, CPC was composited with the millimeter-sized spherical beads of cross-linked gelatin–alginate hydrogels at the different ratios of 0 (control), 12.5, 25, and 50 vol.%. The hydrogel was impregnated with gentamicin and characterized before compositing with CPC. The physicochemical properties, gentamicin release, antibacterial activity, biocompatibility, and mineralization of the CPC/hydrogel composites were characterized. The compressive strength of the CPC/hydrogel composites gradually decreased as the hydrogel content increased, and the compressive strength of composites containing gentamicin had the largest decrease. The working time and setting time of each group can be adjusted to 8 and 16 min, respectively, using a hardening solution to make the composite suitable for clinical use. The release of gentamicin before the hydrogel beads was composited with CPC varied greatly with immersion time. However, a stable controlled release effect was obtained in the CPC/gentamicin-impregnated hydrogel composite. The 50 vol.% hydrogel/CPC composite had the best antibacterial effect and no cytotoxicity but had reduced cell mineralization. Therefore, the optimal hydrogel beads content can be 25 vol.% to obtain a CPC/gentamicin-impregnated hydrogel composite with adequate strength, antibacterial activity, and bio-reactivity. This CPC/hydrogel containing gentamicin is expected to be used in clinical surgery in the future to accelerate bone regeneration and prevent prosthesis infection after surgery.
APA, Harvard, Vancouver, ISO, and other styles
9

Saxena, Tanvi, and V. K. Chawla. "Elastic properties evaluation of banana-hemp fiber-based hybrid composite with nano-titanium oxide filler: Analytical and Simulation Study." Engineering Solid Mechanics 12, no. 1 (2024): 65–80. http://dx.doi.org/10.5267/j.esm.2023.7.001.

Full text
Abstract:
In recent years, nano-filler-based hybrid composites have gained significant attention from the research community; The nano-filler-based hybrid composites can have potential applications in numerous sectors. Nano-fillers are bringing a leading development in material science and natural fibers-based composites. The present study considers the impact of various weight percentages of nano-titanium oxide (NTiO2) fillers (2%, 4%, and 6%) on the elastic features of novel hybridized banana-hemp fiber-reinforced epoxy composites. The proposed composite is analyzed for its elastic properties like longitudinal and transverse elastic modulus, axial Poisson's ratio, and axial shear modulus using homogenized micromechanical models, namely, Mori-Tanaka (M-T) model, Generalized self-consistent (G-SC) model and Modified Halpin-Tsai (M-HTS) model. The composite is modeled using one layer of banana fiber, one layer of NTiO2 and epoxy, and one layer of hemp fiber. All three layers of the composite are arranged in the sequence of banana fiber at 450, a layer of NTiO2 and epoxy at 00, and hemp fiber at 450. The proposed composite's vector sum deformation and strength are examined by employing the ANSYS APDL application. The results obtained in this study are compared with the experimental work mentioned in the literature. The composite reinforced with six weight% NTiO2 has the highest mechanical strength, and the modified Halpin-Tsai (M-HTS) model is the most effective in calculating the elastic features of the proposed composite. In addition to the above, the hybridization effect for the proposed composite is also estimated to analyze the tensile failure strain of banana and hemp fiber in the proposed hybrid composite structure.
APA, Harvard, Vancouver, ISO, and other styles
10

Prakoso, Medhi Wiratama, Dina Nikmatul Baroroh, and Keagisitswe Setswalo. "Water Absorption Rate of Kenaf Fiber (KF)/ Hydroxiteapatite (HA) in Simulated Sea Water." Mechanics Exploration and Material Innovation 1, no. 1 (January 31, 2024): 35–41. http://dx.doi.org/10.21776/ub.memi.2024.001.01.5.

Full text
Abstract:
Hydroxiteapatie (HA) as a filler is a mixture that is often added to alloy or composite products. This study investigates the development of polyester composites reinforced with kenaf fiber (KF) and hydroxiteapatite (HA) fillers in order to reduce their environmental impact. The strength, decomposability, and low weight of these composites make them ideal for a wide range of applications due to their exceptional mechanical properties. In addition to tensile and bending tests, water absorption tests, and immersion in seawater simulations, the composites were evaluated under demanding conditions. The water absorption rate increased with increasing fiber volume percentages in the composite, primarily due to the water-absorbing properties of the KF and HA particles. In contrast, the KF-15%HA-reinforced composite, which underwent soaking at 50 °C, exhibited the lowest tensile strength of the three composites. Additionally, the temperature at which aging occurs influences the composite's ability to absorb water and its mechanical properties. A filler may improve the mechanical properties of composites made from kenaf fibers, and it can also affect moisture absorption, reducing moisture absorption and increasing adhesion.
APA, Harvard, Vancouver, ISO, and other styles
11

Thovichit, K., N. Chaiwong, I. Sukjumreansri, and T. Amornsakchai. "F-8 HIGH IMPACT STRENGTH COMPOSITE FROM POLYETHYLENE FIBER(Session: Composites II)." Proceedings of the Asian Symposium on Materials and Processing 2006 (2006): 123. http://dx.doi.org/10.1299/jsmeasmp.2006.123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Setyawan, P. D., S. Sugiman, S. Sinarep, H. Hilwan, and H. Hilwan. "Karakteristik komposit sandwich dengan inti (core) open cell foam bambu berlubang." Dinamika Teknik Mesin 13, no. 2 (October 1, 2023): 157. http://dx.doi.org/10.29303/dtm.v13i2.654.

Full text
Abstract:
The sandwich composite employed in this study is made of bamboo open-cell foam with plywood skin. The fibre volume percentage in the bamboo foam core was 15%, and PVAc glue was used. The open-cell foam core has a square-shaped hollow in the centre with spacings of 30mm, 40mm, and 60mm. The goal of this study is to describe sandwich composites made using hollow bamboo open-cell foam cores. Density testing (ASTM C271), flatwise compression testing (ASTM C365-05), flexural testing (ASTM C393), and water absorption testing (ASTM C272) were among the tests performed. Sandwich composites with core-opened cell foam with holes had lower average density, specific flatwise compressive strength, and specific bending strength than sandwich composites without holes, according to the study's findings. The average density of the sandwich composite with core-opened cell foam with holes dropped by 6-13% as compared to the sandwich composite without holes. The average-specific flatwise compressive strength of the sandwich composite with a hollow core decreased by 2-20%. The sandwich composite's average specific bending strength was reduced by 40-50% when the core-opened cell foam with holes was used. The percentage of water absorption in the sandwich composite is the inverse. With this feature, it is believed that hollow bamboo open-cell foam would become more widely used.
APA, Harvard, Vancouver, ISO, and other styles
13

Amaechi, Chiemela Victor, Cole Chesterton, Harrison Obed Butler, Nathaniel Gillet, Chunguang Wang, Idris Ahmed Ja’e, Ahmed Reda, and Agbomerie Charles Odijie. "Review of Composite Marine Risers for Deep-Water Applications: Design, Development and Mechanics." Journal of Composites Science 6, no. 3 (March 17, 2022): 96. http://dx.doi.org/10.3390/jcs6030096.

Full text
Abstract:
In recent times, the utilisation of marine composites in tubular structures has grown in popularity. These applications include composite risers and related SURF (subsea umbilicals, risers and flowlines) units. The composite industry has evolved in the development of advanced composites, such as thermoplastic composite pipes (TCP) and hybrid composite structures. However, there are gaps in the understanding of its performance in composite risers, hence the need for this review on the design, hydrodynamics and mechanics of composite risers. The review covers both the structure of the composite production riser (CPR) and its end-fittings for offshore marine applications. It also reviews the mechanical behaviour of composite risers, their microstructure and strength/stress profiles. In principle, designers now have a greater grasp of composite materials. It was concluded that composites differ from standard materials such as steel. Basically, composites have weight savings and a comparative stiffness-to-strength ratio, which are advantageous in marine composites. Also, the offshore sector has grown in response to newer innovations in composite structures such as composite risers, thereby providing new cost-effective techniques. This comprehensive review shows the necessity of optimising existing designs of composite risers. Conclusions drawn portray issues facing composite riser research. Recommendations were made to encourage composite riser developments, including elaboration of necessary standards and specifications.
APA, Harvard, Vancouver, ISO, and other styles
14

Noviyanti, Atiek Rostika, Efa Nur Asyiah, Muhamad Diki Permana, Dina Dwiyanti, Suryana, and Diana Rakhmawaty Eddy. "Preparation of Hydroxyapatite-Titanium Dioxide Composite from Eggshell by Hydrothermal Method: Characterization and Antibacterial Activity." Crystals 12, no. 11 (November 10, 2022): 1599. http://dx.doi.org/10.3390/cryst12111599.

Full text
Abstract:
Hydroxyapatite (HA) has been widely used in biomedical applications. HA is prepared from natural sources of eggshell. The obtained HA is composited with TiO2 using the hydrothermal method at a temperature of 230 °C. The structure and morphology of HA-TiO2 composites are characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and a scanning electron microscope (SEM). Meanwhile, its antibacterial activity was tested on Staphylococcus aureus and Escherichia coli bacteria. The formation of the HA-TiO2 composite is evidenced by typical peaks on the XRD pattern for HA and TiO2. The FTIR spectrum shows that no bond formed between TiO2 and HA which indicates the formation of composites. The smallest crystallite size and the highest specific surface area were obtained from the composite with the composition of HA-TiO2 30:70. In addition, the composition of the composite also shows the smallest particle size distribution. Therefore, the presence of TiO2 plays a significant role in determining the HA properties formed. Furthermore, the HA-TiO2 composite showed good antibacterial activity using disk diffusion and optical density (OD) methods. These results indicate that the synergistic combination of HA from eggshell with TiO2 has favorable properties for antibacterial activity.
APA, Harvard, Vancouver, ISO, and other styles
15

McCoy, Laurel P., Patrick S. Market, Chad M. Gravelle, Charles E. Graves, Neil I. Fox, Scott M. Rochette, Joshua Kastman, and Bohumil Svoma. "Composites of Heavy Rain Producing Elevated Thunderstorms in the Central United States." Advances in Meteorology 2017 (2017): 1–19. http://dx.doi.org/10.1155/2017/6932798.

Full text
Abstract:
Composite analyses of the atmosphere over the central United States during elevated thunderstorms producing heavy rainfall are presented. Composites were created for five National Weather Service County Warning Areas (CWAs) in the region. Events studied occurred during the warm season (April–September) during 1979–2012. These CWAs encompass the region determined previously to experience the greatest frequency of elevated thunderstorms in the United States. Composited events produced rainfall of >50 mm 24 hr−1 within the selected CWA. Composites were generated for the 0–3 hr period prior to the heaviest rainfall, 6–9 hours prior to it, and 12–15 hours prior to it. This paper focuses on the Pleasant Hill, Missouri (EAX) composites, as all CWA results were similar; also these analyses focus on the period 0–3 hours prior to event occurrence. These findings corroborate the findings of previous authors. What is offered here that is unique is (1) a measure of the interquartile range within the composite mean fields, allowing for discrimination between variable fields that provided a strong reliable signal, from those that may appear strong but possess large variability, and (2) composite soundings of two subclasses of elevated thunderstorms. Also, a null case (one that fits the composite but failed to produce significant rainfall) is also examined for comparison.
APA, Harvard, Vancouver, ISO, and other styles
16

Li, Guang, Gui Dong Luan, and Hao Qu. "Study on Novel Relaxor Ferroelectric Single Crystal PMNT/Epoxy Composite." Applied Mechanics and Materials 475-476 (December 2013): 1257–61. http://dx.doi.org/10.4028/www.scientific.net/amm.475-476.1257.

Full text
Abstract:
Use relaxor ferroelectric single crystals PMNT as piezoelectric phase, epoxy resin as a non-piezoelectric phase material, take the cutting - filling method fabricated piezoelectric composite. Its structure character is achieved 1-3 type piezoelectric composites and piezoelectric crystal substrate composite again inseries by the integration, the composite horizontal and vertical bracket to be supported by piezoelectric crystal frame, it has a good impact resistance and affected by changes in ambient temperature characteristics. This composite material both has the advantages of 1-3 type composites, and has stable mechanical and thermal properties. Based on R.E.Newnhams series-parallel theory, combined with the structural characteristics of this composite, given the formula of piezoelectric composites density, piezoelectric constant, and dielectric constant. Fabricated the PMNT / epoxy composites and piezoelectric PZT / epoxy piezoelectric composite materials samples, which have the same scale, the same structural parameters. The experimental results show that, the piezoelectric composite test parameter values match theoretical calculations. The PMNT/epoxy composite has batter function than PZT/epoxy composite.
APA, Harvard, Vancouver, ISO, and other styles
17

Markovičová, Lenka, and Viera Zatkalíková. "The Effect of Filler Content on the Mechanical Properties of Polymer Composite." Applied Mechanics and Materials 858 (November 2016): 190–95. http://dx.doi.org/10.4028/www.scientific.net/amm.858.190.

Full text
Abstract:
A composite material is a macroscopic combination of two or more distinct materials, having a recognizable interface between them. Modern composite materials are usually optimized to achieve a particular balance of properties for a given range of applications. Composites are commonly classified at two distinct levels. The first level of classification is usually made with respect to the matrix constituent. The major composite classes include organic – matrix composites (OMC's), metal – matrix composites (MMC's), and ceramic – matrix composites (CMC's). The OMC's is generally assumed to include two classes of composites: polymer – matrix composites (PMC's) and carbon – matrix composites [1]. The composite material used in the work belongs to the PMC's and the composite is formed by the polymer matrix - high density polyethylene. As filler was used hard-magnetic strontium ferrite. Composite samples were prepared with different filler content (0%, 60%, 70%, 80%). Testing of polymer composites included: tensile test, elongation at break, impact test, hardness test.
APA, Harvard, Vancouver, ISO, and other styles
18

Markovičová, Lenka, and Viera Zatkalíková. "Composites With Rubber Matrix And Ferrimagnetic Filling." System Safety: Human - Technical Facility - Environment 1, no. 1 (March 1, 2019): 776–81. http://dx.doi.org/10.2478/czoto-2019-0099.

Full text
Abstract:
AbstractA composite material is a macroscopic combination of two or more distinct materials, having a recognizable interface between them. Modern composite materials are usually optimized to achieve a particular balance of properties for a given range of applications. Composites are commonly classified at two distinct levels. The first level of classification is usually made with respect to the matrix constituent. The major composite classes include organic – matrix composites (OMC's), metal – matrix composites (MMC's), and ceramic – matrix composites (CMC's). The OMC's is generally assumed to include two classes of composites: polymer – matrix composites (PMC's) and carbon – matrix composites (Peters, 1998). The composite material used in the work belongs to the PMC's and the composite is formed by the polymer matrix – rubber (sidewall mixture). As filler was used hard-magnetic strontium ferrite. Composite samples were prepared with different filler content (20%, 30%, 40%, 50%). Testing of polymer composites included: tensile test, elongation at break, hardness test and study of morphology.
APA, Harvard, Vancouver, ISO, and other styles
19

Subuki, Istikamah, Suffiyana Akhbar, and Farrah Khalidah Nor Wahid. "Influence of Thermoplastic PEG, GLY and Zein in PCL/TZ and HAp Bio Composite via Solid State Supercritical CO2 Foaming." Scientific Research Journal 17, no. 2 (August 27, 2020): 177. http://dx.doi.org/10.24191/srj.v17i2.9534.

Full text
Abstract:
This study is aimed to investigate the characteristics of the composite containing blended poly (ɛ-caprolactone) (PCL), hydroxyapatite (HA) and thermoplastic zein (TZ). Thermoplastic zein was developed by mixing zein with glycerol (GLY) and polyethylene glycol (PEG). The thermal characterization of mixed TZ and bio composite was characterized in order to investigate the characterization of PCL/TZ/HA composites. The bio composited was then moulded and produce porous structure via solid state supercritical carbon dioxide (scCO2) foaming process. The specimen was saturated with CO2 for 6 hours at 50˚C and saturation pressure of 20MPa at high depressurization rate. The morphology of porous specimen produced were characterized by scanning electron microscopy (SEM). The results indicated that after polymer saturation with CO2, high depressurization causes the formation of nucleated gas cells that give rise to pores within the foamed specimens. The blended bio composite with composition of PCL60/TZ20/HAp20 exhibit well interconnected porous structure compared to other bio composite prepared. The foaming effect produce foams with heterogeneous morphologies on bio composite material at relatively low temperature.
APA, Harvard, Vancouver, ISO, and other styles
20

Durga Prasada Rao, V., G. Moses Dayan, and V. Navya Geethika. "Study of hardness and flexural strength of banyan and peepal fibre reinforced hybrid composites." MATEC Web of Conferences 172 (2018): 04009. http://dx.doi.org/10.1051/matecconf/201817204009.

Full text
Abstract:
In the present work, Banyan and Peepal fibre reinforced hybrid composites are prepared through hand Lay- up technique..The objective of the work is to investigate the hardness and flexural properties of eight varieties of banyan – peepal hybrid composites. The composites include banyan-peepal-banyan-peepal-banyan fibre composite, peepal-banyan-peepal-banyan-peepal fibre composite, banyan-copper-banyan-copper-banyan fibre composite (F1-Cu-F1-Cu-F1), peepal-copper-peepal-copper-peepal fibre composite, banyan-peepal-copper-peepal-banyan fibre composite, peepal-copper-banyan-copper-peepal fibre composite, peepal-banyan-copper-banyan-peepal fibre composite, and banyan-copper-peepal-copper-banyan fibre composite . Each of these composites is prepared in 00 orientations (i.e., fibres parallel each other), 450 (i.e., fibres at 450 to each other) and 900 orientations (i.e., fibres perpendicular to each other). It is observed from the results that, the hardness of F2-Cu-F1-Cu-F2 composite with 900 orientation is high and that of F1-F2-F1-F2-F1 composite with 450 orientation is low. It is also noticed that, the bending strength of F2-Cu-F1-Cu-F2 composite with 00 orientation is high and that of F2-F1-F2-F1-F2 composite with 450 orientation is low, and as far as the composites with 90⁰ orientations are considered, no results are obtained. Further it is noticed that, the hardness of all the eight composites with 90˚ orientation is found to be high compared to their remaining orientations and also the hardness of all the composites with 45˚ orientation is low compared to their 0˚ and 90˚ orientations
APA, Harvard, Vancouver, ISO, and other styles
21

Öztaş, Saniye Karaman. "Fiber Reinforced Composite Materials in Architecture." Applied Mechanics and Materials 789-790 (September 2015): 1171–75. http://dx.doi.org/10.4028/www.scientific.net/amm.789-790.1171.

Full text
Abstract:
Composite materials are made from two or more constituent materials with significantly different physical or chemical properties. The materials work together to give the composite more excellent properties than its components.Fiber reinforced composite materials constitute a widely used group of the composites. There are many researches about fiber reinforced composites. This study focused on fiber reinforced composite materials used in architecture unlike other researches. It was aimed to specify the benefits of the fiber composite materials for architecture and discussed several recent developments related to these materials. A literature review was made by grouping composites materials. The study reported that more research is needed for fiber reinforced composites to improve their technical performance, environmental and economic properties.
APA, Harvard, Vancouver, ISO, and other styles
22

Lagerlof, K. P. D. "Transmission electron microscopy of composite materials." Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 1012–15. http://dx.doi.org/10.1017/s0424820100107125.

Full text
Abstract:
Although most materials contain more than one phase, and thus are multiphase materials, the definition of composite materials is commonly used to describe those materials containing more than one phase deliberately added to obtain certain desired physical properties. Composite materials are often classified according to their application, i.e. structural composites and electronic composites, but may also be classified according to the type of compounds making up the composite, i.e. metal/ceramic, ceramic/ceramie and metal/semiconductor composites. For structural composites it is also common to refer to the type of structural reinforcement; whisker-reinforced, fiber-reinforced, or particulate reinforced composites [1-4].For all types of composite materials, it is of fundamental importance to understand the relationship between the microstructure and the observed physical properties, and it is therefore vital to properly characterize the microstructure. The interfaces separating the different phases comprising the composite are of particular interest to understand. In structural composites the interface is often the weakest part, where fracture will nucleate, and in electronic composites structural defects at or near the interface will affect the critical electronic properties.
APA, Harvard, Vancouver, ISO, and other styles
23

Jong, Lei. "Mechanical properties of heterophase polymer blends of cryogenically fractured soy flour composite filler and poly (styrene–butadiene)." Journal of Elastomers & Plastics 44, no. 3 (January 5, 2012): 273–95. http://dx.doi.org/10.1177/0095244311428894.

Full text
Abstract:
Reinforcement effect of cryogenically fractured soy flour composite filler in soft polymer was investigated in this study. Polymer composites were prepared by melt-mixing polymer and soy flour composite fillers in an internal mixer. Soy flour composite fillers were prepared by blending aqueous soy flour dispersion and styrene–butadiene rubber latex to form a mixture, which was then dried and cryogenically ground into powders. Upon cross-linking, the heterophase composite filler was integrated into rubber polymer and exhibited enhanced mechanical properties. Tensile strength, elongation, Young’s modulus, toughness, and tear resistance of the heterophase polymer composites were better than those of the polymer matrix. The composites reinforced by the composite fillers prepared with different polymer matrices showed that the composite filler prepared with styrene–butadiene instead of carboxylated styrene–butadiene matrix produced composites with greater elongation ratio and toughness but smaller Young’s modulus. The study of elongation rate showed that the soy flour composite fillers produced the composites with useful tensile strength, elongation ratio, and toughness at 500 mm/min strain rate. The study also showed that the effect of soy flour/polymer ratio of the composite fillers on the composite mechanical properties was small.
APA, Harvard, Vancouver, ISO, and other styles
24

Li, Ying Guang, C. Y. Fu, D. S. Li, and S. M. Wan. "The Composite Tool Design Technologies of Aircraft Composite Parts in Autoclave Forming." Advanced Materials Research 426 (January 2012): 330–34. http://dx.doi.org/10.4028/www.scientific.net/amr.426.330.

Full text
Abstract:
Aiming at the problems of composites of anisotropic, poor in dimensional and uneven temperature field in the designing of composite tool in autoclave, the techniques of designing the composite tool of aircraft components were constructed, involving in the following aspects: Taking advantage of design flexibility of composites, the thermal expansion coefficient between the moulding board and composite components matched. By analyzing the cure process curve of fiber-reinforced composites, the result that the crisis point without stress between component and tool, which the shape of composite component decided was concluded. By the temperature field analysis, and contrasted with the experimental results, the maximum difference was 4.95°C,after analysis, optimized the structure of the tool, obtaining the relatively uniform temperature field of the board.
APA, Harvard, Vancouver, ISO, and other styles
25

Panumati, S., T. Amornsakchai, and C. Ramesh. "F-9 HIGH STRENGTH POLYPROPYLENE FIBER FROM POLYPROPYLENE/CLAY COMPOSITE(Session: Composites II)." Proceedings of the Asian Symposium on Materials and Processing 2006 (2006): 124. http://dx.doi.org/10.1299/jsmeasmp.2006.124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Islam, MT, MT Meem, ME Haque, GT Rahman, MA Hoque, and MA Gafur. "A Study on the Mechanical, Optical and Electrical Properties of Nylon-Mesh/Epoxy Composite." Bangladesh Journal of Physics 27, no. 2 (March 10, 2022): 49–57. http://dx.doi.org/10.3329/bjphy.v27i2.57666.

Full text
Abstract:
We fabricated the nylon-mesh reinforced epoxy composite by using the hand lay-up method. In this composite, nylon mesh act as the reinforcing material whereas epoxy resin is the matrix material. Comparisons have been made between blank epoxy sheet and the composite. We observed improved mechanical properties such as tensile strength, strain, hardness, and flexural strength from the composited rather than blank epoxy sheet. However, Young’s modulus was not found promising. In case of optical observations, Light absorbance increases, and optical band gap decreases slightly. Considering the Electrical properties, we observed better electrical insulation properties from our fabricated composite than the blank epoxy sheet. In addition, the water absorption properties have also been discussed in this research article. These observations of different properties will contribute to open the new wings of many new applications and help to further improve the quality of the composites. Bangladesh Journal of Physics, 27(2), 49-57, December 2020
APA, Harvard, Vancouver, ISO, and other styles
27

Kientzl, Imre, Imre Norbert Orbulov, János Dobránszky, and Árpád Németh. "Mechanical Behaviour Al-Matrix Composite Wires in Double Composite Structures." Advances in Science and Technology 50 (October 2006): 147–52. http://dx.doi.org/10.4028/www.scientific.net/ast.50.147.

Full text
Abstract:
The fibre reinforced metal matrix composites (FRMMC-s) are one of the main groups of the composite materials. The composite wires are continuous-fibre-reinforced aluminium matrix composites, which are made by a continuous process. Composite wires already have a few experimental applications for the reinforcement of high voltage electric cables. Other experimental application fields of these materials are the preferential reinforcement of the cast parts. In this way significant decrease in the weight could be achieved. The aim of this study is to show the excellent mechanical properties of the composite wires, and the contact relationship between the mechanical and other properties (i.e. thermoelectric power) and the possibility of their standardized production. The continuous production process of the composite wires and their test results were are shown as well. The difference between the composite wire reinforced double composite structures and direct fibre reinforced blocks were delineated as well. In this paper specimens were examined by tensile tests, bending tests, thermal aging tests and thermoelectric power measurement.
APA, Harvard, Vancouver, ISO, and other styles
28

Hamada, Hiroyuki, Akihiro Fujita, Zenichiro Maekawa, and Masaya Kotaki. "Bending Properties of 3D Glass Woven Fabric Reinforced Composites." Advanced Composites Letters 2, no. 4 (July 1993): 096369359300200. http://dx.doi.org/10.1177/096369359300200406.

Full text
Abstract:
3D glass woven fabric (PARABEAM) reinforced composites are of particular interest to composite industry, because light weight large scale composite structures can be fabricated. Bending properties of hybrid composites with 3D fabric and chopped strand mat were possible to be estimated by using theory of composite beam. The relations between thickness, weight and bending properties of the 3D composites could be drawn for designing composite structure.
APA, Harvard, Vancouver, ISO, and other styles
29

Ikbal, Muhammad, Muhammad Rizal, Nurdin Ali, and Teuku Edisah Putra. "Effect of Hybridization of Ramie Fibers on the Vibrational and Damping Responses of Ramie/Glass/Epoxy Resin Composite Laminates." Key Engineering Materials 951 (August 7, 2023): 65–71. http://dx.doi.org/10.4028/p-vhk2we.

Full text
Abstract:
Fiber reinforced polymer composites made with glass fibers are among the oldest and most popular kinds of composites in use today. Glass fiber reinforced composites' key benefits are their adaptability for specific material applications, which allows them to give a number of design advantages relating to strength, chemical stability, impact damage tolerance, heat insulation, and low cost. The focus of this research is to investigate the role of hybridized ramie fibers in the assessment of enhanced vibrational damping capabilities in fiber glass reinforced composites, as well as in the initial assessment to verify their acceptability for real-time applications. Composite molding employing the hand layup technique was used to fabricate hybrid epoxy composites with ramie to glass fiber weight ratios from 0 to 50%. A free vibration test was performed to determine the hybrid composite's vibration dampening capabilities as a function of the ramie fiber filler content. The results demonstrated that the damping ratio was reduced when the percentage of ramie fiber in the GFRP composite was raised from 10% weight to about 50% weight. But adding up to 40% wt of ramie fiber to the hybrid composite had the biggest effect on the damping ratio, natural frequency, storage modulus, and loss modulus. This means that using ramie fiber in hybrid composites will be cost-effective and good for the environment.
APA, Harvard, Vancouver, ISO, and other styles
30

Abdelal, Nisrin R., and Steven L. Donaldson. "Interlaminar fracture toughness and electromagnetic interference shielding of hybrid-stitched carbon fiber composites." Journal of Reinforced Plastics and Composites 37, no. 18 (July 18, 2018): 1131–41. http://dx.doi.org/10.1177/0731684418787642.

Full text
Abstract:
In the current study, the production of multifunctional hybrid-stitched composites with improved interlaminar fracture toughness and electromagnetic interference shielding effectiveness is reported. Unidirectional carbon fiber-epoxy composite laminates stitched with Kevlar, nylon, hybrid stitched with both Kevlar and nylon and unstitched were prepared using resin infusion process. Representative specimens from unstitched and stitched composites were tested using rectangular waveguide and Mode I double cantilever beam tests. The Mode I experimental results showed that composite stitched with Kevlar exhibited the highest crack initiation interlaminar fracture toughness (GIC-initiation), whereas composite stitched with nylon exhibited the highest maximum crack propagation interlaminar fracture toughness (GIC-maximum). The four-hybrid stitching patterns exhibited higher GIC-initiation than the unstitched and stitched with nylon composites and lower than stitched with Kevlar composite, whereas they had higher GIC-maximum than the unstitched and stitched with Kevlar composites, although lower than stitched with nylon composite. The electromagnetic shielding effectiveness experimental results showed that stitched composites exhibited improved shielding effectiveness compared to unstitched composites. For example, composite stitched with nylon had highest shielding effectiveness value of 52.17 dB compared by the composite stitched with Kevlar which had 40.6 dB. The four hybrid-stitched composites exhibited similar shielding effectiveness with an average value of 32.75 dB compared to the unstitched composite shielding effectiveness of 22.84 dB. The experimental results comply with the initial goal of this study to manufacture multifunctional hybrid stitching composites with combined properties between Kevlar and nylon-stitched composites.
APA, Harvard, Vancouver, ISO, and other styles
31

Spyrou, Maria, Eugenia Koliniotou-Koumpia, Pantelis Kouros, Elisabeth Koulaouzidou, and Pavlos Dionysopoulos. "The reparability of contemporary composite resins." European Journal of Dentistry 08, no. 03 (July 2014): 353–59. http://dx.doi.org/10.4103/1305-7456.137647.

Full text
Abstract:
ABSTRACT Objective: The objective was to investigate the way that various surface treatments could influence the bond strength of the repair of methacrylate (MC) and silorane (SIL) composites. Materials and Methods: A total of 160 MC and SIL cylindrical specimens were polymerized and aged in artificial saliva solution for 7 days. Depending on the following surface treatment (diamond bur or air abrasion), and the conditioning procedure (orthophosphoric acid or sodium hypochlorite), 16 groups were formed and repaired either with MC, either with SIL composite. Repaired specimens were subjected to an additional aging procedure in artificial saliva for 7 days, followed by thermo-cycling and then stressed in shear at a rate of 0.5 mm/min until failure. Failure patterns were analyzed using stereomicroscope and scanning electron microscopy. Results: MC composite showed statistically significant higher bond strength both as a base or repair material than SIL (P < 0.001). Statistically significant differences were not observed, when grinding and conditioning procedures was compared. Pretest failures were observed when aged MC-based composite was repaired with SIL-based. Conclusions: Type of composite seems to be the main factor influencing the bond strength of the repair. MC-based composite showed better repairability than SIL composite. Optimum repair conditions should include knowledge of the composite's composition.
APA, Harvard, Vancouver, ISO, and other styles
32

Kumari, Sanju, Ritesh Kumar, Bhuvneshwar Rai, and Gulshan Kumar. "Development of Euphorbia Latex and Bamboo Fiber Based Green Composite." Journal of Nanoscience and Nanotechnology 20, no. 8 (August 1, 2020): 5282–87. http://dx.doi.org/10.1166/jnn.2020.18534.

Full text
Abstract:
Novel composites with improved mechanical strength, thermally stability and better biodegradability were fabricated using polyester resin (PR) and euphorbia coagulum (EC) with natural bamboo fiber (BF) by a compression molding technique. The addition of EC makes the composite more pronounced for alkali-treated BF. The composites were characterized in terms of water absorption, mechanical, thermal and biodegradability. Composites showed considerable improvement in thermal stability, mechanical properties (flexural strength and impact strength) and biodegradability. EC modified composite shows maximum improvement in physico-mechanical properties compared to other composites. The inoculation of EC modified and unmodified composite with fungi resulted in higher growth on modified composite compared to unmodified composite. These novel composites could be labeled as sustainable material because they were prepared from low-cost BF and EC through a green approach. The composite material developed can be used in building constructions as wood substitution, automotive parts, sports goods, etc.
APA, Harvard, Vancouver, ISO, and other styles
33

Chen, Jieng-Chiang. "Bending and impacting of sandwich composites with a corrugated paper core layer." International Journal of Modern Physics B 32, no. 19 (July 18, 2018): 1840057. http://dx.doi.org/10.1142/s021797921840057x.

Full text
Abstract:
The bending and impacting characteristics of sandwich composites containing corrugated paper (CP) as a core layer are discussed herein. The core layer of the sandwich composite was fabricated with CP-reinforced polylactic acid (PLA) resin. The core layer was then stacked with jute fabric and PLA films on the top and bottom surfaces to fabricate the sandwich composites. Two composites [CP-reinforced PLA composite (CP/PLA composite)] and jute fabric/PLA sandwich composite with CP as a core layer [J/PLA/CP composite] were developed in this study. To manufacture the CP/PLA composite core layer, a dipping bath was used for impregnating the paper with a molten PLA solution. The resin film method combined with a hot press was used to produce the jute fabric/PLA/CP sandwich composites. A material test system (MTS810) was used to study the bending properties of the composites. Further, an IZOD impacting instrument was used to examine the impacting characteristics of the composites. Both the CP/PLA and jute fabric/PLA/CP sandwich composites increase the energy absorption capacity in the impact test.
APA, Harvard, Vancouver, ISO, and other styles
34

Uysal, Tancan, Mustafa Ulker, Asli Baysal, and Serdar Usumez. "Different Lingual Retainer Composites and the Microleakage between Enamel-Composite and Wire-Composite Interfaces." Angle Orthodontist 78, no. 5 (September 1, 2008): 941–46. http://dx.doi.org/10.2319/072707-350.1.

Full text
Abstract:
Abstract Objective: To assess microleakage of enamel-composite and wire-composite interfaces when retainer wires were bonded with two orthodontic and a flowable composites. Materials and Methods: Forty-five freshly extracted human mandibular canine teeth were used in this study. Teeth were separated into three groups of 15 teeth each. Round stainless-steel wire of 0.36-in. diameter in three groups was bonded to enamel by Transbond XT (3M Unitek), Transbond LR (3M Unitek), and Venus Flow (Heraeus Kulzer) composites. Specimens were further sealed with nail varnish, stained with 0.5% basic fuchsine for 24 hours, sectioned and examined under a stereomicroscope, and scored for microleakage for the enamel-composite and wire-composite interfaces from mesial and distal margins. Statistical analysis was performed by Kruskal-Wallis and Mann-Whitney U-tests. Results: Little or no microleakage was determined at the mesial and distal sides for three composites in two different interfaces, and these findings were not statistically significant (P &gt; .05). No statistically significant differences were observed among all composite groups for the microleakage with either of the interfaces. Venus Flow in the enamel-composite interface and Transbond LR in the wire-composite interface exhibited no microleakage. Conclusion: The presence of wire in the mesial portion of the lingual retainer did not increase the microleakage at the enamel-composite and wire-composite interfaces in all groups. The microleakage results in this study support the use of all these composites in routine orthodontic practice.
APA, Harvard, Vancouver, ISO, and other styles
35

Schalek, Richard L., John Helmuth, and Lawrence T. Drzal. "Evaluation of Boron Nitride Coated Nextel 312TM Fiber/BlackglasTM Composites Using an Environmental SEM." Microscopy and Microanalysis 4, S2 (July 1998): 282–83. http://dx.doi.org/10.1017/s143192760002153x.

Full text
Abstract:
The most critical technical issue preventing large scale application of ceramic matrix composites is the cost-effective application of stable interface coatings on continuous ceramic fibers. Currently, an alumina-silica ceramic fiber containing up to 14 wt. % boria (Nextel 312TM) is composited at elevated temperatures to form a boron nitride (BN) coating on the fiber surface. This BN coating serves as a compliant layer facilitating crack deflection and producing a non-catastrophic failure mode. Continued development of these ceramic matrix composites requires a more complete understanding of the mechanistic paths involved in composite densification. The objective of this work is to investigate and more clearly describe the role of the BN coating and its relation to composite processing and properties of the densified Nextel 312TM fiber/BlackglasTM (silicon oxycarbide) composites.Three composites consisting of as-received fibers (coated with an organic sizing), desized fibers (sizing removed by heating), and boron nitride coated fibers were fabricated using BlackglasTM preceramic polymer 489C B-stage resin.
APA, Harvard, Vancouver, ISO, and other styles
36

Syifa, Naila Hilmiyana, Agus Yulianto, and Upik Nurbaiti. "Pembuatan dan Karakterisasi Sifat Fisis Komposit Multilayer Serat Rami." Jurnal Pendidikan Fisika dan Teknologi 7, no. 2 (October 23, 2021): 87–95. http://dx.doi.org/10.29303/jpft.v7i2.2783.

Full text
Abstract:
The use of composites as an innovative new material is increasing. Composites are made from two or more materials that have different properties. This research was conducted to make multilayer composites and determine the effect of variations in the number of arrangements and the direction of the fiber angles on the physical properties of composites made from ramie fiber and epoxy. The physical properties of the composites analyzed in this study were density, porosity, water absorption, and thickness expansion. The composites in this study were made using the hand layup method with a volume fraction ratio of 30% and the ratio of epoxy and hardener was 2: 1. Before the composite was made, ramie fibers were soaked in 5% NaOH for 2 hours. This study succeeded in making epoxy ramie multilayer composites with variations in the number of arrangements and the direction of the fiber angles. Variations in the number of layers and the direction angle of the ramie fiber in the composite affect the density and porosity of the composite. Variations in the direction of the ramie fiber in the composite affect the water absorption of the composite. Variations in the number and direction of ramie fiber in the composite did not significantly affect the thickness of the composite.
APA, Harvard, Vancouver, ISO, and other styles
37

Peng, Xiangyang, Jinshuai Zhang, Jiapeng Fang, Zheng Wang, Zhen Huang, Shilong Kuang, and Chunqing He. "The Influence of Titanium Dioxide Nanosheet on Water Permeability of Silicone Rubber after Nitrogen Dioxide Aging Treatment." Materials 16, no. 22 (November 12, 2023): 7138. http://dx.doi.org/10.3390/ma16227138.

Full text
Abstract:
In this study, the aging process of a surface-functional titanium dioxide nanosheet (f-TNS) composited room-temperature-vulcanized silicone rubber (RTV) composite coating was simulated in a NO2 generation device, and then the electrochemical impedance spectroscopy (EIS) of the aged composite coating was tested in a 3.5% NaCl solution. The water permeation process was analyzed by the changes in the impedance modulus, porosity, and breakpoint frequency of the composite coating. The experimental results show that the water permeability of aged RTV decreases first and then increases with the increase in the composite proportion of f-TNS. When the composite proportion of TNS was 0.3 wt.%, the composite sample had the minimum water permeability and the best resistance to NO2 corrosion. The effect of TNS on the NO2 aging resistance of RTV composites and its mechanism were studied by SEM, FT-IR, and XPS. The impedance modulus and porosity of the aged 0.3% f-TNS/RTV, respectively, were 1.82 × 107 Ω cm2 and 0.91 × 10−4%, which increased by 2.23 times and decreased by 0.37 times, respectively, compared with the values of aged pure RTV sample. In addition, the breakpoint frequency of the aged 0.3% f-TNS/RTV also significantly reduced to 11.3 Hz, whereas it was 35 Hz in aged pure RTV.
APA, Harvard, Vancouver, ISO, and other styles
38

Mahadevan, G., Nallamuthu Ramasamy, V. Jayaseelan, and K. Mohamed-Bak. "Effect of Hydrothermal Aging Behavior on Surface Treated Kevlar Fiber Laminated Composites." Journal of Applied Research and Technology 21, no. 5 (October 30, 2023): 850–57. http://dx.doi.org/10.22201/icat.24486736e.2023.21.5.1158.

Full text
Abstract:
The water sorption characteristics of Kevlar fiber–reinforced epoxy composites were studied by immersion in water at 80 degrees Celsius. The hydrothermal aging process was conducted on treated and untreated Kevlar/epoxy composites; also, the composite was evaluated by the three-point bending test. The phosphoric acid (PA) pretreated with epichlorohydrin (ECH) was used for the surface modification of Kevlar. In the case of chemically modified fiber composites, water uptake was found to be dependent on the chemical treatment done on the fiber surface. The lowest water uptake was observed for composites treated with PA with ECH. The effect of thermal aging on the flexural strength of the treated Kevlar composite was 20.42% higher than the untreated composite. Consequently, the flexural modulus was 13.9% higher than the untreated Kevlar composite. Moreover, the water diffusion coefficient of treated composite 23.19% higher with untreated composite. It was concluded that fiber/matrix degradation time at the interface region was increased in the case of treated composite
APA, Harvard, Vancouver, ISO, and other styles
39

Stupnytskyi, R., I. Molojanov, N. Tkachuk, A. Zvolynska, and A. Bozhyk. "The long-term restoration of molars: consequeces, prognosis, tactics." SUCHASNA STOMATOLOHIYA 104, no. 5 (2020): 16–21. http://dx.doi.org/10.33295/1992-576x-2020-5-16.

Full text
Abstract:
Abstract: modern dentistry have made serious progress in esthetic restoration using the latest modified composist. Nowadays the composit restoration can be done and look like as a perfect prosthetic construction, that means we can provide high esthetics and function. But sometimes in our country we continue to use composite restoration, using the latest types of adhesive components in vital or devitalized morals, where the prosthetic pestoration is needable. Its very important to notice that most of composite restoration of our patients are done in vital affected morals, or more often, in devitalized morals.
APA, Harvard, Vancouver, ISO, and other styles
40

Chen, Jieng-Chiang, and Bo-Yan Huang. "Flame-retardant corrugated paper/epoxy composite materials." Modern Physics Letters B 33, no. 14n15 (May 28, 2019): 1940004. http://dx.doi.org/10.1142/s0217984919400049.

Full text
Abstract:
The waterproof and flame-retardant properties of corrugated paper (CP) reinforced epoxy resin sandwich composites are discussed. Two composites, a CP-reinforced epoxy composite (CP/E composite) and a CP-reinforced flame-retardant epoxy composite (CP/FRE composite), were developed in this study. A dipping bath was developed for impregnating the paper with epoxy and a flame-retardant epoxy solution to make the CP/P and CP/FRE composite panels. A room-temperature-cured epoxy resin was blended with various contents (10%, 20%, and 30%) of phosphorus-based flame-retardant compounds and then was used as a matrix to make CP/FRE-10, CP/FRE-20, and CP/FRE-30 composite materials. Water absorption tests of these composites were used to estimate the waterproof properties. In addition, vertical and horizontal burning tests were used to evaluate the flame-retardant properties of the composites.
APA, Harvard, Vancouver, ISO, and other styles
41

Muthukumar, V., R. Venkatasamy, V. Mariselvam, A. Sureshbabu, N. Senthilkumar, and A. Antony George Fernando. "Comparative Investigation on Mechanical Properties of Natural Fiber Reinforced Polyester Composites." Applied Mechanics and Materials 592-594 (July 2014): 92–96. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.92.

Full text
Abstract:
The aim of present experimental investigation is to compare the mechanical properties of Sisal, jute and kenaf fiber reinforced with glass fiber in polyester matrix hybrid composites. Hybrid composites were fabricated by hand lay-up technique. The tensile, flexural and impact tests were carried out on different composite samples as per the ASTM standards. It was observed that the tensile strength of jute/glass fiber composite is 1.94 and 1.59 times more than that of sisal/glass and kenaf/glass composites, respectively. The flexural load carrying capacity of sisal/glass composite is 3.4 and 2.83 times greater than those of jute/glass and kenaf/glass composites, respectively. Also, it can be seen that impact strength of jute/glass composite is almost equal to that of kenaf/glass composite and 1.13 times more than that of sisal/glass composite.
APA, Harvard, Vancouver, ISO, and other styles
42

Hanado, H., Yutaka Hiraoka, Takeshi Inoue, and N. Akiyoshi. "Mechanical Properties of W-X (X=Cu, Ag or BAg-8) Composites." Materials Science Forum 534-536 (January 2007): 905–8. http://dx.doi.org/10.4028/www.scientific.net/msf.534-536.905.

Full text
Abstract:
Bend tests were performed at temperatures between 273 and 363 K for W-19vol%Cu, W-22vol%Ag and W-19vol%(BAg-8) composites. Yield and/or maximum strengths and ductility of the composite were discussed in terms of microstructure and fractography. Results are summarized as follows. (1) Almost no difference was recognized in yield strength between the composites. In contrast, a large difference was recognized in maximum strength and ductility between the composites. Maximum strength and ductility of W-Ag and W-(BAg-8) composites were generally much inferior to those of W-Cu composite. (2) Inferior mechanical properties of W-Ag composite to W-Cu composite are attributed to heterogeneous distribution of Ag-phases, whilst inferior mechanical properties of W-(BAg-8) composite to W-Cu composite are attributed to large pores at grain boundaries.
APA, Harvard, Vancouver, ISO, and other styles
43

P, Karthick, Bindu Madhavan Vijaya Ramnath, and K. Palanikumar. "Investigation of the Mechanical Behavior of Acacia—Raffia Natural Fiber Composite." Polymers 15, no. 15 (July 30, 2023): 3249. http://dx.doi.org/10.3390/polym15153249.

Full text
Abstract:
Nowadays, industries place a strong emphasis on low-cost, biodegradable materials with long lifespans. As a result, businesses are concentrating on creating composite materials utilizing the world’s plentiful supply of natural fibers. In this study, acacia and raffia fibers are combined with epoxy resin and a hand layup method to create a biodegradable composite laminate. This article investigates the effect of fiber orientation on the mechanical and morphological evaluation of composite materials that have been manufactured. Three different kinds of composites were fabricated in this work: Composite 1, which contained acacia fiber; Composite 2, which was built of acacia and raffia fiber; and Composite 3, which was made of raffia fiber. While Composite 2 is a hybrid composite in this instance, Composites 1 and 3 are monofiber composites. In accordance with the ASTM standards, testing was performed to investigate the different mechanical behaviors, including tensile, flexural, double shear, delamination, hardness, and impact. The results demonstrate that Composite 1 has strong tensile strength, flexural strength, double shear, and hardness tests with a 45° fiber orientation. The 90° fiber orientation of Composite 1 performs well in the inter delamination test. The result demonstrates that composite 1 of type 0 absorbs greater energy. Additionally, Scanning electron microscopy was used to conduct morphological examinations in order to investigate the internal structural failure of the composites. It was found that the composite laminate has fiber cracks, pullouts, and voids, which were reduced with the right curing times and stress.
APA, Harvard, Vancouver, ISO, and other styles
44

Ni, Nan Nan, Yue Fang Wen, De Long He, Miao Cai Guo, and Xiao Su Yi. "Preparation and Characterization of Structural Damping Composites Toughened by Polyamide Nonwoven Fabrics." Materials Science Forum 848 (March 2016): 189–95. http://dx.doi.org/10.4028/www.scientific.net/msf.848.189.

Full text
Abstract:
A new kind of structural damping composites was prepared by interleaving polyamide nonwoven fabrics (PNF) between the carbon fiber reinforced epoxy composite laminates. The damping behaviors of the composites made were experimentally investigated using cantilever beam test and dynamic mechanical analysis. The damping ratios of the nonwoven fabrics interleaved composites were compared with the ones of non-interleaved composites. In addition, the interlaminar shear strength and flexible modulus of the composites were also investigated, as well as the composite compression after impact (CAI), Mode I and Mode II interlaminar fracture toughness (GIC and GIIC), in order to evaluate the influence of the polyamide nonwoven fabric layers on the composite mechanical properties. It has been observed that the interleaved polyamide nonwoven fabric layers greatly improved the composite damping loss factors, and the composites containing 7 layers of PNF showed the best damping behavior. Meanwhile, the addition of PNF showed a negligible influence on the composite flexible strength and modulus and interlaminar shear strength. Most importantly, the CAI, GIC and GIIC tests indicated that the composite interlaminar toughness and impact resistance were significantly improved by the interleaved PNF. Finally, the reinforcing mechanism of this kind of composites is discussed.
APA, Harvard, Vancouver, ISO, and other styles
45

Grzymski, Filip, Dorota Marcinczak, Tomasz Trapko, and Michał Musiał. "FRCM composites mesh anchorage – a way to increase strengthening effectiveness." MATEC Web of Conferences 251 (2018): 02044. http://dx.doi.org/10.1051/matecconf/201825102044.

Full text
Abstract:
FRCM (Fabric Reinforced Cementitious Matrix) composites are the next stage of development of composite structural reinforcement after FRP (Fibre Reinforced Polymers) composites. The main element that distinguishes the newer FRCM system is the matrix of the composite – mineral matrix instead of epoxy resin. Changes in the structure of the composite, resulting from the change of the matrix, have a big impact on its work mechanisms. This paper discusses FRCM composites and shows its effectiveness in reinforced concrete elements strengthening. The basic information on FRCM mesh fibres material differences and composite failure modes are given. Current trends and directions of composite structural strengthening and the latest research in the area of increasing FRCM composite strengthening effectiveness, that are being conducted by the authors, are presented.
APA, Harvard, Vancouver, ISO, and other styles
46

Thakkar, Radhika, Anuj P. Maini, Sahil Mogla, Syed Shah Hussain Qadri, Praveen K. Varma, and Alok Dubey. "Effect of Staining Beverages on Color Stability of Composite: A Spectrophotometric Study." Journal of Pharmacy and Bioallied Sciences 16, Suppl 1 (February 2024): S389—S392. http://dx.doi.org/10.4103/jpbs.jpbs_611_23.

Full text
Abstract:
ABSTRACT Objective: This study used spectrophotometry to examine how staining beverages affect the color stability of three commercial composite materials (nanohybrid composite (A), bulk fill composite (B), and flowable composite (C)) over time. Materials and Methods: Composite discs were randomly divided into groups. The specimens were kept in coffee, tea, red wine, and cola for 14 days at 37°C in the dark. At baseline, 7 days, and 14 days, spectrophotometers measured color. Calculated and analyzed color differences (E). Results: Staining beverages changed the color of all composites. Composite material A had the best color stability, whereas material C stained beverages the most. Red wine and coffee discolored composites most. Discoloration increased over the 14-day immersion period. Conclusion: Composite materials with better color stability were material A. Red wine and coffee discolored composites most. When choosing restorative materials, dentists should consider composite materials’ color stability for long-lasting, visually acceptable results.
APA, Harvard, Vancouver, ISO, and other styles
47

Stelzer, Steffen, Stephan Ucsnik, and Gerald Pinter. "Composite-Composite Joining with through the Thickness Reinforcements for Enhanced Damage Tolerance." Materials Science Forum 825-826 (July 2015): 883–90. http://dx.doi.org/10.4028/www.scientific.net/msf.825-826.883.

Full text
Abstract:
A novel composite-composite joining technology based on metal pins oriented in through thickness direction of the composites is presented. A defined pin geometry, which is capable of establishing a through-thickness form-fit connection between composites and the metal reinforcement, is created on thin metal sheets in an automated pin production process. Based on numerical simulations of the fracture of unreinforced single lap shear (SLS) composite specimens, optimum locations for the pin reinforcement were found. Tests on reinforced SLS specimens proved that an enhanced damage tolerance can be achieved by the use of cold metal transfer welded pins (CMT pins) as through-the-thickness reinforcement of the joint area. This paper investigates the mechanisms responsible for the load transfer and failure of such through-the-thickness reinforced composite-composite joints during monotonic loading.
APA, Harvard, Vancouver, ISO, and other styles
48

Chen, Jieng-Chiang, and Yi-Ting Lin. "Tension and compression of jute fabric/corrugated paper/reinforced polylactic acid resin sandwich composites." Modern Physics Letters B 33, no. 14n15 (May 28, 2019): 1940003. http://dx.doi.org/10.1142/s0217984919400037.

Full text
Abstract:
The tensile and compressive properties of jute fabric and corrugated paper (CP)-reinforced polylactic acid (PLA) resin sandwich composites are discussed. A core layer was fabricated with CP-reinforced PLA resin. The core later was then stacked with jute fabric and PLA films on the top and bottom surfaces to fabricate the sandwich composites. Two composites, a CP-reinforced PLA composite (CP/PLA composite) and a jute fabric/PLA sandwich composite with CP as a core layer (J/PLA/CP composite) were developed in this study. A dipping bath was developed for impregnating the paper with a molten PLA solution to make the CP/PLA composite core layer. The resin film method was used to fabricate the jute fabric/PLA/CP sandwich composite on a hot press machine. A material test system (MTS810) was used to evaluate the tensile, flatwise compression, and longitudinal compressive characteristics of the composites.
APA, Harvard, Vancouver, ISO, and other styles
49

Okafor, Patricia, and Jude Iroh. "Electrochemical Properties of Porous Graphene/Polyimide-Nickel Oxide Hybrid Composite Electrode Material." Energies 14, no. 3 (January 23, 2021): 582. http://dx.doi.org/10.3390/en14030582.

Full text
Abstract:
Polyimide-graphene nanosheet composite electrodes are rigid and dense and, therefore, exhibit moderate electrochemical properties. The electrochemical properties of polyimide-graphene nanosheet electrodes were remarkably improved by creating voids in the composite followed by the insertion of nickel oxide into the composites. Nickel oxide particles were electrodeposited onto the porous graphene/poly(amic acid) composite, containing poly (acrylic resin). The hybrid composite was then subjected to thermal treatment at ≥ 300 °C to simultaneously complete imidization and degrade the poly (acrylic resin). Cyclic Voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to study the eletrochemical properties of the composite electrode material. It is shown that remarkable improvement in the electrochemical behavior of the hybrid composite occurred due to the removal of poly(acrylic acid) and the insertion of NiO particles into the polyimide matrix. Fourier Transform Infrared Spectroscopy (FTIR) spectra of the hybrid composites show distinct characteristic peaks for polyimide and NiO in the hybrid composite electrode. Scanning Electron Microscopy, SEM images of the composites, show the presence of NiO aggregates in the composite material. Compared to neat graphene/polyimide composite electrode (GR/PI) composites, the specific capacitance of the hybrid composite electrode increased remarkably by over 250% due to the high interfacial surface area provided by NiO and the concomitant improvement in the electrode–electrolyte interaction.
APA, Harvard, Vancouver, ISO, and other styles
50

Mohammad Na’aim Abd Rahim, Mohd Shukor Salleh, Sivarao Subramonian, Mohamad Ridzuan Mohamad Kamal, and Salah Salman Al-Zubaidi. "Influence of Graphene on the Microstructure and Mechanical Properties of Aluminium Matrix Composite." Malaysian Journal on Composites Science and Manufacturing 12, no. 1 (November 29, 2023): 73–83. http://dx.doi.org/10.37934/mjcsm.12.1.7383.

Full text
Abstract:
The constraints of conventional aluminum alloys have prompted the investigation of strengthening substances such as carbon nanotubes and graphene fillers. The improved composite exhibits suitability for applications in the automotive and aviation industries. Graphene's popularity stems from its high strength, electrical and thermal conductivity, and chemical inertness, making it ideal for mechanical, thermal, and microstructural applications. This research varied concentrations of graphene nanoplatelets (0.3%, 0.6%, and 0.9%) to enhance the mechanical properties of aluminum metal matrix composites. A stir casting process was employed to create a graphene-reinforced aluminum matrix composite using A356 aluminum alloy. A designed experiment (DOE) investigated the impacts of graphene concentration and suitable heat treatment time on the aluminum composite. Subsequently, the specimens underwent heat treatment and X-ray diffraction (XRD). Mechanical properties were examined using a universal testing machine. The best aluminum matrix composites were produced with 0.9wt% graphene and 180 minutes of heat treatment. These parameters resulted in a microstructure with refined grains evolving from dendritic to rosette. The grains became closely packed, and reduced porosity was observed. As a result, the mechanical properties were enhanced, with a maximum ultimate tensile strength (UTS) of 250 MPa and a fracture elongation of 6%. The findings indicate that graphene nanoplatelet (GNP) concentration significantly influences the mechanical characteristics of the composite. Tensile and yield strength increase with GNP concentration, but higher concentrations reduce the composite's ductility. These insights contribute to optimizing GNP-reinforced composites and developing innovative materials with superior mechanical properties.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography